Insights from Zircon Morphology and Geochemical Signatures of Ghaleh-Dezh granitic pluton, Azna

N. Shabanian B.1, A. Davoudian D.2, M. Khalili3, M. Khodami3

1- Department of Geology, Isfahan University, Isfahan, Iran
2- Department of Natural Resources, Shahrekord University, Shahrekord, Iran
3- Department of Geology, Islamic Azad University (Mahalat Unit)
Email: nahid.shabanian@gmail.com

(Received: 19/8/2008, in revised form: 15/2/2009)

Abstract: Zircon is a tetragonal crystal and records different episode(s) of geology in external morphology and internal textures. Factors affecting the shape of the zircon crystals are the composition, possibly the temperature of the crystallization and water content in magma. The zircon typology of the Ghaleh-Dezh granite mostly introduces the fields P5 in classification of Pupin (1990), therefore, show mantle source for the granite. The dominant morphology of the zircon grains reveals a strong dominance of {100} prisms and {101} pyramids over {110} prisms and {211} pyramids. The dominant morphology shows high alkalinity, the temperature of crystallization about 850 °C and dry alkalic nature for the granite. Absent of hydrozircon overgrowth indicate dry magma. Also, the Zr saturation temperature based on zircon solubility reflects a mean temperature of 835 °C. All of information is corresponded by petrography and geochemical evidences and also with a-type granitic magma that has mantle and crust sources.

Keywords: zircon morphology, A-type granite, alkalinity, Azna
بررسی ریختشناشی زیرکن و سرشتی‌های زئو‌شیمیایی بلژیوم گرانیتی قلعه‌دژ از نظر شباهت‌های دو گونه‌نامه خلیلی، مهناز خدامی، و بهترین همکاری‌ها

تاریخچه: بلژیوم زیرکن در سیستم چارگویش منبنا می‌شود و نتیجه روابددهای مختلف زئو‌شیمیایی در ساختار خارجی و بافت دوری خود است. رشد و تبلور زیرکن تابعی از دمای بلژیوم، ترکیب و محیط آب می‌باشد. بنون زئو‌شیمیایی بلژیوم زیرکن و گرانیت قلعه‌دژ گالبیا در گستره P5 رده نتایی پویین (1990) قرار می‌گیرد که دال خاستگاه گونشته‌های بودن آن است. ریختشناسی غالب دانهای زیرکن برنت منشورهای [100] و [110] و هرمی [110] بر [211] را اشاره می‌سازد. این ریختشناسی غالب، البلاور میزان قلب‌کیت دمای بلژیوم 80 درجه سانتی‌گراد و می‌باشد خشک یک ماگمای قلب‌کیت باید بررسی این گرانیت‌ها نشان می‌دهد. عدم وجود رشدی هیدروژن اکسیداژ ماگمای خشک است. همچنین دمای نشانه‌ای اشعاع از بلژیوم نیز مناسب‌ترین دمای در حدود 350 درجه سانتی‌گراد را نشان می‌دهد. نتایج بالا با شواهد زئو‌شیمیایی و سنجش‌ناشی‌ها قابل تائید است و با ماگمای گرانیتی نوع A با خاستگاه گونشته‌ای و بوسینه‌ای همکاری‌های دارد.

واژه‌های کلیدی: ریخت‌شناسی زیرکن، گرانیت قلعه‌دژ، از نظر شباهت‌های دو گونه‌نامه خلیلی، مهناز خدامی

مقدمه

زیرکن به عنوان یک کانی فرعی در دانش و علوم زیست‌شناسی به‌ویژه سنگ‌های آدرین قلمی فرمیت دارد [1]. زیرکن به عنوان یک کانی شامل دو نوع اصلی از سنجش‌های دیگری است که در نظر گرفته شده‌اند. این کانی به عنوان یک روش شیمیایی مقاوم و دیگرگونده دیگر همراه با حمل و نقل علوفه بر در این نظرات وجود دارد و آن را پایدار بالا [3].

تعمیق شده بر کانی از سوی نیروهای خارجی و انسان‌دراز دوری که به صورت متنامیکی و دارای پروپتی‌ها دنیای می‌شود و نتیجه روابددهای مختلف زئو‌شیمیایی، گرانیتی و گرانیتی که به صورت منشوری دوطرفه با نسبت طول‌کسری (طول به پهنای) به‌ست که نشانگر سرعت تبلور است. عوامل تبادل کاذل از دیگر بر شکل بلژیوم زیرکن بی‌درکی و احتمالاً دمای متوسط تبلور است.

