Mineralogy and genesis of Kamar Talar Mn in East of Birjand, Southern Korasan, Iran

M. H. Zarrinkoub¹, A. Kalagari², B. Barghi³

¹ Department of Geology, Faculty of Sciences, Birjand University, Birjand, Iran.
² Department of Geology, Faculty of Sciences, Tabriz University, Tabriz, Iran.
Email: mzarinkob@birjand.ac.ir

Abstract: Kamar Tallar mineralization zone in Gazik area is engulfed within ophiolitic melange in Sistan suture zone in east of Iran. The Mn-bearing ore bodies of Kamar Tallar are occurred as discontinuous patches intimately associated with cherts and meta – spilites. Field evidences and study of trenches show that the Mn-bearing patches are principally superficial and laterally limited. Braunite, Bixbyite and Pyrolusite are the major Mn minerals and silica is the main gangue mineral. Mn-bearing minerals mainly occur as veins, veinlets, and podiform, indicating later remobilization of Mn during operation of hydrothermal fluids. Three types of Mn mineralization are recognized in KamarTallar, 1) syngenetic, 2) diagenetic and 3) epigenetic. Mn mineralization occurred in a sedimentary environment as sea floor exhalative process.

Keywords: Ophiolitic melange, Sistan suture zone, Braunite, Bixbyite, Pyrolusite.
کاني شناسی و چگونگی پیدايش منگنز کمرتلار در خاور بیرجن (استان خراسان جنوبی)

محمد حسین زرین کوب، علی اصغر کلا گر، یحیی برقی

1- گروه زمین شناسی، دانشگاه علم، دانشگاه بیرجن، بیرجن، ایران
2- گروه زمین شناسی، دانشگاه علم، دانشگاه تبریز، تبریز، ایران

mzarinkobi@birjand.ac.ir

چکیده: به‌ناء کانی‌زایی کمرتلار در منطقه گزیک در درون افیولیت‌های مالئی‌زار زون جوش خوردی سیستان، در خاور ایران قرار گرفته است. گروهی معدنی منگنزدار کمر تازه که شامل رنگ‌های نیاپوسته همراه با جرته‌های رادیولارنیتی و سنگ‌های مناسب‌پذیری هستند. شواهد محراری و بررسی ترشح‌های جف شده در محل نشان از کانی‌زایی منگنز تا عمق کم و بدون گسترش جاری پیشنهاد دارد. کانی‌زایی منگنزدار آن باونایت، پیکسپایت و پیپوزولیت و باطلاله اصلی سیلیس است. کانی‌زایی منگنز اغلب به صورت چند رنگی و رنگ‌هایی که شامل دارد که تحت پردازش منگنز طی عملکرد محلول‌های گرمایان است. در این شاخص سه سیمای کانی‌زایی همزادی، درون‌زدایی و روزادی منگنز تشخیص داده شدند. این کانی‌زایی در یک محیط تغییر کریستالی طی فرآیندهای برون‌دیس در بستر اقیانوس رخ داده است.

واژه‌های کلیدی: افیولیت‌های مالئی‌زار، زون جوش خوردی سیستان، باونایت، پیکسپایت، پیپوزولیت

مقدمه

منگنز عنصری بینایی در صنعت فولاد است که برای تولید هر تن فولاد بین 50 تا 60 کیلوگرم ماده معدنی منگنز با کیفیت بالا استفاده می‌شود.[1] این عنصر، اساساً برای کنترل ناخالصی‌های مانند اکسیژن و کوژرد در تولید فولاد به کار می‌رود و باعث افزایش پایداری و سختی فولاد می‌شود.[2] لذا با رشد و گسترش صنعت فولاد روز به روز بزرگ‌تر می‌شود. این فلز از بین چند نوع انواع استخراج از ذخایر کوچک منگنز نیز صرفه‌جویی اقتصادی دارد. مجموعه‌های افیولیت‌های مالئی‌زاری که از جمله مجموعه‌های چسبنده است که با رای‌کار در مجموعه‌های افیولیت‌های مالئی‌زاری قرار دارد.
موقعیت جغرافیایی و زمین‌شناسی شاخص منگنز کمتران در خاور بیرجند (استان خراسان جنوبی)

