Study of the effect of the nature of the rodingite forming fluids in the minerals of the rodingite of Nain ophiolite

S. Falahaty, M. Saidi, M. Noghreyan, M. Khalili, Gh. Torabi, M. A. Machizadeh

Department of Geology, Isfahan University
Email: somayefalahaty@yahoo.com

Abstract: Two types of rodingitization (static and dynamic) are observed in the rodingites of the ophiolite north of Nain. Two stages have been occurred in the formation of static rodingites. At the initial stage, epidote, prehnite and hydrogrossular have crystallized respectively at the expense of plagioclase, with the increase of Calcium content rodingite forming fluid. In the advanced stage, xonotlite at the expense of plagioclase, and Mg – chlorite, tremolite and secondary diopside, at the expense of pyroxene, have formed simultaneously with an increase of Si content of rodingite forming fluid. The high content of vein xonotlite, in the dynamic rodingites, shows that the CaO/SiO$_2$ ratio in the fluid is first close to one, but with time, it reduces to less than one and prehnite and pectolite have crystallized. In the dynamic rodingites, due to the low variations of rock – forming fluids, the mineralogy of dynamic rodingites do not vary much. In contrast, the mineralogy of static rodingites display variation, indicating the changing in composition of rock – forming fluids.

Keyword: Nain ophiolite, Rodingite, Static rodingites, Dynamic rodingites.
بررسی تأثیر ترکیب شاره‌های رودنزیت ساز در تکامل کانی‌های موجود در رودنزیت‌های افیلولیت ناائین

سیده فلاحی، معصومه سعیدی، موسی نوره‌نیا، محمود خلیلی، قدرت ترابی، محمد علی مکی‌زاده

بخش زمین شناسی دانشکده اصفهان

بت کیوانی: somavehfalahaty@yahoo.com

(دریافت مقاله: 1392/10/24، نسخه نهایی: 1393/7/21)

چکیده: در رودنزیت‌های افیلولیت شمال ناائین، دو نوع رودنزیت شدن استاتیک و دینامیک مشاهده می‌شود. هم‌چنین در رودنزیت‌های استاتیک این منطقه، در مخازن اتبانی و پیشرفته قابل مشاهده است. در مخازن اتبانی، به ترتیب کانی‌های ایبدوت، پریزپت و هیدروپت با روند یا پیشرفته در شاره رودنزیت ساز تبلور یافته و در مرحله پیشرفتمگی کانی زونولیتیک برحسب پریزپتک و کلریت شدت می‌آید. پریزپت در کانی‌های ترولیتی، و یا مسیر نوین به خوراکی هم زمان با افزایش زمان ترولیتی و یا سِلیسیم شاره رودنزیت ساز تبلور یافته. در رودنزیت‌های دینامیکی نیز حضور فراوان زنولیت رگه‌ای ناشی از دستگاه نسبت و داشته است و با گذشت زمان این نسبت کاهش یافته و کانی‌های پریزپت و پلیتولیت شکل‌گرفته‌اند. عدم تنویع کانی‌های ناشی از تغییرات پایین شاره‌های سازنده این سنگ‌ها دارد. در حالت کنونی فراوان کانی شبانی در رودنزیت‌های استاتیک، نشان از تغییرات گسترده ترکیب شاره‌های سازنده این سنگ‌ها دارد.

واژه‌کلیدی: افیلولیت ناائین، رودنزیت، رودنزیت‌های استاتیک، رودنزیت‌های دینامیک.

مقدمه

دبایهای افیلولیت شمال ناائین در رستاقی‌های زنگوله‌ای ناف – بافت واقع شده است (شکل 1). این زون در باختر ایران مرکزی قرار دارد و شامل چندین قطعه جدا از دنباله‌های افیلولیتی ایبروسین نمونه‌سازی شده است. این افیولیت‌ها نقاب‌های بوستونیه منشی و منبعث در مرکز طبیعی بالایی نايتی نشان دهنده انواع زیادی از حاشیه‌ای ایران مرکزی را داده‌اند. پریزپت‌های بیشتر سیلاتیکی‌شده گیپار، دایک‌های سیلاتیک، پلیتولیت، پلاتیت – وکلاید زنولیت دیواره‌های شکل‌گیرنده این افیلولیت است [1].

