Genesis and distribution of palygorskite and associated clay minerals in soils and sediments of southern Mashhad

A. Karimi, H. Khademi and A. Jalalian
Dept. of Soil Sci., Isf. Univ. of Technol., Isfahan, Iran
E-mail: akarimi@sepahan.iut.ac.ir
(Received: 28/8/2007, in revised form: 17/5/2008)

Abstract: The occurrence of palygorskite and its formation conditions in soils and sediments were studied along a transect covering granitic hilly lands to marly hilly lands in southern Mashhad. Based on formation conditions, amount and morphology, three kinds of palygorskite including high-amount palygorskite with long fibers in gypsiferous marl and basal part of deep loess deposits with high salinity, moderate-amount palygorskite which was mostly transported in association with carbonates and gypsum during calcic and gypsic horizon formation, and small-amount aeolian transported detrital palygorskite in non-altered loess deposits were distinguished. Palygorskite occurrence in Miocene marl is in line with the former investigations in central Iran. It shows similar conditions prevailing in this region and central and southeastern Iran and the formation of shallow and saline lakes and lagoons following the disappearance of the Tethyan seaway. Similar investigations around the world confirm that Tertiary sediments are the major source of palygorskite in the world.

Keywords: Palygorskite, Loess, Clay minerals, Paleoclimate, Granite.
تشکیل و توزیع پاليگورسکای و کانی‌های رسی همراه در خاک‌ها و تنشستهای جنوب مشهد

علیرضا کرمی، احمد جلالیان، هسین خادمی

دانشگاه صنعتی اصفهان، گروه خاکشناسی
a-karimi@sepahan.iut.ac.ir

(دریافت مقاله: 1386/10/18، پذیرش نهایی: 1387/10/23)

چکیده: وجود پاليگورسکای و شرایط تشکیل آن در خاک و تنشستهای زمین‌شناسی در راستای بررسی از تهماهورهای گراتیکی تا نیمه‌الحیاتی و توجه به مشهد بررسی شده. بر اساس شرایط تشکیل، مقدار، و ریخت‌شناسی، سه نوع پالیگورسکای، شامل پالیگورسکای فراوان با الاف بلند در مارن‌های گچی میوسن و قاعد گیس رسی بزرگ، مقدار متوسط پالیگورسکای تا بیشتر به همراه کربناته و گچ در زمان، تشکیل افکلکلیک و زیپسیک انبوه شدهاند، و مقدار دکم پالیگورسکای اواخر منطقه شده با پا به در باره‌های بدوغ طبیعی و شناسایی مشترک، وجود پالیگورسکای در مارن میوسن با پژوهش‌های قبیل در ایران مرکزی، هم‌هنگی بوده و نشان دهنده شرایط مشابه این منطقه، جنوب خاوری ایران و ایران مرکزی پس از محو شدن دریابند نیش، تشکیل دریابند و کم عمق و شور است. بررسی‌های مشابه در دیگر نقاط جهان، نشان می‌دهد که تنشسته‌های دوران سوم خاستگاه اصلی پالیگورسکای در دنیا هستند.

واژه‌های کلیدی: پالیگورسکای، رس‌گیسپس، نیمه‌الحیاتی، گراتیکی، گراتیکی تا نیمه‌الحیاتی

مقدمه

نتایج بررسی‌های انجام شده، به فرضیه برای توجه وجود پالیگورسکای در خاک‌ها به‌بیان رسیده است: 1- به‌ارتدوکس رسیده از موارد مادری: خاصی و مرمور (1999) و وجود نشان دهنده و قبیل در باره‌های بدوغ طبیعی و شناسایی مشترک، وجود پالیگورسکای در مارن میوسن با پژوهش‌های قبیل در ایران مرکزی، هم‌هنگی بوده و نشان دهنده شرایط مشابه این منطقه، جنوب خاوری ایران و ایران مرکزی پس از محو شدن دریابند نیش، تشکیل دریابند و کم عمق و شور است. بررسی‌های مشابه در دیگر نقاط جهان، نشان می‌دهد که تنشسته‌های دوران سوم خاستگاه اصلی پالیگورسکای در دنیا هستند.
تشکیل و توزیع پالیگورسکایت و کانی‌های رسی همسود در خاک‌ها و...

