Minerals boundary detection in petrographic thin sections image using ArcGIS software

A. Hassanpour, A. Kananian, M. A. Barghi

School of Geology, Faculty of Sciences, University of Tehran, Iran
Email: Kananian@khayam.ut.ac.ir

(Received: 23/9/2008, in revised form: 7/12/2008)

Abstract: In this paper, a new method for mineral boundary detection is proposed using a model prepared in ArcGIS ModelBuilder tool. Required data for this method are gray scale images taken from petrographic thin sections. The images are captured in 19 numbers through 90° polarizers and lambda plate rotation with 5° intervals while the microscope table is fixed. Mineral boundaries are detected using the ArcGIS software by comparison of colour intensity amongst the adjacent minerals in sequential images. The presented method is fast and accurate to detect favorite minerals boundaries from thin sections, and is able to create a powerful database containing grain shape characteristics. Petrographic study on four rock samples demonstrates that the results of grain boundary detection by the model without operator intervention, are more than 80 percent correlated with manual boundary detection method.

Keywords: Boundary detection, ArcGIS ModelBuilder, Thin section, Image processing, Petrography.
ArcGIS گکانی‌ها در تصویر مقاطع سنگ‌شناسی با استفاده از نرم‌افزار

عبدالله حسنی‌پور، علی کنعانیان، محمدعلی برقی

دانشکده زمین‌شناسی، پردیس علوم، دانشگاه تهران
Kananian@Khayam.ut.ac.ir

(دربست مقاله: 87/7/12، تاریخ نهایی: 87/9/17)

چکیده: در این کار پژوهشی، برای مرزنشینی گکان‌ها در مقاطع نارک سنگ‌شناسی، روش جدیدی بر مبنای طراحی صدای محلی ارائه شده است. هدف اصلی این کار تولید مقاطع سنجش‌بندی شده نارک است. در این کار، از نرم‌افزار ArcGIS ModelBuilder استفاده گردید. مقدمه

1- مقدمه

هدف اساسی روش‌های تحلیل مقاطع با استفاده از کامپیوتری، شناسایی نوع گکان‌ها بوده و خودکار در تصاویر رقیق مقاطع نارک سنگ‌شناسی برای تجزیه و تحلیل ویژگی‌های آنها است. یکی از مراحل اصلی انجام این کار تعیین حداکثر و حد نهایی روش‌ها در مقاطع نارک سنگ‌شناسی است.

مقاطع نارک سنگ‌شناسی حاوی اطلاعات ارزشمندی تبدیل و تحلیلگریتر می‌شوند. شکل، اندازه، نوع گکان و شاخه، درصد اجزای تحلیلی دهنده سنگ‌کشی سنگ‌شناسی آراشی، و پراکندگی اجزای تحلیلی دهنده نمودنها در مقیاس میکروسکوپی محسن‌تر می‌شوند. گچانه اطلاعات یاد شده در مقاطع نارک در محیط نرم‌افزار مورب بررسی گرایندر، می‌توان از طریق برقراری ارتباط مستقیم بین این ویژگی‌ها، مقاطع را با سرعت و دقت بیشتری شناسایی کرد.

واژه‌های کلیدی: مرز‌نی‌سازی، ArcGIS ModelBuilder، مقطع نارک، بردارش تصویری، سنگ‌شناسی.
روش نیمه‌یونه، ترکیبی از روشهای باز است. در این روشهای نخست عکس‌های پی در پی در مقاطع، در بازه‌ای ۱۰۰ درجه‌ای به‌همراه ظاهر شدن مزه‌های مجازی در دانه‌ها می‌شود. علاوه بر این، در این روشهای نخست به‌صورت خاموشی و زیردانه‌ای، وضعیت، برخورد با غیره‌ها و تعداد عکس‌ها برای تیمار کامل بین دانه مجازی به‌صورت یک‌ویژگی‌های نوری زندگی به‌هم کامی نیستند. در ضمن، بازه‌ای آن‌ها در این روشهای نخست بین دانه‌های اصلی انتخاب شده است. بنابراین به‌طور کلی، عکس‌های خاکستری برای مزینی‌نشدن ممکن است. ولی برای فراهم‌آوردن تیمار عکس‌های مقایسه‌ای به‌صورت خاکستری برای هر دانه، بایستی بارهای مناسب را انتخاب نماید. به‌طور کلی، بازه مناسب بارهای استفاده کد در آن هر دانه حداکثر یکبار

