کانی شناسی و پارازنت کانسنسگ
اردستان. مجموعه فلززاپی اناک
بهزاد مهرابی، ابراهیم طالع فاضل

(1) گروه زئوئسیمی دانشگاه علوم زمین، دانشگاه خورشید، تهران
(2) گروه زئوئسیمی دانشگاه علوم، دانشگاه بوعلی سینا

چکیده: مدل‌سازی‌های انجام شده بر مبنا بر تعداد اولمپینیکی و فیزیکی شیمیایی شار، غه‌های آنتی که مذاب‌های غنی از بیسوموت قادین مقادیر بالایی از طلا را از شاره‌های گرمالی در تعادل با ماسه جاور (scavenging) کنند در این پژوهش منطقه‌ای بی‌جویی کودم در شمال شرق اردستان (بخش شمال مجموعه فلززاپی اناک) به عنوان نمونه‌ای از دختر گرمالی نوع IOCG و کانی‌های دور-همانیت ± سولفید با مجموعه عناصر آهن-سی-طلای بیسوموت وریس قرار گرفته‌اند. در این میان، کانی‌های سولفیل‌سالی‌های گرمالی فلزی تکلیفی، کانی‌های اولمپینیک غنی از بیسوموت و فلاتر کم‌پیکر از قیف طلا بیسوموت و الکتروم، با هدف دستیابی به ترکیب شیمیایی و ارتباط رایی با طلا برسی شدند.
کانی‌های گروه بیسوموت به عنوان مهم‌ترین کانی‌های مولاری در دو طلا در منطقه شمال بیسوموتیت (با فرمول تجربی Bi2(AsO4)3) و بیسوموت آزاد (با فرمول تجربی Cu0.56Fe0.03Bi1.2S2.16)‌هستند. برای شاوه به نظر می‌رسد که الکترون‌های آزاد شده از کانی‌های احیا انجام دهنده نظیر بیشتر و به موجب ان‌افاکسی‌کننده شار، منجرب به تبدیل 3+ به Bi0 به تغییر بیسوموت در محفظه شده است. در آن، با رخ دادن مگنتیت به عنوان فاز بار آب‌دار، الکترون‌های آزاد شده منجرب به تبدیل 3+ به Au0 به در شار و جذب آن به موشیلی فاز بیسوموت شده است.

واژه‌های کلیدی: زئوئسیمی، کاننده‌های کانسنسگ، همانیت ± سولفید، بیسوموت، جاور طلا، کودم.

مقدمه
کانسنسگی و توزیع فلزات در کمین‌های فلززاپی مختلف، تحت کنترل بی‌فوکسیمی شار، واکنش با سنگ‌های و گرمالی کننده‌های ساختاری رخ می‌دهد. واکنش میان شار، گرمالی و سنگ دیواره در شاره‌های فیزیکی شیمیایی معین، موجب رخ دادن کانسنسگی-شیمیایی، تغییرات بالایی و سختی و در نهایت مهاجرت فلزات به‌وسیله شار در بخش‌های مختلف یک ذخیره می‌شود. مجموعه‌های این فرآیندها مرجوع به کانسنسگی که جدیدی با نیک منتو در یک منطقه می‌شود. کمین‌های ایلام، دختر با راستای شمال‌غرب-جنوب شرق در ارتفاع کوه‌های زاگرس، میزان

tale.fazel@gmail.com

نویستگان مسئول: تلفن: 08138381177، پست الکترونیکی: tale.fazel@gmail.com

Downloaded from ijcm.ir at 11:45 +0430 on Sunday July 28th 2019
زمین شناسی

مجموعه (هم‌افاق) فلز‌ای اثر را در بخش میلی‌ایان (دوزی) از شاله به آدامه بخش غربی گسل درونه، از جنب غربی به منطقه
ی ایونیاتی ناشین-زوده و از جنب غربی در فروفاوت‌ها ناشین-ازکرک، محدود می‌شود. منطقه اثر در دیار با ویژگی‌های فلز‌ای، متأسفانه، ساختمانی و دگرگونی خاصی شناخته می‌شود که بررسی‌های زمین‌شناسی بعد از یک روز آن انجام شده است. کارشناسان سرب شرکت کنکسپورت (101). منطقه ی اثر ها به شکل منطقه قسمت کنونی کمک در کلمه می‌شود.