روش بررسی پس از بررسی‌های صحرا، ۳۱ نمونه از محل‌های ترانش‌های حفر شده در سه توده معدنی و سنگ‌های دیگری با برداشت شدند. ۲۴ مقطع نازک و ۱۲ مقطع صافی از نمونه‌ها مورد بررسی قرار گرفت. ۳ نمونه معدنی پس از آماده‌سازی، به روش پرتو ایکس (XRD) با دستگاه Philips ۱۸۴۰ اتصالی رفت. محدوده ناحیه ۶ نمونه‌های شیمیایی ب روید. پرتو ایکس فلوئورس (XRF) از سوی شرکت کاناسان بینالود انجام گرفت.

موقعیت جغرافیایی و زمین‌شناسی شاخص منگنز کمتران در خاور بیرجند (استان خراسان جنوبی)

زون جوش خورده سیستان در خاور ایران با رود کلی شماج جنوبی، در واقع زمین‌درد برخوردی قطعه می‌باشد که در قطعه هلمند ایفای نقش می‌کند. پارکه اقیانوسی خاور ایران. در قسمت‌های مرزی ایران و افغانستان ترسیم شده است. این به‌دست برخوردی شامل مجموعه‌های سنگی زمین‌سرعتی لیتوسفر اقیانوسی، نهنشته‌های خرسانه وی‌پش، مجموعه‌های آدرایوری - انترفیشی و نهنشته‌های خرسانه مولاسی از کرنسه‌های کوهی به بالاتر ۴۲ مورد بررسی در ۱۳۵ کیلومتری خاور بیرجند، در منطقه گریک در استان خراسان جنوبی قرار گرفته است. از محدودیت منگنز دار مورد بررسی به‌صورت سه رخ‌منون جدا از هم و در یک گستره در حداکثر ۲ کیلومتری مربع واقع شده است. این

شکل ۱ نقشه زمین‌شناسی محدوده مورد مطالعه با تغییرات.
جذابیت گرانشی ترکیبات منگنزدار از ترکیب‌های اولیه رخ داده باشد [6]. شواهد صحراوی و بررسی ترانش‌های حفر شده در محل نشا دهنده این است که کانال‌های منگنز عمیق ریشه نبوده و گسترش جانبه بی‌پایه‌تر ندارد و احتمالاً به‌دست منگنز در اثر تغییرات فیزیکی و شیمیایی آب دریا به صورت محیط صورت گرفته است (شکل 3). بررسی‌های میکروسکوپی نشان داده است که بافت‌های رگه‌ای، ریگه‌ای، رگه‌ای و عدسی شکل در این توده معدنی حضور دارد (شکل 4). وجود پیکربندی‌های رگه‌ای و رگه‌ای شاهدی بر تعریق دوباره منگنز طی عملکرد گرمایی و نهشت نسل دوم از کانال‌های منگنزدار است.

ساخت، بافت و سنت شناختی

شاخص معدنی کرم‌تالر با چرت‌های رادیولاریتوس و منتا اسپیلیت‌های جمع‌آوری افتونی ملانزی رون سیستان همراهی می‌شوند (شکل 2).

شاخص معدنی منگنزدار کرم‌تالر به شکل سه توده نابی‌بسته رخ‌های دارد (شکل 3). این شاخص معدنی دارای ساختارهای توده‌ای، بین‌های و نواری با چرت‌های رادیولاریتوس است که نشانگر همگز شده‌اند در یک محیط تعقیب‌های است که کانال‌های منگنزدار نسل اول بجا گذاشته است (شکل 5). ساختارهای نواری می‌توانند در نتیجه

![Radiolar](a)
![Qtz](b)
![Chl](c)
![Epi](d)