در افیلولیت ناائین، دایک‌های رودنزیتی شده در و در منطقه رخ خونونی-گسترده‌ای در منطقه (شکل 2) در طول جغرافیایی ۱۸°و ۳۳° شمالی، و رخ خونون دوم در منطقه گلی گنگی در طول جغرافیایی ۱۸°و ۳۳° خاوری و عرض جغرافیایی ۴۳و ۴۷ درجه شش است. دایک‌های رودنزیتی شده اغلب در رنگ سفید تا گری و به صورت پاتریاکاله سوسپسیس شکل (پودیناز) (شکل ۲A) با ضخامت نسبتاً کم (شکل ۲C) در سرپینتین‌های این منطقه قابل رؤیت است. سطح خاسک‌گذاری اغلب این سرپینتین‌ها در افیلولیت ناائین، موزوز‌پت است. در دایک‌های رودنزیتی شده با ضخامت زیاد، فراوانی رودنزیتی شدن در برخورداری دایک با سرپینتین‌های فراوانی دیبیک می‌شود. در حالت که مرکز دایک ناقرباً نیم‌تغییر باید مانند است از طرف دیگر بین نشان دایکی شده با نشان تقریباً سالم آن یک مزد ترمیجي است (شکل ۳D)، در صورتی
در جریان سریانتنینی شدن، پروکس و الیوین موجود در سنگ‌های اولتراوامیک، کلسیم آراد می‌شود که این کلسیم قادر به جایگیری در ساختار بلوئین سریانتنینی‌ها نیست، لذا در شاره حاصل از سریانتنینی شدن مجزا می‌شود و به دایک‌های بازیکی قطع گردیده و پیدا کرده‌های سریانتنینی‌های جدیدی به منظور رودزیت‌ساز می‌شود.

با توجه به این که شاره‌های رودزیت‌ساز مسول شکل‌گیری گونه‌های موجود در رودزیت‌ها هستند، نتایج این گونه تغییرات ترکیب این شاره‌ها منجر به تغییر در نوع کانی شکل‌گیری در این سنگ‌ها خواهد شد که مبحث اصلی این مقاله است.

روش مطالعه
به منظور بررسی ترکیب کانی‌های موجود در رودزیت‌های افیولیت نانی، تعداد 40 نمونه از این سنگ‌ها برای تهیه مقطع نازک انتخاب شدند. از این مقاطع نازک، تعداد 10 مقطع به‌منظور تعیین فرمول ساختاری کانی‌های موجود نظر مورد حساب ماند. از این 10 مقطع، سه مقطع به‌منظور سنجش انسان و پاس از تهیه مقاطع نازک صیقلی به دانشگاه تربیت مدرس تهران برای آنالیز EDS فرسنده شدند.

سنگ شناسی
در رودزیت‌های افیولیت نانی، دو نوع رودزیت‌های شدن استانیک و دیانیس مشاهده می‌شوند. در رودزیت‌های نانی استانیک که با توجه به حضور کانی‌های جانشین مشخص می‌باشد، سنگ‌ها بافت اولیه خود را حفظ کرده است [5] و از لحاظ کانی‌شناسی دو مرحله ابتدایی و پیشرفته را نشان می‌دهد.
در کابروهای شدیداً رودزنتی که تجزیه پلازیکوارها به مقدار Frovol دیده می‌شود به طوری که حتی سطح کانی‌های کلینوبروکسن را نیز می‌پوشاند، برخی از تبدیل‌های پلازیکوارها به مقدار کم دیده می‌شوند که نشان دهنده تبدیل تقریباً کاملاً این کانی‌ها به هیدروگروسالور است. کلینوبروکسن نیز تقریباً تمام به ترمولیت با دیوبسید تانایه تبدیل شده‌اند. هیدروگروسالور‌های حاصل از تبدیل پلازیکوارها، فضای خالی بین منشورهای کلینوبروکسن‌های اولیه تبدیل شده به ترمولیت را پر کرده‌اند.