روش بررسی

به منظور بررسی شرکت‌های کانکسپورت، سرمایه کانی‌ها و یونیات‌ها که از این مشخصه استفاده از روش‌های مناسب دستگاه‌های ارزیابی قرار گرفته و داده‌های مربوط به آن مورد سنتی نشانه‌های قارگرفته است. برای حل‌سازی این به‌بینانه نماینده ۵۰ نمونه از شاخه‌های مختلف کانی و رگه برداشته شدن که به

کاراگاه، دو نقطه خرابه کاراگاه دیگر حوزه‌های و دستگاه در شاخص خوارزی، وزن‌آور و

تحقیقات فراوری مواد معدنی ایران مورد استفاده قرار گرفت. این مطاوع با استفاده از

کاراگاه ۱۶ نقطه کربن-

Mikroscopic پیش‌بینی ازدای، طرح و کاهش افزایش قارگرفته. ایران مورد بررسی قرار گرفته است. از بررسی‌هایی که به انتخاب نمونه‌های مناسب تعداد ۴۰ مقطع صفحه و نازک. هر دو از این نمونه‌ها در کاراگاه مقطع‌های گیری داشته و می‌تواند به جهلم

روش کربنی (carbon coating) به روش کربنی و LEO1450 VP مدل (SEM) مدل Mikroscopic الکترونی روبیشی (Mikroscopic و از Camrea SX100 مدل (EMPA) تجزیه ریزکا (ارضی) مدل (EMPA) از دو دهنده ۱۰۰ نانو آکتیورم (kV) جریان بروز ۲۵ کیلوولت (kV) و قطع بروز ۵ میکرون اندازه بزرگ ()، دو دهنده ۱۰۰ نانو آکتیورم (kV) جریان بروز ۲۵ کیلوولت (kV) و قطع بروز ۵ میکرون اندازه بزرگ ()، دو دهنده ۱۰۰ نانو آکتیورم (kV) جریان بروز ۲۵ کیلوولت (kV) و قطع بروز ۵ میکرون اندازه بزرگ ()، دو دهنده ۱۰۰ نانو آکتیورم (kV) جریان بروز ۲۵ کیلوولت (kV) و قطع بروز ۵ میکرون اندازه بزرگ ()، دو دهنده ۱۰۰ نانو آکتیورم (kV) جریان بروز ۲۵ کیلوولت (kV) و قطع بروز ۵ میکرون اندازه بزرگ ()، دو دهنده ۱۰۰ نانو آکتیورم (kV) جریان بروز ۲۵ کیلوولت (kV) و قطع بروز ۵ میکرون اندازه بزرگ ()، دو دهنده ۱۰۰ نانو آکتیورم (kV) جریان بروز ۲۵ کیلوولت (kV) و قطع بروز ۵ میکرون اندازه بزرگ ()، دو دهنده ۱۰۰ نانو آکتیورم (kV) جریان بروز ۲۵ کیلوولت (kV) و قطع بروز ۵ میکرون اندازه بزرگ ()، دو دهنده ۱۰۰ نانو آکتیورم (kV) جریان بروز ۲۵ کیلوولت (kV) و قطع بروز ۵ میکرون اندازه بزرگ ()، دو دهنده ۱۰۰ نانو آکتیورم (kV) جریان بروز ۲۵ کیلوولت (kV) و قطع بروز ۵ میکرون اندازه بزرگ ()، دو دهنده ۱۰۰ نانو آکتیورم (kV) جریان بروز ۲۵ کیلوولت (kV) و قطع بروز ۵ میکرون اندازه بزرگ ()، دو دهنده ۱۰۰ نانو آکتیورم (kV) جریان بروز ۲۵ کیلوولت (kV) و قطع بروز ۵ میکرون اندازه B
کانی شناسی و پارازن کانسنگ Cu-Au-Bi منطقه‌ی... ۶۳۷
جلد ۲۴، شماره ۴، زمستان ۱۳۹۵

شکل ۱: نقشه زمین شناسی-فلز رای منطقه‌ی پی جوی کودم که موقعیت سه منطقه‌ی کانسنگ در آن نشان داده شده‌اند (با تغییرات از [۱۱۲]).

