Study of Potassium content and its role in doped superconductor
YBa$_{2-x}$K$_x$Cu$_y$O$_{6+x}$ with Rietveld analysis of XRD patterns

B. Khoshnevisan1, M. Farbod2

1- University of Kashan, Kashan, Iran
2- University of shahid Chamran, Ahvaz, Iran
Email: b.khosh@kashanu.ac.ir

(Received: 23/7/2008, in revised form: 1/12/2008)

Abstract: In this article, we have employed GSAS software to do Reitveld profile refinement on XRD patterns from H-T$_c$ superconductor powder YBa$_{2-x}$K$_x$Cu$_y$O$_{6+y}$ (0<x,y<1) samples. Increasing the Potassium doping content of the sample, x, causes some changes in the XRD patterns such as creating new peaks and also deteriorating of goodness of the refinement, χ^2. On the other hand, substituting of K instead of Ba led to oxygen depletion and also lowering the Ba (K) plane position along the Z direction (||c). The structural phase ratio of tetragonal to orthorhombic increased and it means that the superconductivity exist even in samples with dominant tetragonal phase.

Key words: Superconductivity, Structural phase transition, Reitveld refinement
بررسی میزان و نقش آلایش پتانسیم در نمونه ابررسانا 1 (YBa$_2$-,K$_x$Cu$_3$O$_6$+Y) با استفاده از آنالیز ریتوود الگوها پراتو x:

بهرام خوشنویسان 1، منصور فرید 2

گروه فیزیک دانشگاه کاشان

گروه فیزیک دانشگاه شهید بهشتی اهواز

b.khosh@kashanu.ac.ir

(دریافت مقاله: 3/8/91، نسخه نهایی: 3/8/92)

چکیده: در این مقاله الگوها پراتو x به روش ریتوود پلاتینی به روی نمونه XRD نمونه ابررسانا 1 (YBa$_2$-,K$_x$Cu$_3$O$_6$+Y) مورد استفاده از نرم‌افزار GSAS و برای مطالعه الگوها بر اساس الگوها پراتو x، در نمونه در الگوها از الگوها پراتو x به دست آمده که در آن جمله شده‌های جدید است. گروه از آن روی ساختمان فلزی و الگوها می‌توان باعث تغییرات در انرژی اکسیژن در انرژی شده و نیز مکان نسبی صفحات Ba(K) (معیار) که در آن عدم پراتو مدل با داده‌ها را نشان می‌دهد اثر می‌گذارد.

جاگزینی پتانسیم با بلوئید اکسیژن در نمونه شده و نیز مکان نسبی صفحات Ba(K) در راستای محور Zفاز چارگوشی در کاهش و بهبود الگوها با افزایش متراست و این به معنا این است که حتی در نمونه‌هایی که فاز غالب گالب ساختاری چارگوشی است نیز ابررسانا دیده می‌شود.

واژه‌های کلیدی: ابررسانا 1، انتقال فاز ساختاری، پلاتینی ریتوود.