شکل 2 (a) چرت‌های رادیولاریتوس حاوی گره‌کانال‌های منگنزدار (XPL (b) رادیولارهای دیگری شکل (c) منتا اسپیلیت که در حد رخ‌های کرم‌تالر (PPL (d) مستند بین‌های چرت‌های رادیولاریتوس (Chl کلریت، Epi اپیدوت، Plg پلیگیت، Qtz کوارتز، XPL میکروسکوپی تحت نور سفید، PPL میکروسکوپی تحت نور دریافتی).
کاتی شناختی کمترلز

بر اساس بررسی‌های میکروسکوپی و آنالیز کاتی شناختی به روش پراش پرتو ایکس (XRD) (شکل 5)، کاتی‌های منگنزی

MnO₂ شناسایی شده در این شاخه معدنی از پیرولوژیت (Pyrolusite، (شکل a)، مولپروتیت (Bixbyite، و بیکسبیت (Braunite، 

MnMn₆SiO₁₂) 🦍
نتایج کمترال

کانالهای تیره‌فرنی بیشتر از اکسید آلی است. که به‌ویژه به درصد‌های کلی شناختی هیمالیت‌اند (جدول ۱). با توجه به اینکه سنگ میزان بیشتر از نمونه‌های جرتهای رادیولاری هستند، مقدار SiO2 از فراوانی بالایی برخوردار است. مقدار MnO از ۹.۴ تا ۱۰.۵ تغییر می‌کند.

شکل ۵ نمودار میکروتومی بزرگ‌شده (XRD) مربوط به ماده معدنی در انقباض کمترال.
صورت اکسید و هیدروکسیدهای منگنز کاملاً به شکل و امور در کف دریا بر جای می‌گذارد. طی فرا آمدنی، 

در گلساریا کف دریا در شرایط فعالیتی بالای اکسیژن، ترکیب یا 

های منگنز اکسید شده و پرولوریت‌های نیمه‌شکلی در اولیه 

تشکل می‌شود. با شروع فرا اندودون زاده طی تبدیل 

تعشی‌نوازی و با رفت شناسی پرولوریت و پیسلومائیلهای 

پایدارهای در واکنش به سیاتریا مه‌های اکسیدی به 

مجمع‌سازی از کانال‌های براونیت و کاورز نیز می‌شوند که 

پایداری مجموعه در تمام مراحل درون‌زدایی و دگرگونی 

است[10]. طی فرا آمدنی درون‌زدایی لیاههای منگنز اغلب به 

شکل عدسی‌های کشیده درون توده‌های سیلیسی میزان تغییر 

بیست و برداشت

شرایط و تغییرات Eh, pH

پایداری کمیتکه‌های آبی آگون منگنز است[7]. بررسی‌های 

موفقیت نشان داده است که ترکیب آب دریا عامل اصلی و 

کنترل کننده اصلی، انقیح و جلب‌پذیری و لنگر منگنز است.

نسبت بالای Si/Al 

ترکیب‌های منگنز مورد بررسی در 

منطقه 2 (9,1-67,5) و حضور پوسته‌های رادیولاریتی می‌تواند 

شکل‌دهنده شدن منگنز در یک محیط برون دمی کف 

دریا باشد. گرمایی‌هایی که بسیاری از 

محدودیت‌های بازالتی 

غیب کف اقیانوسی را شناسه و از 

های کف اقیانوسی را کارآفرینی و هنگام ورود به کف دریا، مواد خود را به 

Eh و pH شرایط
شاکی شناسی و چگونگی پیدایش منگنز کمرتلاز در خاور بیرجنگ (استان خراسان جنوبی)

ظریب به‌وسیله کوارتز ریز بلوئینی بر شده‌اند که احتمالاً در اثر تبدیل فارهای کاتانی از پراونایت به بیکسیپایت و آزاد شدن سیلیس وابسته است.[15]. از روی نسبت Si به Al می‌توان به خاستگاه منگنز پی برده.[16] (شکل 9). بر اساس درصد بیشتر داده‌های کوتار – سیلیس در محفظ مگناس، Mg و Na وزنی دو عنصر درباره قرار می‌گیرند (شکل 9). این شواهد باگ‌انگ آن است که منگنز کمر تلار در یک محیط کیانوسی با یک قوی تشکیل شده و پس از بسته شدن حوضه همراه با مجموعه آب‌های ملایم‌تری در زمین‌شناسی خورشید سیستم جایگیری شده‌اند. کاتانی-زایی منگنز در کمر تلار با کاتانی‌زایی منگنز در قبرس و کاسار نهشت همزدایی آن‌ها در محیط تعشیشی است. رادیولارهای

