New evidences on mineralization, diagenesis and fluid inclusions at Kamar-Mehdi stratabound fluorite deposit, southwest Tabas

M. Pirouzi, M. Ghaderi, N. Rashidnejad-Omran, E. Rastad

Department of Geology, Tarbiat Modares University, Tehran, Iran
Email: mghaderi@modares.ac.ir

(Received: 23/6/2008, in revised form: 17/11/2008)

Abstract: The Kamar-Mehdi fluorite deposit is located 100 km southwest of Tabas in Tabas Block, Central Iran. There are five stratabound orebodies in the area exposing in carbonate rocks of Shotori Formation. The oldest unit is Shotori Formation dolomite of Triassic age that is emplaced in the core of Kamar-Mehdi Anticline. Folding direction in the area is N-S and normal faults with W-E direction have caused some dislocations. Based on field and microscopic evidences, three types of mineralization are identified: 1- Early Diagenetic mineralization which is observed as disseminated in fenestral porosity in Shotori Formation dolomicrites; 2- Late Diagenetic mineralization that occurs as open space filling in vein and veinlets and open spaces of Shotori Formation. 3- Vein mineralization which occurs along with normal faults in the study area. Fluid inclusions studies of late diagenetic mineralization and vein mineralization show that the fluids in the late diagenetic mineralization have salinities between 15 and 26 wt% NaCl equivalent and homogenization temperatures of 150-270°C. Fluid inclusions of the vein mineralization have salinities between 3.4 and 20.2 wt% NaCl equivalent and homogenization temperatures of 140-237°C.

The present study, with consideration on the late diagenetic mineralization and comparing it with vein type fluid inclusions, shows that the diagenetic fluid inclusions have higher salinities and homogenization temperatures. All the evidences show that mineralization at Kamar-Mehdi fluorite deposit is related to Shotori Formation and it is regarded as a fluorite-rich Mississipy Valley Type deposit.

Keywords: Stratabound fluorite deposit, Fluid inclusions, F-rich MVT, Kamar-Mehdi, Iran
شواهد تازه‌ای از کانترایی، درونزا و شاره‌های درگیر در کانسار فلوریت چینه‌کران
کم‌مهمی، جنوب‌بختی، طبس
مهدی پیروزی، مجید قادری، نعمت‌الله رشیدزاده، عنوان، ابراهیم راستاد

ناشته تربیت مدرس، پیش‌زمین‌شناسی، تهران، ایران
mghaderi@modares.ac.ir

(دریافت مقاله: ۲۳/۹/۸۷، نسخه نهایی: ۲۳/۹/۸۷)

چکیده: کانسار فلوریت کم‌مهمی در ۱۰۰ کیلومتری جنوب‌بختی شهرستان طبس در بلوک طبس و در پنهن ایران مرکز واقع شده است. این کانسار از ۵ ببکه معدنی چینه‌کران تشکیل شده که همه در سنگ‌های کربناته سازند شتری قرار دارند. قدمتی ترين و دواست سنگ‌منطقه سنجش دو از کانسار دوگانه است و تیمارهای جنوبی و غربی هم‌مرجعی خاوری در اجه دانشگاه تربیت مدرس در این محل قرار دارند. راستای چینه‌کران بسیاری شما را در همت تخصصی کم‌مهمی در چهارمی‌های با توجه به نوع کانترایی در دو نمای سه‌بعدی صحیح‌تر و مبنازی‌کردن سه‌بعدی، این ناچیزی‌ها را موجب نخواهد داشت. این ناچیزی‌ها در منطقه معدنی مشاهده می‌شود: ۱- کانترایی درونی‌بردازد: به‌صورت نابه‌پاری و پراکندگی، در تخلخل به‌چین‌های سنگین‌تراتیا سازند شتری، ۲- کانترایی درونی‌اتخیر: به‌صورت ناپدید و نمی‌رود، رکشته فضاها و خالی در دو منطقه‌های سازند و در کانترایی درونی‌اتخیر و زمانی نمی‌دهد که شاره‌های درگیر در کانترایی از نوع زیر تأمین با درجه‌های ۱۵ تا ۲۴ درصد وزنی هر ۲۰۷ تا ۲۰۷ درصد ورودی هم‌مرجعی در وزنی همگی‌شدن ۱۴۰ تا ۱۴۰ درصد وزنی معادل درگیری بروخوردازد. مقایسه شاره‌های درگیر در دو نوع کانترایی یاد شده نمی‌دهد که شاره‌های درگیر درونی‌اتخیر از درجه‌های شوری و دما همگی‌شدن بیشتر در مقایسه با شاره‌های درگیر درونی‌اتخیر، این واقعیت نمی‌دهد که کانترایی در کنار چینه‌کران فلوریت کم‌مهمی در ارتباط با سازند شتری و از کانترایی‌های غنی از فلوریت نوع دره می‌سپری است.