روژنتی‌های استاتریک از لحاظ بافت و مکان تشکیل با سربانتین‌های استاتریک همخوانی دارند. بدان معنا که هردو سپس پن فلز اولیه دارای بافت‌گروپولیستیکاند و تحت تأثیر درگیری‌های زیر کف آفلایس تشکیل شده‌اند. [5]

(1) 3CaAl₂Si₃O₈ + 0.5 SiO₂ + 2H⁺ → Anorthite
(2) 2Ca₃Al₂O(Si₂O₇)(Si₂O₄)OH + 2H⁺ → Zoisite
(3) 1.5Ca₃Al₂Si₃O₁₀ + 0.5 Al₂O₃ + 3 CaAl₂Si₂O₈ + 0.5 SiO₂ + 2H⁺ → Prehnite
(4) 2Na₂Ca₃Al₂Si₃O₁₂ + 2H⁺ → Hydrogrossular
(5) 2CaAl₂Si₂O₈ + CaAl₂Si₃O₈ + 2Ca₃Al₂Si₂O₈ + 0.5 SiO₂ + 3CaAl₂Si₂O₈ + 3 H₂O → Anorthite
(6) 2Na⁺ + 3SiO₂ + 3H₂O + CaNaH(SiO₃)₂ + 5 H⁺ → Pectolite

در رودزنتی‌های دینامیکی که بعد از رودزنتی‌نشدن استاتریک بر سطح تحلیل شده است و با توجه به حضور کلسیم‌های رنگ‌ریز مخصوص می‌شود، سبک تغذیه خاصی را به دست می‌دهد. کانی‌های موجود در رودزنتی‌های دینامیکی به ترتیب شامل توده‌ای شیب به میزان قرار گیری (شکل 2) برخیت به میزان کم (شکل 3) و یکنتلیت به میزان بسیار کم (شکل 4) (واکنش‌های 8، 9 و 10) [6] است.

روژنتی‌های دینامیکی از لحاظ بافت و مکان تشکیل با سربانتین‌های دینامیکی همخوانی دارند. بدان معنا که هردو سپس پن فلز اولیه دارای بافت‌گروپولیستیکاند و در زمان جابجایی بسته آفلایس روی قاره تشکیل شده‌اند [5].
بررسی‌های سنجش‌شناختی از آنالیزهای EDS نیز کمک گرفته شد.

بحث

در مورد بررسی در مرحله انتزاعی رودزئیتی شدن استاتیک، به دلیل یافته اندکی، میزان pH شاره (CaO/SiO₂) در حدود 11 [1]. هنگامی که تأثیر ان بیابانیهای پلایژوکلازهای مدل سیگنال بیشتر از مدل سیگنال یافته شده است که در سه شرایط اسیدی شکل گرفته‌اند. این کاتیون به ترتیب با افزایش میزان Ca به کاهش کلیسم دارای مانند آبی‌پر، پره‌پیت و هیدروگروسولار (جدول 2) نیز شناخته می‌شود.

در حالتی که شاره با پیشرفت رودزئیتی شدن، از لحاظ CaO:SiO₂ میزان pH و نسبت CaO:SiO₂ افزایش کرد و توانایی خود برای تشکیل کلیسمی را از دست داده است، و از SiO₂ به ترتیب Al غنی شده است [8] و کاهش نسبت CaO:SiO₂ موجود در مرحله پیشرفت به دلیل سیگنال رودزئیتی شدن، احتمالاً به وسیله میکرویونی، به سرعت بیش از SiO₂ و نیز نادیده گرفته/ نیز نادیده گرفته شده است. به شرح بسته بودن سیستم تأمین می‌شود.

باتری‌ای با توجه به بررسی‌های میکروسکوپی شیمیایی گرفته شده در حالی که رودزئیتی‌ها در محله انتزاعی رودزئیتی شدن تولید می‌شوند، به مطابق داده‌هایی که تاکنون گونه جمع‌بندی کامل شده در محله انتزاعی رودزئیتی شدن، به دلیل این آن که میزان CaO:SiO₂ کم‌تر است.

در مورد بررسی در مرحله انتزاعی رودزئیتی شدن استاتیک، به دلیل یافته اندکی، میزان pH شاره (CaO/SiO₂) در حدود 11 [1]. هنگامی که تأثیر ان بیابانیهای پلایژوکلازهای مدل سیگنال بیشتر از مدل سیگنال یافته شده است که در سه شرایط اسیدی شکل گرفته‌اند. این کاتیون به ترتیب با افزایش میزان Ca به کاهش کلیسم دارای مانند آبی‌پر، پره‌پیت و هیدروگروسولار (جدول 2) نیز شناخته می‌شود.