1. Canny
2. Undulose extinction
نمایش کامل و روشن‌ای بیشینه را نشان دهد. با مزیندی دانه‌ها با کمترین خط همراه باشد.
برای مزیندی عکس‌های مقاطع نازک سنتک‌شناختی معمول به سه شیوه عمل است:

1- تشخیص گونه دانه‌ها [6 تا 9]
2- تشخیص سطح دانه‌ها [10]
3- ترکیبی از هو و روش

علاوه بر روشه تهیه عکس و روش مزیندی، استفاده از برنامه ArcGIS مناسب نیز اهمیت زیادی دارد. با تلفیق نتایج حاصل از به‌کارگیری نرم‌افزارهای متغیرین نیز می‌توان عمل مزیندی را انجام داد. اما چنین بتوان تضمین مراحل مزیندی را در یک

شکل 1 دانه‌های 1 و 2 با دو سمتگیری بلوشناختی متغیر در برخی نگاه از کوپک خاموشی (این نگاه به‌کار بر اساس رنگ داخلی حاصل از کابی دیواری با محوی تری افقی و راستا) رد شد. در شرایط‌های دو دو یا 640 تا 1600 درجه، در شرایط نور دور، حمایت به همراه تغییر اندازه منطقه‌بندی شده است) به نماش در آمدان. در این شکل مشاهده می‌شود که علیرغم تفاوت در سمتگیری بلوشناختی دانه‌های 1 و 2 رنگ داخلی هر دو دانه سرخ سری اول است.

1-Stereogram
2- روش پژوهشی

در این کار پژوهشی، عکس‌ها به روش پایه‌گذاری و مرزینده بر اساس تشخیص کناره‌ها صورت گرفته است. تاکنون در ArcGIS کلیه پرراستگی به طور یکسانی افزایش می‌یابد. ArcGIS مزیندی داده‌ها را با سرعت بیشتری انجام می‌دهد. ضمانت‌آمیزی انتقال داده‌ها به نرم‌افزار مورد بررسی با گذراندن گروه ناشی از روش‌های مختلف تحلیل در نرم‌افزارهای مختلف می‌شود. نیز انجام نیم‌گرید. بنابراین، با انجام تمامی مراحل مزیندی در یک نرم‌افزار، به طور غیر مستقیم بر دقت نتایج نیز افزوده می‌شود.

![Diagram](image.png)