واژه‌های کلیدی: کانسار فلوریت چینه‌کران، شاره‌های درگیر، کانسار نوع دره می‌سپری، کم‌مهمی، ایران.

1- مقدمه
کشور ایران با تولید تقاضای سالانه ۶۰ هزار تن فلوریت (حدود یک درصد تولید جهانی)، بزرگ‌ترین تولید کننده فلوریت در دنیا محسوب می‌شود. گسترده‌ترین و مهم‌ترین نوع کانترایی فلوریت در ایران در سنگ‌های تئودوریت موجود و کاربردهای قرار دارند. این نوع ترسیم مبنا در البرز (سازند‌های اینکا) و ایران مرکز (سازند شتری) به عنوان یک دوبله فلورکراتیا در ایران شناخته شده است که به دو یر در تولید سالانه فلوریت از ذخایر این دوره تالیف می‌شود. از جهتی این ذخایر مشابه کانسارهای فلوریت پیچک‌ها و شاره‌های دربر و کانسارهای فلوریت کم‌مهمی، پیمان، و دردنا در ایران مرکز واقع شده است. کانسار فلوریت کم‌مهمی در ۱۰۰ کیلومتری جنوب‌بختی شهرستان طبس، در ناحیه ایران مرکزی و در بلوک طبس واقع شده است. این کانسار از ۵ ببکه معدنی چینه‌کران تشکیل شده که همه در سنگ‌های کربناته سازند شتری قرار دارند. قدمتی ترين و دواست سنگ‌منطقه سنجش دو از کانسار دوگانه است و تیمارهای جنوبی و غربی هم‌مرجعی خاوری در اجه دانشگاه تربیت مدرس در این محل قرار دارند. راستای چینه‌کران بسیاری شما را در همت تخصصی کم‌مهمی در چهارمی‌های با توجه به نوع کانترایی در دو نمای سه‌بعدی صحیح‌تر و مبنازی‌کردن سه‌بعدی، این ناچیزی‌ها را موجب نخواهد داشت. این ناچیزی‌ها در منطقه معدنی مشاهده می‌شود: ۱- کانترایی درونی‌بردازد: به‌صورت نابه‌پاری و پراکندگی، در تخلخل به‌چین‌های سنگین‌تراتیا سازند شتری، ۲- کانترایی درونی‌اتخیر: به‌صورت ناپدید و نمی‌رود، رکشته فضاها و خالی در دو منطقه‌های سازند و در کانترایی درونی‌اتخیر و زمانی نمی‌دهد که شاره‌های درگیر در کانترایی از نوع زیر تأمین با درجه‌های ۱۵ تا ۲۴ درصد وزنی هر ۲۰۷ تا ۲۰۷ درصد ورودی هم‌مرجعی در وزنی همگی‌شدن ۱۴۰ تا ۱۴۰ درصد وزنی معادل درگیری بروخوردازد. مقایسه شاره‌های درگیر در دو نوع کانترایی یاد شده نمی‌دهد که شاره‌های درگیر درونی‌اتخیر از درجه‌های شوری و دما همگی‌شدن بیشتر در مقایسه با شاره‌های درگیر درونی‌اتخیر، این واقعیت نمی‌دهد که کانترایی در کنار چینه‌کران فلوریت کم‌مهمی در ارتباط با سازند شتری و از کانترایی‌های غنی از فلوریت نوع دره می‌سپری است.

واژه‌های کلیدی: کانسار فلوریت چینه‌کران، شاره‌های درگیر، کانسار نوع دره می‌سپری، کم‌مهمی، ایران.
شواهد تازه‌ای از کانترایی درون‌ریزی و شاهراه در گذر ...

شده است. این کانسپریز با داشتن بیش از یک میلیون تن ذخیره به‌طور ۸۰ درصد از برگ‌های معادن فلوریت در ایران و خارج‌الدستی محسوب می‌شود که در حالت حضر مورد بهره‌برداری قرار دارد. کانسپریز باشد از طریق ایجاد نشکل شده است که ممکن است در حدود ۹۰ کیلو متری ربع را در می‌گیرد.

نمونه‌های عمده کرم‌های ذکر در سنجشی کرمانیان (Stratobound) سازند شری قرار داشته و حالت چین‌گران (Crimson) دارند.