در حالتی که شاره با پیشرفت رودزئیتی شدن، از لحاظ CaO:SiO₂ میزان pH و نسبت CaO:SiO₂ افزایش کرد و توانایی خود برای تشکیل کلیسمی را از دست داده است، و از SiO₂ به ترتیب Al غنی شده است [8] و کاهش نسبت CaO:SiO₂ موجود در مرحله پیشرفت به دلیل سیگنال رودزئیتی شدن، احتمالاً به وسیله میکرویونی، به سرعت بیش از SiO₂ و نیز نادیده گرفته/ نیز نادیده گرفته شده است. به شرح بسته بودن سیستم تأمین می‌شود.

باتری‌ای با توجه به بررسی‌های میکروسکوپی شیمیایی گرفته شده در حالی که رودزئیتی‌ها در محله انتزاعی رودزئیتی شدن تولید می‌شوند، به مطابق داده‌هایی که تاکنون گونه جمع‌بندی کامل شده در محله انتزاعی رودزئیتی شدن، به دلیل این آن که میزان CaO:SiO₂ کم‌تر است.

1 - Cassiar
2 - Ontario
با در رودزیت‌های استانیک منطقه از مراحل ابتدایی (آبی، برخی‌ها، هیدرورگاسولز) تا مراحل پیشرفته (زنوتیت، کلریت منزیموم دار، ترمولیت، دیوپسید ناحیه‌های اندازه‌گیری و کسری در ترکیبکر کننده سازنده این سنگ‌ها با گذشت زمان دارد. در حالت که نوع کانی‌شناسی

جلد ۱ نتایج آنالیز EDS از کانی‌های گفتار.

<table>
<thead>
<tr>
<th>مرحله</th>
<th>Wt%</th>
<th>Wt%</th>
<th>Wt%</th>
<th>Wt%</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO2</td>
<td>43.14</td>
<td>36.38</td>
<td>36.96</td>
<td>38.4</td>
</tr>
<tr>
<td>TiO2</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Al2O3</td>
<td>12.04</td>
<td>20.88</td>
<td>57.79</td>
<td>2.094</td>
</tr>
<tr>
<td>FeO*</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.094</td>
</tr>
<tr>
<td>MnO</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.150</td>
</tr>
<tr>
<td>MgO</td>
<td>1.64</td>
<td>0.84</td>
<td>0.89</td>
<td>0.90</td>
</tr>
<tr>
<td>CaO</td>
<td>33.45</td>
<td>24.30</td>
<td>24.30</td>
<td>39.87</td>
</tr>
<tr>
<td>Total</td>
<td>98.43</td>
<td>100</td>
<td>98.74</td>
<td>100</td>
</tr>
<tr>
<td>Py</td>
<td>4.82</td>
<td>2.52</td>
<td>2.52</td>
<td>3.62</td>
</tr>
<tr>
<td>Alm</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.177</td>
</tr>
<tr>
<td>Gro</td>
<td>100</td>
<td>95.718</td>
<td>95.718</td>
<td>95.718</td>
</tr>
<tr>
<td>Sp</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.283</td>
</tr>
</tbody>
</table>

جلد ۲ نتایج آنالیز EDS از کانی‌های کلریت.

<table>
<thead>
<tr>
<th>element</th>
<th>Major</th>
<th>W%</th>
<th>W%</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO2</td>
<td>38.01</td>
<td>35.40</td>
<td></td>
</tr>
<tr>
<td>TiO2</td>
<td>0.00</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>Al2O3</td>
<td>17.36</td>
<td>19.43</td>
<td></td>
</tr>
<tr>
<td>Cr2O3</td>
<td>0.00</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>FeO</td>
<td>24.04</td>
<td>24.45</td>
<td></td>
</tr>
<tr>
<td>MnO</td>
<td>0.48</td>
<td>0.50</td>
<td></td>
</tr>
<tr>
<td>MgO</td>
<td>16.88</td>
<td>16.97</td>
<td></td>
</tr>
<tr>
<td>CaO</td>
<td>0.88</td>
<td>0.33</td>
<td></td>
</tr>
<tr>
<td>Na2O</td>
<td>0.00</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>97.32</td>
<td>97.18</td>
<td></td>
</tr>
</tbody>
</table>
جدول ۳ تکامل کانی‌های موجود در رودزین‌های استاتیکی افبولیت نانین با توجه به تغییرات ترکیب شاره‌های رودزین‌زی ساز.