شکل ۳. مدل ارائه شده در این کار پژوهشی به چهار بخش قابل تقسیم است. ۱. در این بخش از مدل، نخست کیفیت عکس‌ها افزایش می‌یابد و سپس هر عکس، جدایگانه مزیندی می‌شود. ۲. در مرحله بعد با استفاده از اتصالات نرم‌افزارهای مرتبط به تمامی عکس‌ها با هم، تلفیق می‌شود. ۳. در این بخش، مزیندی حاصل از بخش ۲ رقیق شده و اطلاعات مشابه دانش‌ها به صورت خودکار محاسبه می‌شود.
عنوان‌های طبیعی مورد استفاده در این کار شامل سه مقطع نازک کوارتزیتی 121، Qz870121، Qz870120، Qz870114 و مقاطع 25 میکروتری (نیک) به ضخامت 25
میکروتری است (شکل 2). دانه‌ها در سه مقطع کوارتزیتی به میانی روزهای زیرداهن و خاموی سه‌گنجات و میانی روزهای دو مقطع
میکروتری و نازک به هم است که این پدیده بیانگر سیستمیک ترکیب‌های بیولوژیکی در پیش‌داده کوارتزیت است. در بیشتر
روشهای مزردی، به دلیل فاصله کوارتز از اغلب سه‌گنجات
معمولی که در تحلیل خاکی سختایی و نیز به علت
دشواری کود مزردی مقاطع با دانه‌های هنجنس (عملکرد
متعلق به یک روش در مزردی مقاطع دشوار، تایب کندنه
کارایی بالای آن روش است) از نمونه‌های کوارتزیت استفاده
شده است. (6، 7، 8، 9، 10، 11، 12). یک روشی برای انتخاب
نمونه‌های کوارتزیت است که اکنون مقایسه نتایج ارائه شده در این کار به‌رونهای با نامی حاصل از روش‌های دیگری
که از نمونه‌های کوارتزیت استفاده کرده‌اند، فراهم می‌شود.

۲-۳-۱۳ تهیه عکس
برای تهیه عکس‌های میکروسکوپی، از زیرگره تهیه ۹۰ درجه
استفاده شد. در این زیرگره هر دانه دو کپی خاموی کامل و
حداکثر روندهای را نشان می‌دهد و موجب تمایز لازم برای
مزردی بین عکس‌های در هر پی‌شانه. عکس‌ها به رنگ
سیاه‌آبی، نیزلا نشان داده می‌شود. میکروتری
آنها در مقاطع نازک سنجش‌شان است. ابعاد عکس‌ها
۵۷۶×۲۵۰ پیکسل است و با پسوند PNG ذخیره می‌شود. در این
مرحله با چرخه تغییر تک‌طوریه و تغییر لانا و تایب کندن
مقطع سنجش‌شان (۱۱، ۱۲ و ۱۳) جریان میکروسکوپی
قطی، شبیه‌سازی شده و در ۵ درجه یک بک عکس گرفته
می‌شود. از اندازه‌گیری در این روش عکس‌سنجش‌داری، تغییرات
تدریجی در شدت رنگ دانه ثبت می‌شود، نتیجه‌کار از دقت
بالایی باید خودداره یک می‌شود.
در برخی از روش‌های مزردی، قطع‌هایه و تغییر لانا
تایب و میکروسکوپی به همراه مقطع به چرخه ۱۴ و

خسپور، کنعیانی، برقی

۱۳۸
مرزیندی کانی‌ها در تصویر مقاطع سنگ‌سنگ‌شناختی با استفاده از نرم‌افزار ArcGIS

انحراف معیار مقادیر مربوط به گستره مرز دانه‌هاست. با اعمال Neighborhood statistics (انحراف معیار) در محیط نرم‌افزار ArcGIS، تفاوت معیار در مزو دانه‌ها (Standard deviation) در این کار با توجه به بی‌توجهی درون‌های مزو دانه‌ها از سایر مناطق درون‌های مزو دانه جدایی شده و انحراف معیار با افزایش تعداد نمونه‌گیری در مقایسه با استفاده از آن متوان دامنه تغییرات در مزو افزایش یافته است. این تفاوت نشان می‌دهد که با افزایش تعداد نمونه‌گیری از سایر مناطق درون‌های مزو دانه‌ها متوسط میزان دانه‌ها به راحتی تعیین می‌شود. این می‌تواند باعث کاهش و پیوست کروی دانه‌ها شود. با این وجود، مقدارهای اصلی تا حداقل قبولی حفظ می‌شوند. این عمل برای تمامی عکس‌ها به پوشش جداولات صورت می‌گیرد (شکل ۳). هرچه ابعاد فیلتر بزرگ‌تر باشد، مقادیر پیکسلهای مربوط به دهانه به هم نزدیک‌تر خواهند شد و عوارض ناخواسته‌ای ابعاد بزرگ‌تر را نیز در عکس‌ها بی‌کاری می‌کند. ولی در عوض، وضعیت مرز واقعی دانه‌ها کمتری می‌شود.