۲- زمین‌شناسی

قانع‌داری‌های موجود در این ناحیه ضروری می‌باشد که در این مهارک خاص کرم‌های بزرگی از نظر شاخصی بکار خواهد داشت باعث شده تا مقطعه به‌طور کلی جهان‌آرایی در این مکان تهران‌گنگ و فروختانگی داشته باشد که معدن کرم‌های ۲ یکی از ضخامت‌های سازند شری تعیین می‌گردد. ضخامت‌های سازند شری به طور دقیق اندازه‌گیری نشده است ولی ضخامت ظاهری این سازند در منطقه معدنی به طور تقسیمی ۴۰۰ متر است.

۳- کانترایی

بر اساس بررسی‌های جبرایی، بررسی‌های آزمایشگاهی، و میکروسکوپی، کانترایی فلوریت را می‌توان باید به شاهراه زمین‌شناختی و ساختاری به‌صورت مغناطیسی و ترکیبی در شرایط این درون‌ریز زمین، مورد راه‌اندازی و پراکندگی‌های با تخلخل پرچینی دولومیک‌بی‌پایه سازند شری تشکیل شده است (شکل ۱). کانی‌های کرم‌های تابیده و کلیسی بسر (گروه‌هایی که در شرایط حوضه تنش‌ین کرده‌اند عناصر فلورور، باریم و اکسید را در شکل‌ها گردانی کرده و احتمالاً در اثر فرآیندهای شنیده مورد ترکیب پایان کرده‌اند) و کلیسی (کانترایی) ترکیب شده‌اند. این اثر ترکیب را اصلی عناصر یاد شده بود درون تخلخل‌های پرچینی راه یافته و اولین مرحله غنی شدگی شاهراه سنت به عناصر با راه‌داده است.[۹] این نوع کانترایی در مراحل اولیه درون‌ریزی رخ می‌دهد.

 browser compatibility:
شکل ۱. نقشه چینه‌شناسی عمومی در منطقه معدنی کرم‌می (افغانستان) از نشکه ۱۰۱۲۰۰۰۰۰۰ منطقه معدنی کرم‌می-۱ [5]. که تقسیم‌بندی رخساره‌ها و افق کانادار در سانبد شتری با این پژوهش صورت گرفته است.

شکل ۲. تصویری از کانال‌هایی فلوریت در تخلخل پرچینی دولومیکرایت‌های سانبد شتری (در مقیاس رخمنو و مقطع میکروسکوپی).
شواهد تازه‌ای از کانترایی، درون‌زدایی و شارده‌های در کرمان.

ج- کانترایی رگه‌ای هیبروندا گسل‌های معمولی: در این مرحله، کانترایی به صورت شکافه‌برکن در رگه، رگه و فضاهای خالی سازند شتری تشکیل شده است (شکل ۳). ادامه تغییرات تا گرانش، افزایش عمق تا گردن، ادامه فرآیند دولومیت‌سازی که باعث افزایش تخلخل و هجوم بی‌گن‌های کانسیس به سازند شتری شده و بالاخره ماهیت اسیدی شاردهایی که شرایط مناسبی را برای نهشت فلوریت آماده می‌سازند، باعث تشکیل این نسل از کانترایی در منطقه کمرپه‌ای شده است.

ب- کانترایی درونزدایی تاکیدی در این مرحله، کانترایی به صورت شکافه‌برکن در رگه، رگه و فضاهای خالی سازند شتری تشکیل شده است (شکل ۳). ادامه تغییرات تا گرانش، افزایش عمق تا گردن، ادامه فرآیند دولومیت‌سازی که باعث افزایش تخلخل و هجوم بی‌گن‌های کانسیس به سازند شتری شده و بالاخره ماهیت اسیدی شاردهایی که شرایط مناسبی را برای نهشت فلوریت آماده می‌سازند، باعث تشکیل این نسل از کانترایی در منطقه کمرپه‌ای شده است.

شکل ۳ تصویری از کانترایی فلوریت و باریت درون‌زدایی که به صورت شکافه‌برکن، فضاهای خالی دولومیت‌برکن سازند شتری را پر کرده‌اند.

شکل ۴ تصویری از کانترایی فلوریت رگه‌ای هیبروندا گسل‌های معمولی که به صورت شکافه‌برکن، گسل‌های معمولی واقع در سازند شتری را پر کرده‌اند.
گرفته است. هدف از انجام بررسی‌های ریزدیاضنی، تعیین دمای ذوب آخیر قطعه یخ (T_{last} Ice Melting) و دمای همگن شدن شاره‌های درگیر بوده است. همچنین دستگاه استفاده از دی‌گیری پتانسیم، اسید بیوتونیک، آب مفطر و کلروفرم انجام شد.