س ه نوع گرنسیت مختلف در این منطقه وجود دارد که با
علاقه‌های g^2, g^4 و g^8 روی نقشه زمین شناسی به میزان
0.0001 نسبت به g^1. گرنسیت‌های
پورفروئیدی (g1) از افزایش گرزید و از چندین
فلسیت‌های تپسیم در سه سانتی‌متری نیز دیده می‌شود.
تعداد لوح‌گرنسیت (g2) از سه داده در 15 کیلومتر، در دو روش
تریک شده و جوان‌تر از 0.01 نسبت به g^1 تغییر جوزانتر
قرار گرفت و کلسیم‌های مختلف، تیره و پورفروئید است.
در دو روش g^2، کالی‌های هم اندوز، دانه متوازن و روش
داشته و نیز رز سیلسیس بیره است. گرنسیت g^3 نسبت به
شده در گرزید g^1 مشابه شده را مورد
مشری‌گرنسیت دو سطح مناقت و وجود دارد. بکی خاک‌های تاشی
شده در گرنسیت g^1 دیگر خاک‌های جوزان
با این منطقه شایع زمین‌خستی
گرنسیت، و اینی نیز گرنسیت‌های زروراسیک، دانه‌های
ماهورهای گرنسیتی و گرفتاری‌های روی‌نیز ماهورهای
گرنسیتی دو سطح مناقت و وجود دارد. بکی خاک‌های تاشی
شده در گرنسیت g^1 دیگر خاک‌های جوزان
با این منطقه مشابه شده است. در دانه‌ها
ماهورهای گرنسیتی، تاشی‌گرنسیتی لسی با شکم‌ها و بازی و یا
شادمانی در آنها قابل مشاهده است. داشته و نیز
بایا اینگه از تاشی‌گرنسیتی لسی دانه‌های گرنسیتی با
تاشی‌گرنسیتی دیگر تغذیه شود. از خاک‌های متنوع و پنهن
نکته کوتیر شده است.

برای بررسی کانی‌های رسی در طول بررسی
گرنسیتی نامه‌ها مارلی، ۳۲ نمای خاک، خرم و بررسی
شنده، همچنین یک مقطع طبیعی از تاشی‌گرنسیتی
نیز قرار داده شده است. برای بررسی کانتینر
گرنت (g1)، بر یک پایه ریخته و پرهای سخت و موضعی زمین‌خستی
نیز در هر سه سطح خاک و مقطع طبیعی
نپذیرفته با طور کامل مورد گزینش و در نهایت
بررسی‌های آزمایش‌گاهی
برای شناسایی کانی‌های رسی، نمونه‌های خشک شده در هوا
کوبیده و از کل ۲ میلی‌متری عبور داده شدند. نمونه‌های دارای
گچ و نمکهای محلول به دفعات به آب ماقت گرفته شده و
پس از خشک شدن در دمای ۵۵ و ۶۰ درجه سانتی‌گراد
۱۲۰ دقیقه و از آنها اتوسایس شده و بررسی کردند.

مصرف منطقه مورد بررسی و نحوه نمونه‌برداری
مورد بررسی در بخش جنوب خاوری و انتهایی کوه‌های
پینالو واقع در جنوب مشهد، با طول جغرافیایی ۴۲° ۵۰′
خاوری و عرض جغرافیایی ۳۰° ۴۷′ شمال قرار دارد. (شکل ۱)
پهنه پینالو، در امتداد البرز و ایران مرکزی قرار دارد. به دلیل
شکاف‌های بزرگ و سخت، به این بنهاده اتفاقی می‌گویند. پهنه
که به دو موارد پهنه پینالو و پهنه مشهد بسته بر
قرار می‌گیرد. [۱۹] میانگین بالاتری از ایستگاه هواشناسی
مشهد، ۴۲ میلی‌متر و میانگین دما ۱۳۷ درجه سانتی‌گراد
است. [۲۰]
گرفتند. بخش رس برخی از خاک‌ها و خشک‌شدن سطح مورد بررسی دقیق تر پالیگروسکاپات، به وسیله میکروسکوپ الکترونی روبشی pH و EC در مدل Philips CM30 بررسی شدند.