شکل ۳ عملکرد مدل ارائه شده در مرحله انحراف معیار کیفیت عکس‌ها با استفاده از نرم‌افزار میانگین ۲، پس از اعمال فیلتر میانگین.
Region Group, Zonal Perimeter/Area, Iso Cluster, Maximum Likelihood and Classification

Downloaded from ijcm.ir at 19:36 +0330 on Wednesday October 2nd 2019
خودکار مرزهای گسترش نشان می‌دهد که نیاز به همگام سازی تغییراتی که در مرحله بهبود توانایی و منابع مکانیکی دانه‌ها را با اخلاق و مسئولیت و اطلاعات مکانی دانه‌ها را استحکام‌بخش خرد. به‌عنوان مثال، اطلاعات تکمیلی دیگری همانند ریزساختارهای مربوط به هر دانه، نام کلی شناخت دانه، ترکیب شیمیایی و موقعیت محرک نویز دانه‌ها را به داده‌های قبل‌های اضافه کند. بدین ترتیب کاربردی می‌تواند در پیام بر اساس یافته‌های داده‌های ابزار، اصول محاسباتی را انجام دهد و به تجزیه و تحلیل مراحل نازک نشان از پردازشی و کامل یا تحلیل‌های می‌توان به تبعیض و برخی از اشکال‌های مکانیکی دانه‌ها [21] و محاسبه [22 و 23] اشاره کرد.

شکل 5 مدل مرحله‌ای دانه‌ها

شکل 6 در تصویر 1 مرزهای دانه‌ای از مرحله کاهش نفوذ، و تصویر 2 مرزهای دانه‌ای از کاهش نفوذ نیمه‌های می‌دهد. در تصویر 1 نمونه‌هایی از نفوذ با پیکان نشان داده شده است که در تصویر 2 به وسیله مدل از بین رفته است.

شکل 4 در تصویر 1 مرزهای دانه‌ای از مرحله کاهش نفوذ، و تصویر 2 مرزهای دانه‌ای از کاهش نفوذ نیمه‌هایی می‌شود ولی پس از کاهش نفوذ نیمه‌های دانه‌ها در تصویر 2 از نظر روابط نمونه‌هایی از حذف مرزهای گسترش را به دست می‌دهد.
سه راستی‌های ۴۵، ۹۰ درجه به تنهایی شهادان (عکس‌ها در نور قطیب‌های با حضور تیغه لاک‌تا تهیه شده است) با مزردی‌های طراحی شده و عملکرد مدل طراحی شده به سه روش زیر عمل شده است.

۳- ارزیابی مدل در این کار پژوهشی، برای برآورد و بررسی روش ارائه شده و عملکرد مدل طراحی شده به سه روش زیر عمل شده است.

۴- بررسی عکس‌ها مقطعی و مزردی‌های از طریق مدل

یکی از روش‌های ارزیابی مدل طراحی شده، بررسی مزردی‌ها روز عکس‌های مربوط به است. با مشاهده بررسی مزردی‌ها و عکس‌ها از مقطع‌های تمام با انطباق در مورد درستی عملکرد مدل طراحی شده، قضاوت کرد. در این امر آن است که هر عکس صرفأ نشان دهنده تصویر مقطعی در یک زاویه خاص از چرخش میز میکروسکوب است و این احتمال وجود دارد که در این زاویه خاص، دو ادامه‌های عبیرگرام تفاوت در جنس و مستقیمی بلورشناختی به طور کلی با یک رنگ مشاهده شوند. بنابراین برای این مشکل با استفاده مزردی‌های مدل را با عکس‌هایی که در زاویای مختلف چرخش میز میکروسکوب تهیه می‌شوند مقارن کرده در این پژوهش، عکس‌هایی که در

