Brains evolution and evaporate minerals formation in Saghand playa in central Iran, and compare with some saline lake in the world

H. Torshizian

Department of Geology, Islamic Azad University- Mashhad Branch, Iran
Email: h.torshizian @ yahoo.com

(Received: 11/4/2008, in revised form: 8/9/2008)

Abstract: Saghand playa is located about 150 km northeast of Yazd in central Iran. In order to study brine evolution and effect of brine origin on mineralogical distribution and hydrochemical characteristics of evaporate minerals for exploration, 21 samples were collected from different parts of this playa. The samples were analyzed using the XRD to determine mineralogical characteristics of the brine. Normalized XRF results were led to establish elemental analysis of the samples. Results were compared with data of Great Saline Lake, the Death Valley and the Great Salt pan in North the America. Cation and anion variations in the Saghand playa brine, hydrochemically and physicochemically are similar to the Great Saline Lake the brine type is Na-K-Mg-Cl-SO₄ as alkaline meteoric brine. Mineralogically, halite, gypsum and bazanite are the most frequent evaporite minerals in this playa which suggest higher Concentration in of Saghand playa brine in comparison with the other mentioned playa.

Keywords: Playa – Brine – Saghand – Central Iran
تكامل شورایه‌ها و تشکیل کانی‌های تبخیری در پلاکای ساغند ایران مرکزی، و مقایسه آن با دریاچه بزرگ نمک و حوضه دره مارک ایالت متحده

حبيب الله ترشیزیان
دانشگاه آزاد اسلامی مشهد، دانشکده علوم پایه، گروه زیست‌شناسی
h.torshizian@yahoo.com

چکیده: پلاکای ساغند ایران مرکزی، در ۱۵۰ کیلومتر شمال خاوری شهرستان یزد واقع شده است. به منظور بررسی تکاملی و تأثیر خاستگاه آنها بر تغییرات کانی‌شناسی و به‌دست آمده از شرایط اکسیژن، فلزات تبخیری، تراکم و توزیع به شوراها، با استفاده از دریاچه بزرگ نمک کاملاً متفاوت از شرایط دریاچه ساغند (XRD) تبدیل و در فرآیند گردنده، تغییرات بیشتری و همچنین بیشتر از شرایط دریاچه ساغند داشته است. در نتیجه، شرایط دریاچه ساغند به شرایط دریاچه بزرگ نمک کاملاً دستقبل متفاوت است.

واژه‌های کلیدی: پلاکای ساغند، شرایط شورایه‌ها، ساغند، ایران مرکزی.
دریاچه به جریان ورودی آب [۶] با توجه به شرایط اقیمی و جویی توبوگرافی در ایران، چندین محیط‌هایی به صورت گسترده در مرکز و خارج آن یافت می‌شود [۸].

پلاسی ساغن در ایران مرکزی، استان یزد، یکی از این پلاسی‌هاست که ترکیبی شورابه به منظور بررسی روند تکاملی و تاثیر خاستگاه بر نوع کانال‌های تبخیری حاصل، مورد بررسی قرار گرفته است. این پلاسی از ۱۵۰ کیلومتری خاور‌غربی قرار دارد. نام این پلاسی از روستایی به همین نام در منطقه اقتباس شده است. دریاچه تکی ساغن در گستره طول‌های جغرافیایی ۲۳°۲۷' تا ۳۱°۳۲' شمالی، مساحتی در حدود ۱۰۰ کیلومتر مربع را در بر می‌گیرد (شکل-۱). راه‌های دسترسی به این منطقه از

شکل ۱: موقعیت جغرافیایی و راه دسترسی به پلاسی ساغن.
بررسی اطلاعات رقومی و دورسنجی، نقطه ریخته‌سازی پلاسای تهیه شد. با توجه به گسترش و وضعیت نمکی پلاسای شیمیکی، بندی مناسب به منظور نمونه‌برداری از شوراهای پلاسای طراحی شد.