الف) مطالعه شاره‌های درگیر در فلوریت نوع درونزاد تأخیری
برسیهای سنجش‌نامی شاره‌های درگیر فلوریت‌های درونزادی نشان می‌دهد که شاره‌های درگیر فلوریت از نظر شکل ظاهری، بیشتر نامتظم، کروی، میله‌ای و اشکال منفی پلوری هستند. انتخاب این شاره‌ها ۲۳۰ میکرون است. بیشتر شاره‌های درگیر مورد مطالعه دو فازی غنی از آبکوند و میزان فاژ آبکوند این شاره‌ها ۲۰ تا ۹۰ درصد تغییر می‌کند (شکل ۵).

بررسی‌های ریزدیاضنی نمونه‌های فلوریت وابسته به کانترلی درونزاد تأخیری، این می‌دهد که درجه شوری و دمای همگن شدن شاره‌های درگیر در این نوع کانترلی و NaCl به ترتیب وابسته به درجه سالنگ رابطه معادل ۲۷۰ درجه سانتی‌گراد منفی دارد (جدول ۱) و برای این بررسی‌های درونزاد تأخیری و NaCl به ترتیب بین ۱۵ تا ۲۵ درصد وزنی معادل ۱۰۰ تا ۱۵۰ درجه سانتی‌گراد است. درجه سالنگ رابطه معادل ۲۷۰ درجه سانتی‌گراد منفی دارد (جدول ۱) و برای این بررسی‌های درونزاد تأخیری و NaCl به ترتیب بین ۱۵ تا ۲۵ درصد وزنی معادل ۱۰۰ تا ۱۵۰ درجه سانتی‌گراد است (شکل ۶).

#- بررسی شاره‌های درگیر
کانئ فلوریت یکی از مهم‌ترین کانئ‌های شفاف برای بررسی رفتار شاره‌های درگیر است. این کانئ در رگه‌های وارگرمانی دما پایین تا کانئ‌های دما بالای گراین، اسکار، پورفیری و پیگمانی دیده می‌شود و به همین علت به عنوان ابزار مناسب برای پی‌جویی و بررسی تشكل انواع کانئ‌های به کار می‌رود.

بررسی شاره‌های درگیر در این کانئ پژوهشی در سه مرحله نمونه‌برداری، سنجش‌نامی شاره‌های درگیر و ریزدیاضنی شاره‌های درگیر انجام شد. در مرحله نمونه‌برداری، نمونه‌های از انواع مختلف فلوریت جمع‌آوری شدند که با توجه به کانئ‌هایی شناخته شده در منطقه معدن، ۶ نمونه بررسی ریزدیاضنی شاره‌های درگیر انتخاب شدند. ویلی با توجه به ریزدیاضنی، دو فازی درونزاد اوپلی به کانئ‌های درگیر در آن می‌سرد و از آنکه فلوریت درونزاد تأخیری و رگه‌های مورد بررسی قرار گرفتند.

در نمونه‌های بررسی شدید کانئ‌های نر سه نوع شاره اولیه، کانئ‌های ثانویه و تانئی کادم وجود دارند که با توجه به اهمیت کمتر شاره‌های ثانویه، بررسی‌های انجام شد. این بررسی‌های اوپلی و تانئی کادم مانند بررسی‌های آبی MFS کنترل کننده گرامی‌نده TMS92 در دانشگاه تربیت مدرس انجام شد.
جدول 1 نتایج بررسی های شاردهای درگیر در نمونه‌های فلوئورید درونزد ناقص در خاپای منطقه کمره‌مهدی.