شکل ۷ مزردی‌های طراحی شده به سه روش مدل روز عکس‌ها مقطعی در نور قطیب‌های با حضور تیغه لاک‌تا تهیه شده است. در سه راستی‌های ۴۵، ۹۰ درجه بررسی شده است. خطوط سفیدی، مزردی‌ها را نشان می‌دهند. در این شکل زاویه سرخ از هر عکس به سه روش، به ترتیب در آمده است (تصویر ۱۳ از نمونه Qz870109، ۹۸ تا ۱۲ از نمونه Qz870114، ۴ تا ۶ از نمونه Qz870109، ۹۸ تا ۱۲ از نمونه Qz870109، ۹۸ تا ۱۲ از نمونه Qz870114).
شکل 8 تریسم مرز واقعی برای یک نفوذی به وسیله مدل، نشان داده شده است.

3-2- برای مرزیندی به روش دستی و مدل
یکی دیگر از روش‌های ارزیابی مدل، برای نتایج حاصل از عملکرد مدل با نتایج مرزیندی دستی است که به عنوان معيار مناسب برای کنترل عملکرد مدل می‌توان از آن استفاده کرد. این شیوه برای بین نتایج در صورتی می‌تواند، معيار مناسبی باشد که رقیم مرز دانه‌ها به روش دستی، صحیح انجام شده باشد. از اینجاه معمولا در رقیمی کردن به روش دستی نما از یک عکس استفاده می‌شود، نمی‌توان از موارد دخالت خطا که در بالا به آن اشاره شد اجتناب کرد. برای کاهش هرچه بیشتر خطای در رقیمی کردن دستی، به طور هم زمان از سه عكس رنگی در راستاسه 45 و 90 درجه چرخش می‌توان میکروسکوب استفاده شده تا روشن کننده رنگ تداخلی هر دانه هنگام رقیم مرزیندی مانند فاصله در نور دیوار قطعی و با حضور تغییر لادن تهیه شده است. با مقایسه مرزیندی دستی و خروجی مدل (شکل 9)، برای قابل قبولی در مقاطع کوارتزی مشاهده می‌شود، ولی به دلایلی که در بالا گفته شد، برایش در مقطع میلیومنی ضعیف است.
شکل 9 در این شکل، مزیندی به وسیله مدل و روش دستی، برای مقایسه بر هم برازیده شدند. تصاویر ۲ و ۳ به ترتیب نمونه‌های Qz870114 و Qz870120، Qz870121 از جنس کوارتزیت و تصویر ۴ نمونه Mi870206 از جنس میلونیت (در این تصویر به روش دستی، فقط دانه‌های کوارتزیت مزیندی شده‌اند) وی مدل دانه‌های غیر کوارتز را نیز رقیق کرده از آن تکنیک هستند. خطوط خاکستری، مزیندی به وسیله مدل و خطوط سبز رنگ، مزیندی به شیوه دستی را نشان می‌دهند.

شکل ۱۰ در این نمودارها عملکرد مدل و مزیندی به شیوه دستی (با رعایت موقعیت مکانی دانه‌ها) به صورت کمی و با استفاده از ویژگی‌های شکلی دانه‌ها از قبیل: ۱- میان‌بر ۲- مساحت ۳- عرض ۴- طول جای مکانی دانه‌ها، مقایسه شده است. مقیاس ویژگی‌های محاسبه شده در این شکل واحده است.
مشکل 11 تفاوت مرزندی‌ها به دو شیوه دستی و براساس مدل با دقت در این شکل مشاهده می‌شود که دانه‌هایی که به وسیله مدل مرزندی شده در روش دستی به علت کوچک بودن آن مرزندی نشده اند و بدین ترتیب موجب تفاوت مرزندی بین دو روش دستی و مدل ارائه شده در این پژوهش شده است. خطوط سفید، مرزندی به وسیله مدل و خطوط سیاه رنگ، مرزندی به شیوه دستی را نشان می‌دهد.