<table>
<thead>
<tr>
<th>ایپیدوت</th>
<th>پرهنیت</th>
<th>هیدروگراسولار</th>
<th>زنوتیت</th>
<th>کریت</th>
<th>ترمولیت</th>
<th>کلینوپروکسکس نانینه</th>
<th>اوج میزان شاره کلسیم</th>
</tr>
</thead>
</table>

جدول ۴ تکامل کانی‌های موجود در رودزین‌های دینامیکی افبولیت شمال نانین با توجه به تغییرات ترکیب شاره‌های رودزین‌زی ساز.

- سرپانیت‌ها و رودزین‌های استاتیکی علاوه بر این که از نظر بافت و زمان تشکیل با یکدیگر هم‌خوانی دارند، از نظر کانی-شناسی نیز یک‌دیگر هم‌خوانی نشان می‌دهند که این هم‌خوانی از دو جنبه دنیازه‌های و سرب‌های مورد نظر قرار می‌گیرد به طوری که تشکیل بی‌رازدیت، کریزونیت، و آنتی‌گریت در سرب‌های زنوتیت‌های نانین، از لحاظ دمایی و زنوتیت‌های به ترتیب با تشکیل ایپیدوت، هیدروگراسولار و دیوبیسیت نانینه در رودزین‌های هم‌خوانی دارند (جدول ۵). با توجه به تغییرات در رودزین‌های زنوتیت‌های ساز در جدول ۶، می‌تواند با توجه به جدول ۵، که با پیشرفت در جدول رودزین‌های شدن و سرب‌های نانینه، کانی‌هایی شکل می‌گیرند که برای تشکیل به دما و سیلیس سیمپاتیک می‌باشند.
بحث بر انجام است. علی رغم همکاری‌های دمایی، همکاری‌های
زاویه‌ای بین کانی‌های موجود در رودزیت‌ها و
سرپانسیت‌های دینامیکی دیده نمی‌شود. به این معنا که
میزان سپلیسیم ساختمانی، به ترتیب از کانی‌های زنوتیت بیشتر است. در حالی که
میزان سپلیسیم ساختاری از آنیتی گیتیت و کروزیتیت
یا رژیت بیشتر است. آنتی گیتیت در مقایسه با کانی‌های دیگر سرپانسیت‌های، سپلیسیم بیشتر در
ساختار خود جای می‌دهند. به نظر می‌رسد که همین نا
همکاری زاویه‌ای بین کانی‌های موجود در رودزیت‌ها و
سرپانسیت‌های دینامیکی، موجب شکل‌گیری کانی‌های رگه‌ای در
روزندیت‌ها است. بنابراین، رژیت بیشتر از
کروزیتیت و لیزرزیت بعنوان آزادی شاره‌هایی با نسبت تقریباً
بایلی SiO2 / CaO و تشکیل کانی‌های پره‌ی دیپ یا
پکتولیت رگه‌ای می‌شود [12].

جدول ۵: تکامل کانی‌های موجود در رودزیت‌های دینامیکی افوپیت شمال نانین با توجه به تغییرات ترکیب شاره‌های رودزیت ساز [13].

<table>
<thead>
<tr>
<th>رژیت</th>
<th>بیضیت</th>
<th>هیدرگاسولار</th>
<th>دیویدس پسیوپاس</th>
<th>آنتی گیتیت</th>
</tr>
</thead>
<tbody>
<tr>
<td>کروزیتیت</td>
<td>لیزرزیت</td>
<td>کروزیتیت</td>
<td>آنتی گیتیت</td>
<td>افوپیت</td>
</tr>
<tr>
<td>گیتیت</td>
<td>کروزیتیت</td>
<td>گیتیت</td>
<td>ترموپاس</td>
<td>دیویدس پسیوپاس</td>
</tr>
<tr>
<td>کرونیت</td>
<td>ترموپاس</td>
<td>آنتی گیتیت</td>
<td>دیویدس پسیوپاس</td>
<td>گیتیت</td>
</tr>
</tbody>
</table>

جدول ۶: همکاری‌های دمایی و زاویه‌ای بین کانی‌های موجود در رودزیت‌ها و سرپانسیت‌های استاتئیکی افوپیت نانین.
بررسی تأثیر ترکیب شاره‌های رودزنتیت ساز در تکامل کانی‌های موجود در رودزنتیتهای افیولایت نانین

جدول ۷

نمایندگی دمایی بین کانی‌های موجود در رودزنتیتها و سربانتین‌های دینامیکی افیولایت نانین.