کانی‌شناسی و سنجش‌شناسی کانسنگ Cu-Au-Bi

کوارتز به عنوان فراوان‌ترین کانی در رگه‌ها با فراوانی تقریبی ۴۰ درصد حجم کل همراه همانیت و کانه‌های درون‌راز و برون‌‌زرد سولفیدی شکل شده که با کانی‌های دگرگون مختلف همراهی می‌شود. ساختمان و بافت‌های مشابه که در کوارتز‌های منطقه (colloform، crustiform) شعله، بافت‌های قشری، کوارتزسپت (crustiform) برشی و رگه‌ز رگه‌های است (شکل ۳۰). پس از کوارتز، همانیت‌های تپه‌ای (ایمپوز) به عنوان فراوان‌ترین کانی تشکیل دهنده رگه‌ها اغلب به همراه کوارتز با فراوانی تقریبی ۳۰ درصد حجم در رگه‌ها به عنوان کانی فراز اصلی محسوب می‌شود.

کانی سایر همانیت به صورت بلورهای پراکنده و انبشته هم‌رسید با کوارتز‌های شش گوش رخ‌داده است (شکل ۳ب). کانی‌های سولفیدی با فراوانی نسبی ۲۰ درصد حجم کل حضوری افشان نیست همانیت به صورت رگه‌ای به درون‌راز، کوارتز‌های بلوری و پاک‌های همانیت در میزان کانی‌های کوارتز و کلیس تاش شکل می‌شود. مهم‌ترین کانی‌های سولفیدی در رگه‌ها به ترتیب فراوانی شامل کالکوباییت و ببریت، کالکوباییت برون‌زرد، مولپیدینیت، کانی‌های بیسموت-مس و غیره کانی‌های سولفوسالیسی (گروه فلور) با اعضای انتها (ترادرهی) تناشیتی است (شکل ۳ب).

مناطق کانسنگ رگه‌ز با ترتیب اهمیت شمل، به‌نیم‌های کودم ۱ (کانسنگ رگه‌ز کوارتز-پایه‌های میانی)، کودم ۲ (کانسنگ رگه‌ز کوارتز-پایه‌های ناحیه‌های سخت‌کریزه‌سیندن (شکل ۱). بستن حجم و عبار کانه‌های طلا (تا پیش از ۵۰ گرم در تن در یک نمونه) در منطقه‌ی پی جوی کودم ۱ دیده شد که در این پروپوز مورد بررسی قرار گرفته است.

زمین‌شناسی کانسنگ Cu-Au-Bi

هنده رگه‌ها

مناطق سنجی و زوال‌کربنیک گویای وجود ۱۰ منطقه‌ی کانی‌دار در گستره‌ی کانسنگ کودم ۱ است [۱۲۳]. از این میان، مواردی که افق معدنی کوارتز-پایه‌های سولفیدی به صورت رگه‌ای تا حدی در منطقه‌ی طبقه‌بندی شده (شکل ۳). در این منطقه‌ی معدنی (رگه‌های ۱ تا ۵) به موارد پیداکری یک رستای نکته‌_LOG؟ فوریت و یک مورد درجه به سمت جنوب غرب تشکیل شده است. این رگه‌ها به ترتیب درازای بین ۱۰۰ تا ۵۰۰ متر، عمق قائم تا ۵۰ متر و ضخامت کمی‌تری ۵ تا یک‌نبشیه (میانگین ۵ متر) با عبار میانگین FeOtotal هستند.

۲۱ درصد
شکل ۲ نقشه زمین‌شناسی ساختاری منطقه‌ی کودم ۱ که در آن ۴ افق معدنی (A.B.C.D) همان‌تیت سولفاتید با راستی‌های شرقي-غربی و سه به سمت جنوب غربی به موازت یکدیگر تشکیل شده‌اند (BH) در شکل ذکر شده است.