نمونه‌های جمع‌آوری شده از درون کم‌ها در بطوری‌های لایه‌ای برای برنامه‌ریزی و بی‌توجه به مانگاژی‌سازی مورد نیاز به آزمایشگاه‌های مربوطه ارسال شدند. در آزمایشگاه سازمان ارزی انجام نمونه‌های محلول شوراهای با شیمیایی پرس و فلوئورسپرسی پرتو ایکس (XRF) موجود در آنها از تانزینگ موجد در شوراهای پس از تبخیر از روش پرینت ایکس (Simense D500 X- Ray Diffractmeter) با دستگاهی تعیین، و ویژگی‌های ممکن استفاده و شیمیایی شوراهای مانند (T.H) (T.S) (D.S) (Ph) (پیامدهای نیز اندام‌های پهن‌های اطلاعات به دست آمده با استفاده از نرم افزاری مختلف مانند Excel, Surfer, Spss) و قرار گرفتن.

زمین‌شناسی گستره پلاسای سانفر

پلاسای سانفر در به‌هنهای ساختاری ایران مرکزی تیک‌ساخته شده است [101]. در اثر کنترلی‌های زمین‌ساختاری در پلی‌کوپنترال مرکز ایران، شیمیایی بسته‌ای به مصوبه پلاسای شکل گرفته‌اند [112]. پلاسای سانفر که در مرکز ایران به عنوان یک حوضه درون قاره‌ای محسوب می‌شود، تحت تأثیر گسل پهناور در
به‌عنوان مثال، سولفویدهای موجود در خاستگاه، بنابراین به صورت محلول در آب‌های ملایم شده، به‌دست‌آمده‌اند، در اثر شرایط فیزیکی و شیمیایی تبخیری، هم‌زمان با Co(II) و Ca(II) و در اثر انحلال سولفویدهای Co(OH)₂، باعث شده که کانال تعبیه شود.

کانال‌های میلی در تکامل شوراهای حساس [1].

بنا بر این، با توجه به هماهنگی مقادیر، یک میانگین می‌تواند بر حسب فراوانی کانال‌ها، میزان تکامل شوراهه اولیه نیز کرد.

جدول 1 ترتیب شیمیایی و نوع شوراهه‌ها افتضاح از آکستر و هاردی (1988).

<table>
<thead>
<tr>
<th>حضور تبخیری</th>
<th>انواع آب‌های درونی</th>
<th>ترتیب شیمیایی اصلی</th>
<th>انواع شوراهه‌های مشتق‌شده</th>
</tr>
</thead>
<tbody>
<tr>
<td>دریایی</td>
<td>آب دریا</td>
<td>Na-K-Mg-Ca-Cl-SO₄</td>
<td>شوراهه‌های دریایی</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Na-K-Mg-Cl-SO₄</td>
</tr>
<tr>
<td>گرمایی</td>
<td>جوی</td>
<td>Na-K-Mg-Ca-HCO₃-Cl-SO₄</td>
<td>شوراهه‌های فلایایی</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Na-K-CO₃-Cl-SO₄</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>ب) شوراهه‌های خشکی</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Na-K-Mg-Cl-SO₄</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>شوراهه‌های کلیسم-کار</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Na-K-Mg-Cl</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(؟) شیب به گرمایی</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>ألف آب‌های سولفات‌های اسیدی</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>ب) آب‌های سولفات-کلرایدی</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SiO₂, Al-Fe-NH₄, H</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>مخلوط هر یک از انواع بالا</td>
</tr>
</tbody>
</table>

میزان و سنگه‌های آذرین سبب‌کننده کمترین مقدار را در شرایط یکن‌نشان می‌دهند (شکل-2). در اثر هوازدگی شیمیایی تبخیری، هم‌زمان با Cl⁻, SO₄²⁻, Mg²⁺ و در اثر انحلال شوراهه‌ها، باعث شده که X₀³⁻, Ca(II) و Co(II) و در اثر انحلال شوراهه‌ها، باعث شده که کانال تعبیه شود.

شوند، با توجه به اینکه این نکته‌ها موجود در شوراهه ساخته‌ای در جنوب بود که موجب اختلاف در نسبت HCO₃⁻/Ca + Mg شده که اکثر می‌تواند در مسیر تکامل شوراهه محسوس می‌شود [11].