ترکیب نسبتی نام نسبتاً در این سنگها و تغییرات نسبتاً کم آنها دارد.

توجه دارد چون پارازنت مراحل اولیه و پیشرفت رودزنتیت شدن استاندارد و بستگی که ویژگی‌های روزن‌زیتیت شدن دینامیک در رودزنتیتهای منطقه، نشان از باال بودن درجه رودزنتیت شدن در این سنگ‌ها دارد.

مراجع

[7] فقهی‌هان، ح.، قربی‌نیا، م.، مکی‌زاده، م.، شریعت، ش. "پیشی بازی زوئلتیت‌ها در عیارین (پکتولیت و پرستین) در باکی آزم."
[8] Palandri, J. L., M. H., Reed, "Geochemical models of metasomatism in ultramafic systems: serpentinitization, rodingitization, and sea floor

برداشت

بررسی‌های میدریشکی، وجود و نوع رودزنتیت شدن استاندارد (بعضی از حضور کانی‌های جانشینی) و دینامیک (بعضی حضور کانی‌های لازم را در رودزنتیتهای منطقه به اثبات می‌رساند. هم چنین در رودزنتیتهای استاندارد منطقه دو مرحله اولیه و پیشرفت قابل مشاهده است که تنوع کانی-شناسی به فراوانی در آنها دیده می‌شود.

با توجه به ارتباط مستقیم بین ترکیب شاره‌های رودزنتیت ساز و کانی‌های موجود در رودزنتیتها، حضور ابیپنترین، پرستین و هیدروگلاسرول در مراحل ابتدایی رودزنتیت شدن استاندارد، نشان از حضور چندانی که با فرایند بالای سیسمیک دارد و حضور زوئلتیت، کانی‌هایی که در مراحل پیشرفت رودزنتیت شدن استاندارد نشان از حضور شاره‌های با فرایند بالای سیسمیک دارد. هم چنین حضور فراوان زوئلتیت در رودزنتیتهای دینامیکی نشان از وجود شاره‌های با تنوع کانی-شناسی در رودزنتیتهای استاندارد منطقه از مراحل ابتدایی (ابی‌پنترین، هیدروگلاسرول) تا مراحل پیشرفت (زوئلتیت، کانی‌هایی که در مراحل ابیپنترین، دیویدسید نشان از تغییرات متغیر ترکیب شاره‌های سازنده این سنگ‌ها دارد. در حالی که عدم وجود تنوع کانی-شناسی در رودزنتیتهای دینامیکی منطقه (حضور فراوان زوئلتیت و حضور نسبتاً بالای پرستین و پکتولیت) نشان از حضور شاره‌های با تنوع کانی‌شناسی نامی‌است، فشرده مطالعات هشتمین همایش بلوشرناسی و کانی‌شناسی ایران (۱۳۷۹) ۴ ص.
رودنیت‌های افیولیت شمال ناتین، مجموعه مقالات اولین کنگره زمین‌شناسی کاربردی ایران، (۱۳۸۴) ص ۵.
[۱۲] فلاحتی، س، "بررسی‌های کمی‌شناسی و سنگ‌شناسی رودنیت‌های مرتبط با افیولیت ناتین" پایان‌نامه کارشناسی ارشد، دانشگاه اصفهان، (۱۳۸۶) ص ۱۲۹.

[۱۰] Tرایی، ق، سعی‌پی، م، آراپی، ش، حسن‌افشاده، ا، هاشمی، م، و محجول، م، "کانی‌شناسی فاز های مختلف تشکیل رودنیت در دایک‌های مجموعه افیولیتی پروتوژنیک پالائی شمال ایران" مجله بلورشناسی و کانی‌شناسی ایران، (۱۳۸۷) ص ۱۳.
[۱۱] فلاحتی، س، سعی‌پی، م، نقره‌پی، م، خلیلی، م، ترایی، ق، مکی‌زاده، م، "بررسی تکامل کانی‌زنی در...