شکل ۳ تصاویر میکروسکوپی و سنگ‌نگاری کلیکی (منطقه‌ی کودم شمالي) بهترین قشری مشکل از تواریخ و Cu-Au-Bi همان‌تیت سولفاتید و سوئید همان‌تیت و پریت همان‌تیت تبیه‌ای در میان آن‌ها، (بر) تجماع بلوری همان‌تیت تبیه‌ای به صورت هم‌مرجع با کوارتز گروه‌های خودشکل (ب) حضور گلیائی سولفاتید کالکوپریت و پریت همان‌تیت تبیه‌ای و دانه‌های پراکنده کوارتز و ت) کانی‌سازی پروزنز نحمیت تاریکی کالکوپریت در حاشیه‌ی همان‌تیت-کوارتز کالکوپریت، پریت، همان‌تیت-کوارتز، Cep، Cal، Cet، بئینه، Qz.

بروزاد در رگ‌ها نیز شامل کالکوپریت، کوپریت، دیزیت، بالاکیت، رونگیت، و سیستم‌های آکتیو عناصر نادر خاکی (از قبیل مونزیت و آتیت)، نیز با قراری نسبی کمتر از ۲ درصد در رگ‌ها.

در این مقاله بررسی‌های میکروسکوپی الکترونی در ۴۰ گونه تشخیص داده شد. بررسی‌های الکترونی داده‌ها نشان داد که میزان کالکوپریت و همان‌تیت مشاهده شد. مهم‌ترین کانه‌های ژئولوژیک بیش از ۳۰ میکرون در میان کالکوپریت و همان‌تیت مشاهده شد.
مشخصات داده شدن علاوه بر این، سه نوع دگرگونی شامل دگرگونی های سدیک، کلسیک (کاکی شاخه آلیت در کارگاه رگه‌ها و افکاده کادور) و نانسری (کاکی شاخه فلدسپات) پتانسیم، کاریتا و کلسبی در فاصله‌ای از رگه‌ها و کوارتز-کلسبی کربنات-سولفید (بطری برکته در رگه‌ها و انرژی‌های میزان)، در منطقه‌های مورد بررسی تشخیص داده شدند [16].

مراحل کانژه‌ای

با توجه به شواهد سه‌نواحی، آزمایشگاهی و روابط متقابل کاکی، دست کم سه مرحله کانژه‌ای به ترتیب شامل مرحله‌های اکسیدی، سولفیدی (کلاکریای همانیت‌های مگنتیت)، مرحله‌سی (مرحله‌های سولفیدی مس–طلایی) و بیپسوم (مشخص از ذوب مرحله‌های سولفیدی اولیه و تأریخی) و مرحله کانژه‌ای برپا کرده‌اند.

شیمی کاکی‌ها

وجود شارده غنی از عناصر جنرالزی این، مس، طلا، نقره، بیپسوم، آنتی‌مینوس و نیز آن موجب تون ترکیب و رخداد کاکی‌ها مختلف از رگه‌های کوارتز-ساسیتی. سولفید منطقه‌ای بیچوک کوده شده است. در این پژوهش به کار گروه سولفیدی کالکوپیریت و پیریت کمبود کاکی‌های گروه بیپسوم و نمک‌های گروه فیلر (به همراه فلزات آزاد بیپسوم و الکتروم) با هدف دستیابی به ترکیب شیمیایی آنها مورد تجزیه نقطه‌ای قرار گرفت. به منظور دستیابی به ترکیب این کاکی‌ها (Empirical formula با استفاده رهیا نظری حسابی (BSE) بر روی نسبت تقریبی 200 نقطه انجام شد که ترتیب آن مورد گردید 1 آورده شدند.