<table>
<thead>
<tr>
<th>Sample No.</th>
<th>Size (Micron)</th>
<th>L (%)</th>
<th>V (%)</th>
<th>Tₚ (m)</th>
<th>Tₘ</th>
<th>Salinity (wt% NaCl equivalent)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>100</td>
<td>95</td>
<td>3</td>
<td>-12</td>
<td>180</td>
<td>38</td>
</tr>
<tr>
<td>2</td>
<td>12</td>
<td>80</td>
<td>1</td>
<td>-15</td>
<td>180</td>
<td>35</td>
</tr>
<tr>
<td>3</td>
<td>8</td>
<td>80</td>
<td>0</td>
<td>-12</td>
<td>170</td>
<td>35</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>80</td>
<td>0</td>
<td>-19</td>
<td>155</td>
<td>34</td>
</tr>
<tr>
<td>5</td>
<td>10</td>
<td>80</td>
<td>0</td>
<td>-13</td>
<td>180</td>
<td>169</td>
</tr>
<tr>
<td>6</td>
<td>10</td>
<td>80</td>
<td>0</td>
<td>-19</td>
<td>180</td>
<td>117</td>
</tr>
<tr>
<td>7</td>
<td>10</td>
<td>80</td>
<td>0</td>
<td>-19</td>
<td>180</td>
<td>117</td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td>80</td>
<td>0</td>
<td>-16</td>
<td>180</td>
<td>117</td>
</tr>
<tr>
<td>9</td>
<td>12</td>
<td>80</td>
<td>0</td>
<td>-14</td>
<td>180</td>
<td>117</td>
</tr>
<tr>
<td>10</td>
<td>10</td>
<td>80</td>
<td>0</td>
<td>-16</td>
<td>190</td>
<td>195</td>
</tr>
<tr>
<td>11</td>
<td>7</td>
<td>90</td>
<td>0</td>
<td>-11</td>
<td>150</td>
<td>55</td>
</tr>
<tr>
<td>12</td>
<td>9</td>
<td>90</td>
<td>0</td>
<td>-11</td>
<td>150</td>
<td>15</td>
</tr>
<tr>
<td>13</td>
<td>10</td>
<td>80</td>
<td>0</td>
<td>-13</td>
<td>160</td>
<td>169</td>
</tr>
<tr>
<td>14</td>
<td>20</td>
<td>80</td>
<td>0</td>
<td>-14</td>
<td>180</td>
<td>178</td>
</tr>
<tr>
<td>15</td>
<td>23</td>
<td>75</td>
<td>25</td>
<td>-16</td>
<td>190</td>
<td>195</td>
</tr>
<tr>
<td>16</td>
<td>15</td>
<td>75</td>
<td>25</td>
<td>-19</td>
<td>200</td>
<td>177</td>
</tr>
<tr>
<td>17</td>
<td>15</td>
<td>75</td>
<td>25</td>
<td>-17</td>
<td>200</td>
<td>202</td>
</tr>
<tr>
<td>18</td>
<td>10</td>
<td>10</td>
<td>0</td>
<td>-17</td>
<td>190</td>
<td>202</td>
</tr>
<tr>
<td>19</td>
<td>10</td>
<td>10</td>
<td>0</td>
<td>-17</td>
<td>190</td>
<td>202</td>
</tr>
<tr>
<td>20</td>
<td>10</td>
<td>10</td>
<td>0</td>
<td>-17</td>
<td>190</td>
<td>202</td>
</tr>
<tr>
<td>21</td>
<td>15</td>
<td>80</td>
<td>0</td>
<td>-12</td>
<td>190</td>
<td>14</td>
</tr>
<tr>
<td>22</td>
<td>10</td>
<td>80</td>
<td>0</td>
<td>-12</td>
<td>190</td>
<td>14</td>
</tr>
<tr>
<td>23</td>
<td>10</td>
<td>80</td>
<td>0</td>
<td>-12</td>
<td>190</td>
<td>14</td>
</tr>
<tr>
<td>24</td>
<td>10</td>
<td>80</td>
<td>0</td>
<td>-12</td>
<td>190</td>
<td>14</td>
</tr>
<tr>
<td>25</td>
<td>10</td>
<td>80</td>
<td>0</td>
<td>-12</td>
<td>190</td>
<td>14</td>
</tr>
<tr>
<td>26</td>
<td>5</td>
<td>80</td>
<td>0</td>
<td>-15</td>
<td>180</td>
<td>188</td>
</tr>
<tr>
<td>27</td>
<td>5</td>
<td>80</td>
<td>0</td>
<td>-15</td>
<td>180</td>
<td>188</td>
</tr>
<tr>
<td>28</td>
<td>5</td>
<td>80</td>
<td>0</td>
<td>-15</td>
<td>180</td>
<td>188</td>
</tr>
<tr>
<td>29</td>
<td>5</td>
<td>80</td>
<td>0</td>
<td>-15</td>
<td>180</td>
<td>188</td>
</tr>
<tr>
<td>30</td>
<td>5</td>
<td>80</td>
<td>0</td>
<td>-15</td>
<td>180</td>
<td>188</td>
</tr>
<tr>
<td>31</td>
<td>5</td>
<td>80</td>
<td>0</td>
<td>-15</td>
<td>180</td>
<td>188</td>
</tr>
<tr>
<td>32</td>
<td>5</td>
<td>80</td>
<td>0</td>
<td>-15</td>
<td>180</td>
<td>188</td>
</tr>
</tbody>
</table>

شکل 6: نتایج بررسی های شاردهای درگیر در نمونه‌های فلوئورید درونزد ناقص توسط کمپیوتر کمره‌مهدی.