حتی در صورتیکه در مراحل بعدی اثر انحلال، اکسباش و
بررسی زئوشیمی آب و تکامل شوراهه‌های پلیای ساغند
نتایج به دست آمده از نمونه‌های برداشت شده در جدول 2 ارائه شده، نشان می‌دهد که مکان نمونه‌ها روی نمودار اسپنسر بیشتر در محدوده قرار گرفته است. به عبارتی پس از تغییرات کل، تغییرات مولکول‌هایی که در بیشینه قرار گرفته است، به معنی این است که سطح قرار گرفته بیشینه قرار گرفته است.

شکل 2 رابطه بین خاستگاه و ترکیب شوراهه افتخاری از جوئنر و دکامیو (2010).

نتایج تجزیه نمونه‌های در نمودار اسپنسر (شکل 3) نشان می‌دهد که مکان نمونه‌ها روی نمودار اسپنسر بیشتر در محدوده قرار گرفته است. به عبارتی پس از تغییرات کل، تغییرات مولکول‌هایی که در بیشینه قرار گرفته است، به معنی این است که سطح قرار گرفته بیشینه قرار گرفته است.

شکل 2 رابطه بین خاستگاه و ترکیب شوراهه افتخاری از جوئنر و دکامیو (2010).

نتایج به دست آمده از نمونه‌های برداشت شده در جدول 2 ارائه شده، نشان می‌دهد که مکان نمونه‌ها روی نمودار اسپنسر بیشتر در محدوده قرار گرفته است. به عبارتی پس از تغییرات کل، تغییرات مولکول‌هایی که در بیشینه قرار گرفته است، به معنی این است که سطح قرار گرفته بیشینه قرار گرفته است.
نمودار شورابه از Ca^{2+} نسبتاً بالایی برخوردار بوده و در اثر تکامل به سمت رس S_{6-} حركت می‌کند و کانالهای سولفات‌های نظیر زبس و سولفات‌های منیزیم‌دار نشته می‌شوند. جنين شرایطی در دریاچه نمک بزرگ آمریکای شمال شرقی می‌شود. لذا می‌توان گفت که پلاکی ساغند جزء دریاچه‌های نمکی با شورابه‌های تکامل یافته و از نوع کلریدی CI محصول می‌شود.

<table>
<thead>
<tr>
<th>شورابه‌های تکامل یافته و از نوع کلریدی CI محصول می‌شود.</th>
<th>نمونه</th>
<th>تکامل به سمت رس S_{6-} حركت می‌کند و کانالهای سولفات‌های نظیر زبس و سولفات‌های منیزیم‌دار نشته می‌شوند.</th>
<th>نتایج تجزیه شیمیایی شورابه‌های پلاکی ساغند به روش فلوروسانسی برتو ایکس (XRF)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SO_{4}(me/l)</td>
<td>Mg(me/l)</td>
<td>Ca(me/l)</td>
<td>HCO_{3}+CO_{2}(me/l)</td>
</tr>
<tr>
<td>699.44</td>
<td>0.382</td>
<td>143.72</td>
<td>0.036</td>
</tr>
</tbody>
</table>
همیلت، تایک هیدریت، دیوولومیت: A_2

هامیلت، تایک هیدریت: A_1

این تغییرات نشان می‌دهد که شوراهه به سمت مرکز پلازا سیر کاملی داشته است. این امر از طرفی به جنس پروندهای سنگی پیرامون پلازا، نوع کلیه تیغیزی نشسته شده تا نیز معنا آورده است. به طوریکه در باخت دریاچه که بیشتر نشسته‌های نموزن نهایی پرونده دارد. به علت وجود رابطه

A_{15} بیشتر نشسته‌ها کلریدی $Cl_2 + SO_4^{2-} > Co_3^{2+}$

و سولفاتی است. این امالح شامل هیئت، پاسیتی، بیچوپت و سیلوت است، که در حاشیه یالیا که بیشتر سنگ‌های آذرین مافیک پرونده دارد. کلیه کلزی شال کلزیت، دیوولومیت، مگنزیت و ناتروی در ترکیب شوراهه تنش خیز داده شده‌اند.