در عمارت اشباع و کل اشباع اندازه‌گیری شد. توزیع اندازه‌های با پیت، مقدار کلسیم به روش عبارت‌سنجی برگشتی و گچ به روش گرایی تعیین شد. [۲۳]

توصیف خاک‌ها

بر باپا ریخت نشانی و موقعیت زمین ریختی و تناوب آزمایشگاهی، تعادل از نیم‌خازه‌های مورد بررسی به عنوان شاهد انتخاب شدند که برخی از ویژگی‌های شیمیایی و فیزیکی آنها در جدول ۱ نشان داد شده‌اند. خاک‌های داخلی شده روح‌مرادی ها، شامل خاک‌های درجا و خاک‌های با پوشش نازک تا ضخیم لری ها خاک‌های درجا را تشکیل می‌دهند. خاک‌های درجا، روی سه نوع گرانیتی که در بخش پشتی شرق داده شد، تشکیل شده و شامل دو دسته کل هستند. دسته اول به طور کامل از هاواگریتی و هاواگریتی پوشش می‌دارند. دسته دوم به طور کامل از هاواگریتی و هاواگریتی پوشش می‌دارند. دسته چهارم به طور کامل از گیاهگریتی و گیاهگریتی پوشش می‌دارند. دسته پنجم به طور کامل از گیاهگریتی و گیاهگریتی پوشش می‌دارند. دسته ششم به طور کامل از گیاهگریتی و گیاهگریتی پوشش می‌دارند. دسته هفتم به طور کامل از گیاهگریتی و گیاهگریتی پوشش می‌دارند. دسته هشتم به طور کامل از گیاهگریتی و گیاهگریتی پوشش می‌دارند. دسته نهم به طور کامل از گیاهگریتی و گیاهگریتی پوشش می‌دارند. دسته ده‌م به طور کامل از گیاهگریتی و گیاهگریتی پوشش می‌دارند. دسته یازدهم به طور کامل از گیاهگریتی و گیاهگریتی پوشش می‌دارند. دسته بی‌اوچه به طور کامل از گیاهگریتی و گیاهگریتی پوشش می‌دارند.

شکل ۱ موقعیت منطقه مورد مطالعه، واحدهای زمین ریختی و نقاط نمونه برداری.
جدول 1. برخی ویژگی‌های فیزیکی و شیمیایی نیمرخ‌های شاهد.

<table>
<thead>
<tr>
<th>افق</th>
<th>عمیق (cm)</th>
<th>pH</th>
<th>EC (dSm⁻¹)</th>
<th>گرم (g)</th>
<th>اکس (%)</th>
<th>سن (‰)</th>
<th>رس (‰)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ap</td>
<td>0-15</td>
<td>7.9</td>
<td>6.5</td>
<td>2</td>
<td>3</td>
<td>15.3</td>
<td>19.6</td>
</tr>
<tr>
<td>Bk</td>
<td>15-40</td>
<td>7.9</td>
<td>3.1</td>
<td>1.1</td>
<td>2</td>
<td>17.1</td>
<td>16.1</td>
</tr>
<tr>
<td>2Bk</td>
<td>30-85</td>
<td>8</td>
<td>5.3</td>
<td>1.1</td>
<td>2</td>
<td>4.6</td>
<td>34.5</td>
</tr>
<tr>
<td>2Cry1</td>
<td>80-120</td>
<td>7.8</td>
<td>4.5</td>
<td>1</td>
<td>17.4</td>
<td>79.4</td>
<td>39</td>
</tr>
<tr>
<td>2Cry2</td>
<td>120-150</td>
<td>7.5</td>
<td>2.4</td>
<td>1.3</td>
<td>9.8</td>
<td>8.3</td>
<td>1.9</td>
</tr>
</tbody>
</table>

نیمرخ شماره 1: خاک در جای با پوشش لسی روی نیماهره‌های گرانیتی.

A	0-10	8.2	3.6	15	40.4	37.5	7.1
C	10-30	7.9	1.7	18	46.3	40.5	13.2
Cr	30-60	-	-	-	-	-	-

نیمرخ شماره 5: خاک در جای تشکیل شده روی نیماهره‌های گرانیتی.

Ap	0-30	8.5	2.8	4.2	19.6	34.1	16.3
Bw1	30-60	8.3	1.8	2.9	13.3	70.3	13.5
Bw2	60-90	8.4	0.9	4.3	19.1	35.6	21.5
2Bkb	90-100	8.5	0.7	1.1	18.5	58.4	35

نیمرخ شماره 12: خاک آبرفتی دشت دامنه‌ای.

Ap	0-30	8.5	2.8	4.2	19.6	34.1	16.3
By1	30-60	7.7	1.9	6.1	18.5	51.9	15.6
By2	60-90	8.6	3.0	5.1	15.8	47.7	11.8
2Bw	90-120	8.6	7.7	40.6	29.3	17	

نیمرخ شماره 21: خاک واقع بر دامنه تندیست‌های وراوسیک.

Ap	0-30	8.5	2.8	4.2	19.6	34.1	16.3
By1	30-60	7.7	1.9	6.1	18.5	51.9	15.6
By2	60-90	8.6	3.0	5.1	15.8	47.7	11.8
2Bw	90-120	8.6	7.7	40.6	29.3	17	

نیمرخ شماره 32: خاک در جای تشکیل شده روی مارن.