(نегاتیو کریستال) گروه میلی‌ها و شکل‌های منفی بلوری هستند. اندامی این شاردها 5 تا 100 میکرون است. این شاردها به صورت دو فازی (L+V) غیر از ایکسیوند و میزان فاز ایکسیوند آنها از 65 تا 85 درصد تغییر می‌کند (شکل 5).
برای بررسی رژیم‌سنجی نمونه‌های فلوریت وابسته به کانتری رگه‌ای نشان می‌دهد که این شاره‌های درگیر رفتار دوگانه دارند. اینکه، شاره‌هایی که همگام همگون به صورت فاز ایگون همگی می‌شوند و درجه شوری آنها ۶۵ تا ۲۱۰ درصد وزنی هم‌ارز همگی نشان می‌دهد که این شاره‌های درگیر رفتار دوگانه دارند. آلف- شاره‌هایی که همگام همگون به صورت فاز ایگون همگی می‌شوند و درجه شوری آنها ۶۵ تا ۲۱۰ درصد وزنی هم‌ارز همگی نشان می‌دهد که این شاره‌های درگیر رفتار دوگانه دارند. ب- شاره‌هایی که همگام همگون به صورت فاز بخاری همگی می‌شوند و درجه شوری آنها ۶۵ تا ۲۱۰ درصد وزنی هم‌ارز همگی نشان می‌دهد که این شاره‌های درگیر رفتار دوگانه دارند.

جدول ۲ نتایج بررسی‌های شاره‌های درگیر نمونه‌های فلوریت رگه‌ای از نگاه سیستم‌های گرم‌میدلی.

<table>
<thead>
<tr>
<th>Sample No.</th>
<th>Size (Micron)</th>
<th>L (%)</th>
<th>V (%)</th>
<th>T_t (C)</th>
<th>T_h</th>
<th>Salinity (wt% NaCl equivalent)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10</td>
<td>80</td>
<td>20</td>
<td>144</td>
<td>16</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>30</td>
<td>60</td>
<td>40</td>
<td>134</td>
<td>12</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>50</td>
<td>80</td>
<td>20</td>
<td>134</td>
<td>12</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>100</td>
<td>60</td>
<td>40</td>
<td>124</td>
<td>12</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>200</td>
<td>80</td>
<td>20</td>
<td>114</td>
<td>12</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>400</td>
<td>60</td>
<td>40</td>
<td>104</td>
<td>12</td>
<td>1</td>
</tr>
<tr>
<td>7</td>
<td>800</td>
<td>80</td>
<td>20</td>
<td>94</td>
<td>12</td>
<td>1</td>
</tr>
<tr>
<td>8</td>
<td>1600</td>
<td>60</td>
<td>40</td>
<td>84</td>
<td>12</td>
<td>1</td>
</tr>
<tr>
<td>9</td>
<td>3200</td>
<td>80</td>
<td>20</td>
<td>74</td>
<td>12</td>
<td>1</td>
</tr>
<tr>
<td>10</td>
<td>6400</td>
<td>60</td>
<td>40</td>
<td>64</td>
<td>12</td>
<td>1</td>
</tr>
<tr>
<td>11</td>
<td>12800</td>
<td>80</td>
<td>20</td>
<td>54</td>
<td>12</td>
<td>1</td>
</tr>
<tr>
<td>12</td>
<td>25600</td>
<td>60</td>
<td>40</td>
<td>44</td>
<td>12</td>
<td>1</td>
</tr>
<tr>
<td>13</td>
<td>51200</td>
<td>80</td>
<td>20</td>
<td>34</td>
<td>12</td>
<td>1</td>
</tr>
<tr>
<td>14</td>
<td>102400</td>
<td>60</td>
<td>40</td>
<td>24</td>
<td>12</td>
<td>1</td>
</tr>
<tr>
<td>15</td>
<td>204800</td>
<td>80</td>
<td>20</td>
<td>14</td>
<td>12</td>
<td>1</td>
</tr>
<tr>
<td>16</td>
<td>409600</td>
<td>60</td>
<td>40</td>
<td>4</td>
<td>12</td>
<td>1</td>
</tr>
<tr>
<td>17</td>
<td>819200</td>
<td>80</td>
<td>20</td>
<td>4</td>
<td>12</td>
<td>1</td>
</tr>
<tr>
<td>18</td>
<td>1638400</td>
<td>60</td>
<td>40</td>
<td>4</td>
<td>12</td>
<td>1</td>
</tr>
<tr>
<td>19</td>
<td>3276800</td>
<td>80</td>
<td>20</td>
<td>4</td>
<td>12</td>
<td>1</td>
</tr>
<tr>
<td>20</td>
<td>6553600</td>
<td>60</td>
<td>40</td>
<td>4</td>
<td>12</td>
<td>1</td>
</tr>
<tr>
<td>21</td>
<td>13107200</td>
<td>80</td>
<td>20</td>
<td>4</td>
<td>12</td>
<td>1</td>
</tr>
<tr>
<td>22</td>
<td>26214400</td>
<td>60</td>
<td>40</td>
<td>4</td>
<td>12</td>
<td>1</td>
</tr>
<tr>
<td>23</td>
<td>52428800</td>
<td>80</td>
<td>20</td>
<td>4</td>
<td>12</td>
<td>1</td>
</tr>
<tr>
<td>24</td>
<td>104857600</td>
<td>60</td>
<td>40</td>
<td>4</td>
<td>12</td>
<td>1</td>
</tr>
<tr>
<td>25</td>
<td>209715200</td>
<td>80</td>
<td>20</td>
<td>4</td>
<td>12</td>
<td>1</td>
</tr>
<tr>
<td>26</td>
<td>419430400</td>
<td>60</td>
<td>40</td>
<td>4</td>
<td>12</td>
<td>1</td>
</tr>
<tr>
<td>27</td>
<td>838860800</td>
<td>80</td>
<td>20</td>
<td>4</td>
<td>12</td>
<td>1</td>
</tr>
<tr>
<td>28</td>
<td>1677721600</td>
<td>60</td>
<td>40</td>
<td>4</td>
<td>12</td>
<td>1</td>
</tr>
<tr>
<td>29</td>
<td>3355443200</td>
<td>80</td>
<td>20</td>
<td>4</td>
<td>12</td>
<td>1</td>
</tr>
<tr>
<td>30</td>
<td>6710886400</td>
<td>60</td>
<td>40</td>
<td>4</td>
<td>12</td>
<td>1</td>
</tr>
<tr>
<td>31</td>
<td>13421772800</td>
<td>80</td>
<td>20</td>
<td>4</td>
<td>12</td>
<td>1</td>
</tr>
<tr>
<td>32</td>
<td>26843545600</td>
<td>60</td>
<td>40</td>
<td>4</td>
<td>12</td>
<td>1</td>
</tr>
<tr>
<td>33</td>
<td>53687091200</td>
<td>80</td>
<td>20</td>
<td>4</td>
<td>12</td>
<td>1</td>
</tr>
<tr>
<td>34</td>
<td>107374182400</td>
<td>60</td>
<td>40</td>
<td>4</td>
<td>12</td>
<td>1</td>
</tr>
<tr>
<td>35</td>
<td>214748364800</td>
<td>80</td>
<td>20</td>
<td>4</td>
<td>12</td>
<td>1</td>
</tr>
<tr>
<td>36</td>
<td>429496729600</td>
<td>60</td>
<td>40</td>
<td>4</td>
<td>12</td>
<td>1</td>
</tr>
<tr>
<td>37</td>
<td>858993459200</td>
<td>80</td>
<td>20</td>
<td>4</td>
<td>12</td>
<td>1</td>
</tr>
<tr>
<td>38</td>
<td>1717986918400</td>
<td>60</td>
<td>40</td>
<td>4</td>
<td>12</td>
<td>1</td>
</tr>
</tbody>
</table>