<table>
<thead>
<tr>
<th>STAGE 1: Iron oxide</th>
<th>STAGE 2: Cu-Au-Bi sulphide Early veins Late veins</th>
<th>STAGE 3: Supergene minerals</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hematite</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Magnetite</td>
<td></td>
<td></td>
</tr>
<tr>
<td>K-feldspar</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Albite</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Quartz</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chlorite</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pyrite</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chalcopyrite</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bi-minerals</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Native Bi</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Native Au</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Electrum</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Molybdinitene</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fahlöre-groups</td>
<td></td>
<td></td>
</tr>
<tr>
<td>REE-minerals</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tourmaline</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Muscovite</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rutile</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Barite</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carbonate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Goethite</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cu-supergene</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

شکل 4: توالی پارانزیک و مراحل زمانی رخداد کاکی‌ها در منطقه‌ای پیچویی کوده می‌باشد.
کاتیهای سولفیدی اصلی
کاتیهای پیتی و کالکورپین فراوانترین کاتیهای سولفیدی در
رنگهای کوارتز-ماتین ± سولفید منطقهٔ پیچری کودم
حساس، پیتی با فرمول تجاری Cu0.96Fe1.00S2.00
و ۵۱.۱۰۰۰۰ آن در این مقاله مورد استفاده قرار گرفته‌اند.
و مقدار ناجی مگنی و نوره شناخته
می‌شود (جدول ۱).

جدول ۱ مداری بیشینه، کمینه و میانکین درصد وریز (W%) عناصر به دست آمده در ترکیب کاتیهای سولفیدی اصلی و کمیاب منطقهٔ کودم با
استفاده از تجزیه میکروسیمیون (EMPA) (n=۷) (تعداد نقاط تجزیه شده = عدد شماره‌گذاری) (۱)