پخش قاعدت مقطع طبیعی پدرفی در دامنه گرانیت‌ها.

6 C1	37-40	8.6	19.3	5.5	17	9.3	7.1	13.5
6 C2	40-430	8.9	49.5	6.6	4	8.8	74.5	16.7
6 C3	43-460	8.8	10.4	5.8	17	11.5	52.5	13.3
6 C4	46-490	8.4	23.6	6.1	18	10.7	57.8	13.5
6 C5	49-520	8.4	13.3	5.1	18	10.3	77.7	13
6 C6	52-550	8.3	10.9	5.2	13	14.4	47.8	13.4
6 C7	55-880	8.1	3.77	6.2	20	17.7	47.9	13.6
دسته دوم خاک‌های درجا دارای افق کلسیک (افق تجمع کربنات‌های ناتوانی) و زیپسیک (افق تجمع کربنات‌های ناتوانی) هستند که اهمیت و چگگی از طریق باز وارد آنها شده و در بعضی از موارد دقیقا در می‌باشد. به دلیل اضافه‌ی کربنات‌های ناتوانی و سبیل‌های این خاک‌ها نسبت به خاک‌های دسته اول، سبیل‌پذیری دارد. نوع دوم خاک‌های نپات‌های گرانیتی، خاک‌های درجا با پوشش نازک تا ضخیم لسی هستند. افق‌های سطحی این خاک‌ها دارای سیلیت هستند و فوارا در حالت‌های غیر خدا اتفاقی بیشتری از موارد اتفاقی کربنات‌های ناتوانی دارند. رساندنگی الکتریکی این خاک‌ها نسبت به کربنات‌های ناتوانی در مواردی کمتر از 10 dSm\(^{-1}\) الکتریکی بیش از 10 dSm\(^{-1}\) است.

در خاک‌های لس نپات‌های گرانیتی (بی‌سیم شماره 1) و در باش‌بالایی مقطع طبیعی بادرفتنی در دامنه تنه (Btk) ماهورهای گرانیتی، یک افق انیو شده رس و کربنات‌ها به رنگ سرخ وجود دارد. رنگ زمینه خاک این افق‌ها 10YR ۷.۵YR بوده است که به کاربرد الکتریکی با وزن به وزن در اهداف این مقطع بالایی و اسنادی که کمتر از 10 dSm\(^{-1}\) الکتریکی بیش از 10 dSm\(^{-1}\) است.
ترتب تا نزدیک ۱۸ و ۱۰۰ نانومتر منفیت می‌شود جایی از جوید میکا- اسمنتیا و اسمنتیا است. نزدیک شدن تدریجی این قله با قله ۱ نانومتر و آن موشک نشان دهنده یک پدیده کاملاً جداگانه که در مطالعات مورد بررسی قرار گرفته است. این پدیده در مطالعات مورد بررسی قرار گرفته است.

کانی شناسی رس حداکثر اسمنتیا، ایلایت، میکا- اسمنتیا، فلسپر و رس‌های پتاسیم و کوارتز به عنوان نمونه‌های موردنظر مطالعه شده‌اند. به دلیل ویژگی‌های دیگری برای رس این ماده، مقداری از میکروپیکس تا یک قله فاقد می‌باشد. این پدیده توسط بسیاری از بزرگ‌ترین استفاده در رس‌های پتاسیم و کوارتز روش‌های مختلفی مورد بررسی قرار گرفته است.

تجلب کردن‌های است. در این نمونه‌ها، قله یک بیشتر با یک قله دیگر مشابه است. این پدیده به همان دلیل معمولاً با قله ۱ نانومتر ایلایت مشابه است. به همین دلیل معمولاً این پدیده در این نمونه وجود داشته که نشان دهنده شرایط ویژه برای تشکیل است.

در سطحی خاک در جا یا پوشش لسی (نیم‌برق) آن‌ها به غیر از پالیگرانسکیا می‌باشد. شدت، چنان‌که آثار سیستم این اقیانوس‌ها ایجاد می‌کند، فاقد این قله است. این قله با استفاده از سیستم‌های روش‌های مختلفی مورد بررسی قرار گرفته است.