پیبرزی، قادری، رشتی‌زاده عماران، رستاد
ج) مقایسه شاره‌های درگیر نوع درونزادی و رگه‌ای در کانسار یاکاریان در ایران
بررسی رگه‌های درگیر در نمونه‌هایی از فلوریت نوع درونزادی در کانسار کم‌مهم‌دیدی و مقایسه آن با فلوریت نوع رگه‌ای در این کانساز، نشان می‌دهد که بخشی از دلیل درکی در نوع درونزادی در مقایسه با دلیل درکی در نوع رگه‌ای از درجه شوری و دمای همگنی شدن بخش‌های درونزادی (شکل 8) بررسی صورت می‌گیرد.

(جدول 3) بررسی دریافت درکی شاره‌های درگیر فلوریت در کانساز کم‌مهم‌دیدی که صورت بر روی فلوریت نوع رگه‌ای متمرکز شده‌اند نیز نشان می‌دهد که این شاره‌ای در درجه شوری و دمای همگنی شدن کمتری نسبت به شاره‌ای درگیر نوع درونزادی برخوردارند [8،12，13].

این واقعیت نشان می‌دهد که فرض شاره‌های گرمابی وابسته به توده‌اش، به عنوان شاره‌ای مستقل کانسازی نوع...
مقایسه نتایج شاره‌های درگیر کانسار فلوریت کرم‌مهدی با
دیگر کانسارهای فلوریت در ایران، که از آنها تحت عنوان
کانسارهای فلوریت تفنن-ی‌ت، درون‌زد و پرخوردارنده، نشان می‌دهد که شاره‌های درگیر این کانسارها نیز دو گستره
شوری و دمای همگن‌شدن را نشان می‌دهند، به نحوی که
درج‌های شوری و درجه‌های همگن‌شدن فلوریت نوع رگه‌ای کمتر از
مفاهیم تعبیه می‌شود.