1- مقدمه

این مقاله از طرف شوهر با نسبت به Ba و Ca به دیج را از خود (YBCO) با ارایه اکسیژن و سرس این با بلوئید اکسیژن از طرف YBa$_2$-,K$_x$Cu$_3$O$_6$+Y ام‌هیا (Y و Ba) از طرف اکسیژن طوری که هم قرار گرفته‌اند این ترکیب با دیج اکسیژن می‌تواند در حالت فلوئیدی به صورت خاصی Cu-O$_x$_رکند و در اثر رشد به صورت صفحات Cu-O$_x$_رکند. دو مورد از صفحات ایرانی Cu-O$_x$_بینش می‌یابد و اهراش کانیون Cu-O$_x$_معلوم یک عنصر ب را دو طرفینی جاگزینی عنصر ب به عنوان مخازن بار عمل می‌کند که به عنوان مخازن بار عمل می‌کنند. (1) آزمایش کانیون Cu-O$_x$_بینش می‌یابد و در اهراش کانیون معلوم یک عنصر ب را دو طرفینی جاگزینی عنصر ب به عنوان مخازن بار عمل می‌کند در این مقاله نیز مورد بررسی قرار گرفته‌اند این ترکیب با دیج اکسیژن از طرف YBa$_2$-,K$_x$Cu$_3$O$_6$+Y و در این مقاله نیز مورد بررسی قرار گرفته‌اند. این مقاله با دیج اکسیژن و سرس این با بلوئید اکسیژن از طرف YBa$_2$-,K$_x$Cu$_3$O$_6$+Y ام‌هیا (Y و Ba) ام‌هیا (Y و Ba) ام‌هیا (Y و Ba) ام‌هیا (Y و Ba) یک عنصر ب را دو طرفینی جاگزینی عنصر ب به عنوان مخازن بار عمل می‌کند که به عنوان مخازن بار عمل می‌کنند. (1) آزمایش کانیون Cu-O$_x$_بینش می‌یابد و در اهراش کانیون معلوم یک عنصر ب را دو طرفینی جاگزینی عنصر ب به عنوان مخازن بار عمل می‌کند در این مقاله نیز مورد بررسی قرار گرفته‌اند. این مقاله با دیج اکسیژن و سرس این با بلوئید اکسیژن از طرف YBa$_2$-,K$_x$Cu$_3$O$_6$+Y و در این مقاله نیز مورد بررسی قرار گرفته‌اند. این مقاله با دیج اکسیژن و سرس این با بلوئید اکسیژن از طرف YBa$_2$-,K$_x$Cu$_3$O$_6$+Y و در این مقاله نیز مورد بررسی قرار گرفته‌اند. این مقاله با دیج اکسیژن و سرس این با بلوئید اکسیژن از طرف YBa$_2$-,K$_x$Cu$_3$O$_6$+Y و در این مقاله نیز مورد بررسی قرار گرفته‌اند. این مقاله با دیج اکسیژن و سرس این با بلوئید اکسیژن از طرف YBa$_2$-,K$_x$Cu$_3$O$_6$+Y و در این مقاله نیز مورد بررسی قرار گرفته‌اند. این مقاله با دیج اکسیژن و سرس این با بلوئید اکسیژن از طرف YBa$_2$-,K$_x$Cu$_3$O$_6$+Y و در این مقاله نیز مورد بررسی قرار گرفته‌اند. این مقاله با دیج اکسیژن و سرس این با بلوئید اکسیژن از طرف YBa$_2$-,K$_x$Cu$_3$O$_6$+Y و در این مقاله نیز مورد بررسی قرار گرفته‌اند. این مقاله با دیج اکسیژن و سرس این با بلوئید اکسیژن از طرف YBa$_2$-,K$_x$Cu$_3$O$_6$+Y و در این مقاله نیز مورد بررسی قرار گرفته‌اند. این مقاله با دیج اکسیژن و سرس این با بلوئید اکسیژن از طرف YBa$_2$-,K$_x$Cu$_3$O$_6$+Y و در این مقاله نیز مورد بررسی قرار گرفته‌اند. این مقاله با دیج
روش کار

در این اکسپرس کشت، نمونه‌های

YBa$_2$ Cu$_3$ K$_x$ Cu$_3$ O$_{6+y}$

روی نمونه‌پذیری XRD تهیه شده به ارزایی مقادیر مختلف

YBa$_2$K$_x$Cu$_3$O$_{6+y}$

زاویه در دمای انتقال اندازه‌گیری شدند.

نمونه‌های حامل از بالا به روند ریزش برهم گری شدند.

پرداز از پخش‌های مختلف تشکیل دهنده نمونه به طور

علامت‌های + ناپایبسته است و نمونه حاصل از مدلی که

روی داده‌های ساختارشناختی ساخته می‌شود به صورت خط

پیوسته به‌وجود می‌آورند می‌باشد تا داده می‌شود. در

نمونه در دو سرنوشت‌های منطقه به صورت دیده می‌شود.

برای اندازه‌گیری بالا نشانگر مکان اندازه‌گیری محلوم به

دارای بالا نشانگر منطقه می‌باشد و به صورت دیده می‌شود.

و نشانگر بالای اندازه‌گیری محلوم به فاز گردوشی است. در

برخی از موارد بالا شناخته شده می‌باشد. می‌توان از

نمونه بالاینرین منطقه فاز نازئی است. در

شکل 1: الگوی پرداز نمونه $\approx X$ یا نشان می‌دهد

میزان

قرون پیمایی نمونه و گرده در اکسپرس گری‌های مستقیم

به‌وجود می‌آورند. در این مقدار قابل توجهی

از ترکیب‌های اولیه مانند کربنات و یا تشکیل ترکیب

های اضافی ناخواسته (مانند فاز ناتوانی) در

این اکسپرس کشت (برای نمونه بدون پیش‌بینی پیش‌بینی با

نواخته حذف شده‌اند (برای توضیح بیشتر به منابع مرجعی

شود.)
جدول 1: مقادیر اندازه‌گیری شده برای نمونه‌های $YBa_{2-x}k_xCu_3O_7$ با x متفاوت.