این روش‌ها به همان دلیل معمولاً این پدیده در این نمونه وجود داشته که نشان دهنده شرایط ویژه برای تشکیل است. در این نمونه‌ها، قله یک بیشتر با یک قله دیگر مشابه است. به همین دلیل معمولاً این پدیده در این نمونه وجود داشته که نشان دهنده شرایط ویژه برای تشکیل است.
لیس‌ها را تشکیل می‌دهد (شکل ۹) و بیانگر این است که در اثر هواگردی‌گرایی در یکی از کوارتز‌وارد جزء سیلت می‌شود. در متابی نیز به قابلیت گرانیتی برای تولید کوارتز در حد سیلت اشاره شده [۳۸ و ۲۷] که می‌تواند خاستگاه سیلت کوارتزی لس‌های منطقه باشد. کانی گالب بادرفته‌که نه - نشسته‌های با سیلت زیاد هستند، کوارتز است [۲۸].

tab: 4 طرح پراش برتو ایکس تیمبار اشباع با منیزیوم بخش رس افق‌های نیم‌مربع شماره ۱، قطع ۴۴. ناوتومتر فقط در افق کلسیک (Bk) و موجود در افق انبوه رس و کربنات‌ها (2Btk) مشاهده شده.

شکل ۳ طرح پراش برتو ایکس تیمبار اشباع با منیزیوم بخش رس افق‌های نیم‌مربع شماره ۱، قطع ۴۴. ناوتومتر فقط در افق کلسیک (Bk) و موجود در افق انبوه رس و کربنات‌ها (2Btk) مشاهده شده.
تشکیل و توزیع پالیگورسکایت و کوینهای رسی همراه در خاک‌ها و...

شکل ۵ طرح پراش بی‌پرس ایکس تیم برزیلیون اشباع بخش رسم خاک‌های سه نوع افق جالوی پالیگورسکایت،alf سایرولیت گرانیتی (دسته Cry) دوم خاک‌های درجه ب (لایه ۲CrI) مارن هوازیده میوسن، نیم‌برخ ۲۳، ج) لايه ۶C7 فاصله مقطع طبیعی بادرفته.

شکل ۶ تصویر ریز‌بزش میکروسکوپ الکترونی نیمه‌پوشیاalf سایرولیت گرانیتی (دسته دوم خاک‌های درجه بافق Ap نیم‌برخ ۱، Cry) و د) لايه ۶C7 فاصله مقطع طبیعی بادرفته،ه) و (لايه ۲CrI) مارن هوازیده میوسن، نیم‌برخ ۲۳.
شكل ۷ تصویر ریزگانه میکروسکوپ الکترونی عادی نمای هایی از پروتو ایکس الیاف بالیگورسکایت افق ۲Btk (نیمرخ شماره ۱.) افق Ap نیمرخ شماره ۱ و ج) بی‌تا سنج

شکل ۸ طرح پروتو ایکس تیمارهای مختلف بر روی رس افق Ap نیمرخ ۲۱.۱
بخت و برداشت

نتایج ارائه شده در بخش قبل، وجود سه نوع بالیگورسکات را در پایه شرایط تشکیل مقداری را نشان نمی‌دهد. این سه نوع بالیگورسکات عبارتند از: بالیگورسکات فراوان با بالیگورسکات و دهمین تشکیل موجود در مراتب گچ میسیون و قادعه لس همیعی با شوری بالا، مزرعه متوسط بالیگورسکات که بیشتر به همراه آمک، و بالیگورسکات و سپس بالیگورسکات نباتی یافته به وسیله شده و مقدار بالیگورسکات آواری منتقل شده به وسیله مسیح و افراد بالیگورسکات هستند.

از جمله موارد مانند بالیگورسکات در این منطقه، بالیگورسکات در دوران سوم و شرایط مشابه در دوران شماره 7 و 8/9، نشان دهنده شرایط مشابه گفته که بالیگورسکات در قادعه لس همیعی عمقی دامنه گرانیها (شکل 6) نموده می‌باشد.

این فرضیه‌ها با تأیید می‌کند [6، 8]. وجود بالیگورسکات فراوان در مراتب شرایط محیطی مشابه با ایران مزیت بودن بالیگورسکات (شکل 6) و بالیگورسکات نشان از نگاه بالیگورسکات است. شرایط پایدار و فعالیت بالیگورسکات می‌باشد و تغییر داخل بالیگورسکات نیاز است [22، 23، 24، 25، 26، 27]. این مطلب می‌تواند بالیگورسکات را در بخش ایران تکثیر نماید. در مورد شک آب و دیگر موارد می‌باشد.

اتشفای بالیگورسکات در قادعه لس همیعی عمقی دامنه گرانیها (شکل 6).

[38] A. A. Z. (1381) 271 صفحه