جدول ۲ مقایسه دمای همگن‌شدن و درجه‌شوری شاره‌های درگیر در دو نوع کانساری درون‌زد و رگه‌ای در برخی از کانسارهای فلوریت برز و ایران

<table>
<thead>
<tr>
<th>منطقه معدنی</th>
<th>نوع کانساری</th>
<th>دمای همگن‌شدن(درجه سانتی-گراد)</th>
<th>شوری (درصد وزنی معادل NaCl)</th>
<th>منبع</th>
</tr>
</thead>
<tbody>
<tr>
<td>کانسار فلوریت شش‌رودیار</td>
<td>دیازابینک</td>
<td>160 - 190</td>
<td>23 - 24</td>
<td>شریعت‌ماد (۱۳۷۷)</td>
</tr>
<tr>
<td></td>
<td>رگه‌ای</td>
<td>140 - 130</td>
<td>24 - 25</td>
<td></td>
</tr>
<tr>
<td>کانسار فلوریت نوه‌دروار</td>
<td>دیازابینک</td>
<td>180 - 240</td>
<td>22 - 23</td>
<td>رستم‌پاپدار (۱۳۸۰)</td>
</tr>
<tr>
<td></td>
<td>رگه‌ای</td>
<td>130 - 150</td>
<td>24 - 25</td>
<td></td>
</tr>
<tr>
<td>کانسار فلوریت کرم‌مهدی</td>
<td>دیازابینک</td>
<td>150 - 270</td>
<td>24 - 34</td>
<td>بیرژی (۱۳۸۵)</td>
</tr>
<tr>
<td></td>
<td>رگه‌ای</td>
<td>130 - 277</td>
<td>33 - 32</td>
<td>صادقی (۱۳۴۷)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>70 - 150</td>
<td>36 - 37</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>115 - 125</td>
<td>0.7 - 0.6</td>
<td>[۱۳]Moore et al. (1998)</td>
</tr>
<tr>
<td>کانسار فلوریت پیپ‌وند</td>
<td>جالسینی</td>
<td>۸۵ - ۲۳۵</td>
<td>۹ - ۳۴</td>
<td>نقش‌الی (۱۳۸۵)</td>
</tr>
<tr>
<td></td>
<td>رگه‌ای</td>
<td>۶۵ - ۱۱۵</td>
<td>۳ - ۹</td>
<td></td>
</tr>
</tbody>
</table>
کنارس قلیفت کمزمدی از جمله مهم‌ترین معادن قلیفت ایران به شمار می‌رود. بررسی‌های بیشین، کنارس قلیفت را به مخلوط میانی تا نهایی یک گرماپ، از ارتباط با یک توده تغییر صورت می‌دهند که کنارسایی روزانه قلیفت در ناحیه کمزمدی ناشی از عملکرد سیستم گرماپ با دمای باین است که به علت مناسب بودن شرایط ساختن شری، در ذره‌ها و شکاف‌های آن، و نمایش گونه کاندار با سطح دیواره‌های میکرو‌آیونی و افزایش محلول pH از شرایط اسیدی، باعث مشخص‌سازی قلیفت در منطقه معدنی شده است [۱].

بررسی‌های شاره‌ای در گرگری قلیفت نوع درونزا کنارس کمزمدی و مقاومت آن با قلیفت نوع رگهای در این کنارس نشان می‌دهد که شاره قلیفت نوع درونزا در مقایسه با خود شاره‌های قلیفت نوع رگهای از پاره‌بندی و دمای همگن بهبود استفاده برمی‌گردد. این واقعیت نشان می‌دهد که فرازندای گرماپی وابسته به توده آزادی نمی‌توانند به عنوان فرازندای کانسارس در انتهای گسل قلیفت نقش داشته باشند. زیرا در این صورت می‌باشد دمای همگن انتهای گسل قلیفت بسیار بالاتر از ابتدای قلیفت درونزا باشد. از طرف دیگر موقعیت داده‌های شاره‌ای در گرگری کنارس قلیفت کمزمدی در نمونه‌های کنارس قلیفت‌های نوع درونزا سی با پیش‌ترین شاهد را دارند (شکل ۷) [۱۶]. علایق بر موارد بالا، نوع، سی و محوطه تکمیل سست درونگری، محیط زمین‌ساخت کنارس، بافت و ساختار و یادژن معدنی از جمله مواردی هستند که نشان می‌دهد در این کنارس در ارتباط با سازند شری و از کنارسایی نوع دره می‌سی‌پی است.

مراجع