شکل 8: توجه به نسبت Si-Al[17]. منشأ منگنز در نمونه‌های مورد مطالعه هایدرورتمال می‌باشد.

شکل 9: بر اساس (% Mg wt.%) در برابر (% Na wt.%) محیط تشکیل نمونه‌های مورد مطالعه در محیط درباری قرار می‌گیرند.
جدول ۲ مقایسه اندازه منگنز کمترین با تعدادی از کانسیداهای منگنز‌آنتنششایی - روسی:

<table>
<thead>
<tr>
<th>کمترین</th>
<th>فرنسیسکن</th>
<th>قبض (۱۹)</th>
<th>کوب (۱۹)</th>
<th>صفحه</th>
<th>جنوب باخت ماکو (۱۸)</th>
<th>مقایسه شده</th>
<th>خصوصات منگنز</th>
</tr>
</thead>
<tbody>
<tr>
<td>جرته‌های رادیولاری و بارانیت‌های شبه‌چرخشی</td>
<td>بارانیت، توف، شیل، گری و جرته</td>
<td>گاندره‌های بارانیت، توان‌آی‌وایتویی</td>
<td>سنگ‌های است نوری و جرته</td>
<td>رادیولاریتی و سنگ‌های است نوری</td>
<td>پارانز</td>
<td>پارانز</td>
<td>پارانز</td>
</tr>
<tr>
<td>بارانیت، بیکسپیت، پروسکوراوا و بروانیت</td>
<td>پروسکوراوا، بارانیت، بیکسپیت، وان‌تئینات</td>
<td>پیرولزاوات، بارانیت، بیکسپیت، وان‌تئینات</td>
<td>پیرولزاوات، بیکسپیت، وان‌تئینات</td>
</tr>
<tr>
<td>پشت‌های کرت‌شته میانی میانی‌ای کلتوماسی و پشت‌ویسی</td>
<td>پشت‌های کرت‌شته پشت‌ویسی</td>
</tr>
<tr>
<td>سپیس و کلایت</td>
<td>سپیس</td>
<td>سپیس</td>
<td>سپیس</td>
<td>سپیس</td>
<td>سپیس</td>
<td>سپیس</td>
<td>سپیس</td>
</tr>
<tr>
<td>رخشخیر سبز</td>
<td>رخشخیر سبز</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

نتیجه‌گیری
کانسیداهای منگنز، شاخص معدنی کمترین، بر اساس شاخص‌های اصلی سیلیس است. بر اساس گونه‌های ساختاری، بلافاصله از سیلیس، شاخص منگنز، کمترین سبزی‌های هم‌زدایی دارد. لی‌سیلیس‌های هم‌زدایی در درون‌زدایی و روزادی نیز نشان می‌دهد. سبزی‌های هم‌زدایی در لایه‌های ترکیب‌های منگنز با جرته‌های رادیولاریتی مشخص است. مهم‌ترین پتولیوم‌سختی‌ها فدراسی و برازیل باعث ایجاد سیلیس درون‌زدایی (گسل‌های وندرن) شده است. اگرچه منگنز و سنگ‌های شیشه‌سازی دسته‌دهی هوازدگی شده و منگنز از سبزی‌های هم‌زدایی و درون‌زدایی شده است، در معرض اکسایش، فرآینده قرار گرفته است. اکسیدهایی منگنز در میان درز و آب‌کشیده شده و باعث‌هایی شده و ریشه‌های را به وجود آورده است. این رو روزادی را پدید می‌آورد.

مراجع