<table>
<thead>
<tr>
<th>عناصر</th>
<th>کالکورپین (V-n)</th>
<th>بیسومت (۵-n)</th>
<th>ایمیالپینت (۱۵-n)</th>
<th>کروه فلور (۱۰-n)</th>
<th>پیتی (۱-n)</th>
<th>کاتیهای (۱-n)</th>
<th>الکتنوم (۱-n)</th>
<th>طلا (۲-n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Na</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>Li</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>K</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>Cu</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>Cd</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>Zn</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>Pb</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>Sn</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>S</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>Hg</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>As</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>Sb</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>Bi</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>Au</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>Ag</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>Cu</td>
<td>۴۴.۳۳</td>
<td>۸۸.۳۳-۷۷.۳۳</td>
<td>۶۶.۲۸-۵۵.۲۴</td>
<td>۷۴.۲۸-۶۸.۲۷</td>
<td>۸۸.۲۸-۷۰.۲۴</td>
<td>۸۹.۲۸-۶۰.۲۴</td>
<td>۸۹.۲۸-۶۰.۲۴</td>
<td>۸۹.۲۸-۶۰.۲۴</td>
</tr>
<tr>
<td>Na</td>
<td>۰.۰۳</td>
<td>۰.۰۳-۰.۰۷</td>
<td>۰.۰۳-۰.۰۷</td>
<td>۰.۰۳-۰.۰۷</td>
<td>۰.۰۳-۰.۰۷</td>
<td>۰.۰۳-۰.۰۷</td>
<td>۰.۰۳-۰.۰۷</td>
<td>۰.۰۳-۰.۰۷</td>
</tr>
<tr>
<td>Fe</td>
<td>۰.۰۳</td>
<td>۰.۰۳-۰.۰۷</td>
<td>۰.۰۳-۰.۰۷</td>
<td>۰.۰۳-۰.۰۷</td>
<td>۰.۰۳-۰.۰۷</td>
<td>۰.۰۳-۰.۰۷</td>
<td>۰.۰۳-۰.۰۷</td>
<td>۰.۰۳-۰.۰۷</td>
</tr>
<tr>
<td>S</td>
<td>۰.۰۳</td>
<td>۰.۰۳-۰.۰۷</td>
<td>۰.۰۳-۰.۰۷</td>
<td>۰.۰۳-۰.۰۷</td>
<td>۰.۰۳-۰.۰۷</td>
<td>۰.۰۳-۰.۰۷</td>
<td>۰.۰۳-۰.۰۷</td>
<td>۰.۰۳-۰.۰۷</td>
</tr>
<tr>
<td>Cu</td>
<td>۰.۰۳</td>
<td>۰.۰۳-۰.۰۷</td>
<td>۰.۰۳-۰.۰۷</td>
<td>۰.۰۳-۰.۰۷</td>
<td>۰.۰۳-۰.۰۷</td>
<td>۰.۰۳-۰.۰۷</td>
<td>۰.۰۳-۰.۰۷</td>
<td>۰.۰۳-۰.۰۷</td>
</tr>
<tr>
<td>Cd</td>
<td>۰.۰۳</td>
<td>۰.۰۳-۰.۰۷</td>
<td>۰.۰۳-۰.۰۷</td>
<td>۰.۰۳-۰.۰۷</td>
<td>۰.۰۳-۰.۰۷</td>
<td>۰.۰۳-۰.۰۷</td>
<td>۰.۰۳-۰.۰۷</td>
<td>۰.۰۳-۰.۰۷</td>
</tr>
<tr>
<td>Zn</td>
<td>۰.۰۳</td>
<td>۰.۰۳-۰.۰۷</td>
<td>۰.۰۳-۰.۰۷</td>
<td>۰.۰۳-۰.۰۷</td>
<td>۰.۰۳-۰.۰۷</td>
<td>۰.۰۳-۰.۰۷</td>
<td>۰.۰۳-۰.۰۷</td>
<td>۰.۰۳-۰.۰۷</td>
</tr>
<tr>
<td>Pb</td>
<td>۰.۰۳</td>
<td>۰.۰۳-۰.۰۷</td>
<td>۰.۰۳-۰.۰۷</td>
<td>۰.۰۳-۰.۰۷</td>
<td>۰.۰۳-۰.۰۷</td>
<td>۰.۰۳-۰.۰۷</td>
<td>۰.۰۳-۰.۰۷</td>
<td>۰.۰۳-۰.۰۷</td>
</tr>
<tr>
<td>Sn</td>
<td>۰.۰۳</td>
<td>۰.۰۳-۰.۰۷</td>
<td>۰.۰۳-۰.۰۷</td>
<td>۰.۰۳-۰.۰۷</td>
<td>۰.۰۳-۰.۰۷</td>
<td>۰.۰۳-۰.۰۷</td>
<td>۰.۰۳-۰.۰۷</td>
<td>۰.۰۳-۰.۰۷</td>
</tr>
<tr>
<td>Sb</td>
<td>۰.۰۳</td>
<td>۰.۰۳-۰.۰۷</td>
<td>۰.۰۳-۰.۰۷</td>
<td>۰.۰۳-۰.۰۷</td>
<td>۰.۰۳-۰.۰۷</td>
<td>۰.۰۳-۰.۰۷</td>
<td>۰.۰۳-۰.۰۷</td>
<td>۰.۰۳-۰.۰۷</td>
</tr>
<tr>
<td>Bi</td>
<td>۰.۰۳</td>
<td>۰.۰۳-۰.۰۷</td>
<td>۰.۰۳-۰.۰۷</td>
<td>۰.۰۳-۰.۰۷</td>
<td>۰.۰۳-۰.۰۷</td>
<td>۰.۰۳-۰.۰۷</td>
<td>۰.۰۳-۰.۰۷</td>
<td>۰.۰۳-۰.۰۷</td>
</tr>
<tr>
<td>Au</td>
<td>۰.۰۳</td>
<td>۰.۰۳-۰.۰۷</td>
<td>۰.۰۳-۰.۰۷</td>
<td>۰.۰۳-۰.۰۷</td>
<td>۰.۰۳-۰.۰۷</td>
<td>۰.۰۳-۰.۰۷</td>
<td>۰.۰۳-۰.۰۷</td>
<td>۰.۰۳-۰.۰۷</td>
</tr>
<tr>
<td>Ag</td>
<td>۰.۰۳</td>
<td>۰.۰۳-۰.۰۷</td>
<td>۰.۰۳-۰.۰۷</td>
<td>۰.۰۳-۰.۰۷</td>
<td>۰.۰۳-۰.۰۷</td>
<td>۰.۰۳-۰.۰۷</td>
<td>۰.۰۳-۰.۰۷</td>
<td>۰.۰۳-۰.۰۷</td>
</tr>
</tbody>
</table>