<table>
<thead>
<tr>
<th>X</th>
<th>χ^2 با وجود پیک‌های ناخالصی</th>
<th>χ^2 بدون پیک‌های ناخالصی</th>
<th>Y از 3/7 تا 4/3</th>
<th>Y از 4/3 تا 3/7</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>2561</td>
<td>1869</td>
<td>6.433</td>
<td>9.163</td>
</tr>
<tr>
<td>0.8</td>
<td>3.550</td>
<td>4.038</td>
<td>6.433</td>
<td>9.163</td>
</tr>
<tr>
<td>0.6</td>
<td>5.555</td>
<td>5.626</td>
<td>4.844</td>
<td>5.626</td>
</tr>
<tr>
<td>0.4</td>
<td>8.032</td>
<td>8.965</td>
<td>3.991</td>
<td>8.965</td>
</tr>
</tbody>
</table>

شکل 2: اثر قله‌های ناخالصی ($X = 0.8$) بر روی نمونه کریستال گردیده و تأثیر بالارسانی شده در لایه‌های $YBa_{2-x}k_xCu_3O_7$.

$\chi = 1.5405$

- برداشت

قله‌هایی در نمونه مشاهده می‌شود که متعلق به کرینت پنتاسیم (قله Y) و قله‌هایی (قله K) با استفاده از شیمیایی که گزارش شده است (7) نسبت درصد فازی یک روند افراشی (Tet / Orth) چارگوشی به راستگوشه متوسط را نشان می‌دهد. در این نمونه که با زیاد شدن X مقدار پنتاسیم که در خاکستر پردازش ناحیه در جایگاه قلمی مشاهده می‌شود، باعث افزایش میزان میزان کرینت در نمونه می‌شود که آن هم به نوبه خود روند تطبیقی اتومهای مرتبطه را غیر قابل استناد می‌سازد. به همین دلیل نتایج بالا را مربوط به $X = 0.8$ در اینجا گزارش نمی‌شود.

- تأثیر ناخالصی

در این روش، تأثیر ناخالصی $X = 0.8$ و دیگر افرادی نشان نمی‌دهد و تأثیر ناخالصی $X = 0.8$ در الکتریکی به نامی از بالارسانی
اشکال ۵ مکان نسبی انیهای سنگین با الکتریته متفاوت پتاسیم.

اشکال ۴ تغییرات نسبی‌های شبکه c/3,b,a بر حسب الایدی‌گی پتاسیم.

اشکال ۳ نمودار درصد فازِ (Tet/Orth) بر حسب الایدی‌گی پتاسیم. خط پتوسته بانگر روند آفرینی متوسط است.

پس از میزان و نفیس الایش پتاسیم در نمونه ابرسانا (۱۰۷) با...

آکسیژن را مختل می‌سازد، و در نتیجه گذاری از راستکوشه مشورت نمی‌گیرد [A] (در مواردی حتی کاهش میزان اکسیژن در نمونه گزارش شده است [۱]). از طرف دیگر مورد دوباره این نسبت کاهش یافته است (اشکال ۲)، بنابراین X ≈ ۲/۳ نظم بلند برد اکسیژن‌ها افزایش یافته که موجب به افزایش تنش در این نشان می‌دهد که صفحات Cu₂O،CuO،Cu۳O۶ کاهش یافته است.

در نهایت می‌توان گفت که دلیل گذار آهسته چارگوشی به راستکوشه و کاهش دمای ابرسانانی، وجود پتاسیم (به عنوان ناخالصی جایگزین باریم) است.

شامل زنجیره‌های Cu–O نماینده Mi شوند (اشکال ۵). در بررسی‌های قبیلی به روش تنتراسیون، غلظت اکسیژن با افزایش مقدار ناخالصی کاهش می‌یابد [۱] که این با نتایج حاصل از داده‌های بالای‌اش رتولد برای همان نمونه‌ها مطابقت است و بالای‌اش روند مشخصی را برای اندازه‌گیری غلظت اکسیژن نشان می‌دهند که به مناسبت گم XRD به عنصر سبک اکسیژن می‌توان گفت نتایج روش تنتراسیون قابل اعتناد است.

پارامترهای شبکه a,b و c کاهش یافته ولی پارامتر شبکه Z چاپ مکان در مجموع دارای تغییرات ناچیز است (اشکال ۲). همچنین میزان Z‌ها کاهش یافته با آفرینی Ba (K) نسبت محور Ba (K) به صفحات Cu₂O،CuO،Cu۳O۶ در رابطه با این نشان می‌دهد که صفحات Cu₂O،CuO،Cu۳O۶ با آفرینی Cu با، CuO با و Cu۳O۶ با در دنیای ماده با الکتریکی اتفاق می‌افتد.
[4] اخوان م.، میمی ز.، پیشرفت‌های ابرسانایی دما

مراجع