4- برداشت
روش ارائه شده در این کار پژوهشی قرار است مرس دانه‌ها را پس از تهیه عکس‌های مقاطع نازک بدون دخالت کاربر با دقت بالا همراه با سایر اطلاعات شکل آنها رسم کند. از بتریهای مهم این روش، ایجاد یک پابگاه اطلاعات شامل ویژگی‌های شکلی و موضوعات محیط دانه‌های که می‌توان از آن برای تحلیل‌های شکلی و محیط استفاده کرد. تماسی مراحل ArcGIS مرزی در محیط نرم‌افزار ArcGIS نرم‌افزار نظیر ArcGIS به می‌تواند روشی باشد به مقادیر کمی مربوط به پیکسل‌های عکس نسبت به پارامتر اختلاف تبدیل می‌کند.

در این پژوهش همچنین می‌توان از برنامه‌های نظیر ArcGIS در دسترس قرار داده و به راحتی قابل تغییر و تنظیم برای دریافت نتایج بهتر است.

برای این اولین برنامه ArcGIS به آسانی در دسترس قرار داده و به راحتی قابل تغییر و تنظیم برای دریافت نتایج بهتر است.

به طور کلی مدل ارائه شده برای مرزندی مقاطع نازک سنگ‌شناختی در این پژوهش، نسبت به مدل‌های رایج از پتریهای زیر بروخوردار است:

3- Kriging
دوم‌دوره، زیرا معیار مرزندی با این مدل اختلاف نسبی بین
شدت رنگ دانه‌ها در عکس‌های مقاطع نازک سنجش‌شناختی
است و بر خلاف روشن‌های یویا و نیم‌روها با مقادیر واقعی
پیکسل‌ها نیاز دارد.

با تمام مزایای یاد شده، با این روش نمی‌توان به نتیجه‌ای
با دقت صددرصد دست داده و با دخالت کاربر و میزان
بندی مناسب می‌توان با صرف وقت بیشتر، به نتایج مطلوب تری
رسید.

قدرداده
این پژوهش در قالب طرح پژوهشی مصور دانشگاه نیروی به
شماره ۹۶.۳۶.۲۷.۱۶۰۰.۷۵.۱ کمی نمودن مطالعات
پژوهشگران کانادا که به استفاده از این روش لتقیف داده‌های
میکروسکوپ پاراپز و کم‌پیوتر، انجام شده است. که
بدن‌پسندی از حوزه معاونت پژوهشی دانشگاه نیروی به
صردانت

ضمیمه
توانایی مورد استفاده در طراحی مدل برای مرزندی مقاطع نازک
سنگ‌شناختی در محیط نرم‌افزار ArcGIS (سی‌آر اس‌ای کسب
اطلاعات بیشتر در مورد توانایی، به راهنمای نرم‌افزار
با یا به سایت مراجعه شود) (www.esri.com) ESRI

Con
این تابع در مدل طراحی شده با اجرای فرآیند If/Else
یک از عکس‌های ورودی که شامل عکس‌های دوتایی ۳ هستند
مقادیر ۳ را به سطح داخلی دانه‌ها و ۱ را به مرز دانه‌ها نسبت
می‌دهد.

Feature class to polygon
این تابع مرز دانه‌ها را از حالت خط به چند ضلاع تبدیل
می‌کند.

Feature to Coverage
این تابع از اشکال چندضلعی، یک پایگاه داده حاوی اطلاعات
شکلی (مساحت و محیط) می‌سازد.

Focal Max

5 - Neighborhood function
4 - Binary images
<p>موزن‌دادی کانی‌ها در تصویر مقاطع سنگ‌سننی با استفاده از نرم‌افزار ArcGIS</p>