ND: عدم ثبت
چند نما بیسموت در حین متحرکت - دانشگاه ساری

از جمله تیترها: مجموعه چند و حاوی جمهوری اسلامی، دانستنیهای محسوس است. مقادیر,

فناوری، جهانی شناسی، دانشگاه ساری، سازمان بیمارستانی، نوشتارهای ویژه نمایشگاه و

گرما و بیسموت در حیات یکی از کاربردهای بسیار از جمله تیترها: مجموعه چند و حاوی

دانستنیهای محسوس است. مقادیر,

فناوری، جهانی شناسی، دانشگاه ساری، سازمان بیمارستانی، نوشتارهای ویژه نمایشگاه و

گرما و بیسموت در حیات یکی از کاربردهای بسیار از جمله تیترها: مجموعه چند و حاوی

دانستنیهای محسوس است. مقادیر,

فناوری، جهانی شناسی، دانشگاه ساری، سازمان بیمارستانی، نوشتارهای ویژه نمایشگاه و

گرما و بیسموت در حیات یکی از کاربردهای بسیار از جمله تیترها: مجموعه چند و حاوی

دانستنیهای محسوس است. مقادیر,
شکل ۵: نمودارهای دوگانه برای تخمین کاندیداتی سولفورالی‌های Goro فهلور توسط [۱۸۱، شالام، ال.] نسبت عنصری Sb/Sb+As در مقابل Ag (apfu) مقدار Ag در فرمول کاتی (apfu) و (b) نسبت عنصری Zn/Fe+Zn در مقابل مقدار Zn/Fe+Zn کاتی

شکل ۶: تصاویر میکروسکوپ نوری و الکترونی روبشی (SEM) از کانی‌های سولفیدی بیسموت و گروه فهلور شالام ال. (پیسیاسیت) (BIs3) در تور پیزانتی ب (طلای آزاد به همراه سیلیکات) (PbCuBiS3) و (Au53Ag47) در حاشیه، ت) نسبت عنصری بالا از ساختار هماتینی‌های تبدیلی (Cp) در طلاه آزاد در میزان کانکوررینت ج) بافت مبهم‌پسی بین کانی‌های فاز بیسموت و گروه فهلور (خ) تشکیل حلقه‌ای از بیسموت آزاد (Bis3Cu0.15) در حاشیه آیکون جامد کانی‌های بیسمونیت و گروه فهلور.
شکل ۷ نمودار ستاندارد درصد مولار (mole %) عنصر گردو، بیسوموت و مجموع عنصر آهن- سرب- مس در کانی‌های بیسوموت‌دار منطقه که به اساس آن می‌توان کانی‌های گردو بیسوموت را از یکدیگر تفکیک کرد [۱۸].

در سیستم‌های گرماتی که یک بدهی را دارد، این واکنش‌ها در موارد زیادی به جهد ضروری کانی‌های بیسوموت‌دار وابسته است [۲۲]. ضریب توزیع طلا میان فاز ایگن و و کانی‌های بیسوموت‌دار به عواملی از قبیل شیمیایی، شاره و فاز مذاب به طلا در فاز مذاب و این نسبت باعث اینچی در اثر واکنش با پدیده ماشین سخت‌بندی می‌شود و به جهت این پدیده، ماشین سخت‌بندی می‌شود.

۱. واکنش (۱):

\[3FeS + 0.5O_2 + 3H_2O \rightarrow Fe_3O_4 + 3H_2S \] \(\Delta V = \text{ـ} 18 \text{vol\%} \)

چنانچه مشاهده می‌شود، طی این واکنش به مقدار ۱۸ درصد حجم کانی مورد نظر کاهش یافته و در نتیجه آن، فضای خالی می‌شود.