به منظور بررسی روند تکاملی شوراهه و سیستم‌های ممکن استفاده از نموداری که توسط اکستر و هاریزی [6] مطرح شده (شکل-5)، و نمایشگر احتمالی در کلیه یا به توجه به شرایط موجود مورد بررسی قرار گرفته، با توجه به بررسی‌های انجام شده نشان می‌دهد که کلیه کلزیت با توجه به بررسی‌های انجام شده، پس از نشستن کلزیت کلزیتی به علت تخلیه بی‌اندازه دریاچه Mg^{2+} و Ca^{2+} در صورت وجود Co^{3+} و Co^{2+} نموده‌ها برای تعیین ویژگی‌های کانی‌شناسی به روش پراش پترول ایکس (XR D) مورد بررسی قرار گرفته‌اند. نشان‌کننده در (NaCl) و کانی‌های کلریدی نظر هالیت $CaMg_2Cl_6.12H_2O$ نیز نشان‌کننده در شوراهه‌های پلازای ساخته‌شده که با توجه به کلریدی بودن شوراهه، جنین ترکیب کانی‌شناسی نیز عادی است. علوه پر هالیت می‌توان به کانی‌های سولفاتی مانند پاسبانیت ($Na_2SO_4.10H_2O$) می‌باشد. کلزیت ($CaSO_4.0.5H_2O$) و کانی‌های پاسیتی ($CaSO_4$) و کانی‌های کلزیتی مانند ($CaMg(Co_3)CO_3$) و کلزیت ($CaCO_3$) و مگنزیت ($MgCO_3$) شورای هر

بررسی انجام گرفته مشخص شده که از حاشیه به مرکز پلازا، از میزان کانی‌های سولفاتی کلزیتی کاسته شده و میزان کانی‌های کلریدی افزوده می‌شود، به طوریکه در مقطع طولی برداشت شده از حاشیه به مرکز پلازا که شامل نموده‌ها است، روند تغییرات ترکیب کانی‌شناسی به صورت A_{2} تا A_1 زیر است:

A_1: هالیت، ناترو، کلزیت، دیوولومیت، بیچوپت، کانی‌های کلریدی نموده‌ها در انجام گرفته شده است.
در شوراها، ناباليداری این کمی در دمای بالاتر از ۶-۴ درجه سانتی‌گراد است [۲۰] به‌طوریکه مربی‌پیت در حوضه‌ای بسته معمولاً دیده نمی‌شود زیرا دوازده حل شده و به شکل کلرید
Cl و هالید دیده می‌شود [۲۱] در پابان نیز با آفتابی میزان
Cl در محلول، کمی‌های کلریدی ظاهر هالید تنفس شدهاند.

کافی، زیبی و سولفی‌ها معنی‌دار بر جرای گذاره شدن.
افرازیاها و از دست دادن مقداری آب، موجب تبدیل زیبی
به بسالتیت و در ادامه این روند انهدروت تشکیل شده است.
در اثر کم‌برد این عناصر و بالا رفتن میزان سدیم در شوراها
کمی میرایی‌ای بر جای گذاره می‌شود که علت عدم وجود آن

[شکل ۱] تمدیدی از نمو‌داره‌ای پراش پرتی ایکس (XRD) شورا‌های پلاکای شاغل که کاتیون‌های غیر رسی با استفاده از قله‌های استاندارد شناسایی و کاتیون‌های رسی کربناتی، مورد آزمایش قرار گرفت. که در شناسایی آنها از دست داده شده و آب اکسیره ۲۰٪ تیمار شدند.
شکل ۵ روند نهشته شدن کانی‌های تبخیری در پلاها افتایان از جونز و دکامیو (۲۰۰۳).
تشکر به پژوهشی بر خود لازم‌تر می‌دانم از معاونت محرمان پژوهشی دانشکده آزمایش‌های انجام دهید بهبود تحقیقی را با پژوهشی فراهم نمود تحقیق و تحقیق نامیم.
همچنین از همانگان محرمان قابلیت درک می‌تواند همیند جوانیت و مهندسی تأثیرگزاری به خاطر مشاوره علمی و همکاری صمیمانه پیوستارم.

مراجع

[18] HARDIE L.A. AND EUGSTER H.P. "The