۲. واکنش (۲):

\[Cu + Pb + Fe + Bi \rightarrow Cu_{\text{Native}} + Pb_{\text{Native}} + Fe_{\text{Native}} + Bi_{\text{Native}} \] \(\text{در شرایط آزمایشگاهی شناده داده شده است.} \)

با توجه به بررسی‌های میان‌بینی‌های شاری روی رگه‌های کوارتز- همان‌طور که مورد توجه در مکانیزم معادل شکل طعام روا این رگه‌ها به دست آمده است [۲۲]، در مکانیزم شکل طعام در میان‌بینی‌های شاری روای این رگه‌ها به دست آمده است [۲۲]، در مکانیزم شکل طعام در میان‌بینی‌های شاری روای این رگه‌ها به دست آمده است [۲۲]، در مکانیزم شکل طعام در میان‌بینی‌های شاری روای این رگه‌ها به دست آمده است [۲۲]، در مکانیزم شکل طعام در میان‌بینی‌های شاری Rang آن رابطه ۹ می‌باشد. گروه طلا با طور باعث ایجاد یک بدهی می‌شود که می‌توان آن رابطه با طور باعث ایجاد یک بدهی می‌شود که می‌توان آن رابطه با طور باعث ایجاد یک بدهی M به ترتیب با طور باعث ایجاد یک بدهی M به ترتیب با طور باعث ایجاد یک بدهی M به ترتیب با طور باعث ایجاد یک B به ترتیb
شکل 8: نمودارهای دو تایی چگونگی پایداری مذاب بیسموت-انرژی حلال در شرایط تجویز و دما 300°C.[24,25] (الف) نمودار دوتایی لگاریتمی اکسپوئنتی Bi2S3 (حلول) در مقابل لگاریتمی 2O (گاز) که در آن پایداری مذاب با بیسموت با pH در حوزه کانی مگنتیت و پیروتیت قرار می‌گیرد. سطح مآذربانی می‌تواند نشان دهنده محلولی گردی از سیال کانی به سمت سیال با ترکیب احیایانی توسط کانی‌های پیروتیت/پیروتیت کنترل می‌شود و ب حوزه ی پایداری و احیال‌دیری کانی‌های این دما و طلازدان در نمودار دوتایی pH گونه log fO2-pH که بر اساس محتمل log fO2 در گسترده پیروتیت (ⅰ) و مگنتیت (ⅱ) قرار می‌گیرد.

شکل 9: دو مرحله‌ای نموداری تشکیل منابع طلا-بیسموت (با تغییرات از [24]) (الف و ب) مرحله اول: تشکیل هرهمزمان بین پهنه طلا و بیسموت در شاری طلا-بیسموت و جدایی پون طلا بوسیله ایون طلا و بیسموت به شکل گروبی بیسموتی با افزایش گرنگی کانی آکسیدی و نهشت آن در پیامد خاک مگنتیت و پیروتیت (الف و ب) مدل دوم: تشکیل هرهمزمان بین پهنه طلا و بیسموت در طلاء و احیاء آنها به وسیله پیروتیت طی دو مرحله بالای سولوووس و زیر منحنی سولوووس. با توجه به عدم مشاهده پیروتیت در منطقه، احتمالاً مدل نخست با شرایط کانی‌سازی منطقه کوده تندیکن است.
حوزه پایداری پیسومونیت قرار داشته باشد. بدین ترتیب ژئوشناسی ذوبین پیسومونیت (C 271 °C) در این حوزه، پایداری طیودینامیک‌برداری نشان می‌دهد. این پایداری ممکن است با کاهش میزان cu-Au-Bi و افزایش محیط همراه باشد، که طی آن فاز پیسومونیت به صورت حلقوسی در اطراف پیسومونیت ظاهر شود.

مراجع
[3] شرکت تهیه و تولید مواد معدنی ایران، "مطالعات اکتشافات نفتی، آنالوژی، طلا و مس منطقه کوهد" (1388).
[6] خالیمی‌نیک، ر. ل، ژئوشناسی شرکت تکترکاپورت، منطقه ایران مرکزی. (1371)
[7] سامانی ب، قریبی‌زاده، ارشد، سازمان زمین‌شناسی کشور. (1373)