بلژیوم زیرکن بر اساس تکنیک روش نسبی فرمهای منشورهای [100] نسبی به [110] و شکل همی [211] 1-Metamictization
تشکیل و در پایان تبلور با تشکیل هیدروژنیک غنی‌بازی از عناصر [U, Th, Y] ادامه می‌یابد [4]. [5] و در اثر ابتکار و نیش (1998 Vavra, 1990 و 1990 Vavra) [6] نشان داده شد که ریخت‌شناسی خصوصاً نوع منشور غالب به استدلال این اشتراک به این باعث بودن می‌شود. و گلغت زیرهای غنی‌بازی از عناصر کمیاب مثل اورانیوم استگن‌گی ZrSiO₄ نسبت به {101} رشد نسبی شکل‌های منشوری را به دلیل تبلور به نسبت شکل‌های هرمی را به سرشتی‌های شیمیایی نسبت می‌دهد. زیرکن مگما‌پی بسته به ماهیت ماما تا می‌تواند بخش شکل تبلور مشخص دارد (برای مثال [آ]) بطوری که: اگر زیرکن از یک محیط هیپروالومینیوس (Hypaluminous) تبلور می‌شود به تاپ نظام تاپ (Hypoalkaline) می‌شود. شوند تاپ به تاپ نظام تاپ (Hypoalkaline) به تاپ نظام تاپ (Hypaluminous) خشکی‌تر تاپ دارد. به طوری که با بررسی شکل زیرکن‌های سنتژه‌های گرانیتی می‌توان آن‌ها را به صورت اصلی رده‌بندی کرد:
- گرانیت‌های با خاستگاه پوسته‌ای یا خلاچگ گروه‌های (گرانیت‌های (Alkaline)
 - گرانیت‌های دوره‌ای با خاستگاه پوسته‌ای و گوشت‌پی (گرانیت‌های
 - گرانیت‌های سری اهرکی-قابیایی و گوشت‌پی (گرانیت‌های (Alkaline)
 - گرانیت‌های با خاستگاه گوشت‌پی یا خلاچگ گروه‌های (گرانیت‌های (Alkaline)

\[
\text{CRUST} \quad \text{MANTLE}
\]

\[
\begin{array}{c}
\text{U, Y, P-content (Benedack and Finger, 1993)}
\end{array}
\]
شکل ۱ ریخت شناسی زیرکن یافتی به (Na + K)/Al (I) یافت شد. افزایش (Na + K)/Al به (II a, b, c) و (III) می‌تواند باعث افزایش گرانیتپیش‌های آهکی-قلیابی گردن‌هایی باشد. در نتیجه، در حالتی که زیرکن در گستره‌های دیگر قرار می‌گیرد، گرانیتپیش‌های قلیابی [۵۰.۲۱] و (IV) افزایش می‌یابد.

زیرکن‌هایی که در گستره‌های I قرار می‌گیرند دارای میان‌و‌میان می‌باشند که در حالتی که در گستره‌های دیگر قرار می‌گیرند خاوسی می‌باشند. (شکل ۱).

هدف از این کار پژوهشی بررسی چگونگی بودن عنصر زیرکن در آنالیز میکروپیلوری نمونه‌ها این توده نفوذی و نیز قراولی بالای کانی زیرکن در مقاطع میکروسکوپی است. استفاده از ریخت‌شناسی بلورهای زیرکن برای دستیابی به سرشت‌های زنوشیمایی این توده نفوذی است.

زمین‌شناسی منطقه

پلانون قلعه در ۸۰ کیلومتری شمال باتری شاهزور از زمین‌شناسی می‌باشد. این اثر در حالتی که می‌باشد در پهنه زمین‌شناسی، در پهنه زمین‌شناسی،
نحوه انجام تحقیق است: نخست حدود 5 کیلوگرم نمونه گرانیت بدن رگه و آثار تجزیه را انتخاب و سپس در آسیاب فکی خرد و پس از الک کردن آن بخشی از نمونه با اندازه‌های بین 100 تا 0.5 میکرون را پس از شستشو با آب و شحاق کردن از کرده و با استفاده از مغناطیس سنج در بازیابی سالزبورگ برای عمل جدایی کانی‌های آلی در از کل ذرات صورت گرفت، سپس کانی‌های سنگین را با ریختن بخش روشن و نامغناطیس در مذاب‌های سنگین (برومورف) جدا کردم و پس از شستشو با آب مغطر و خشک کردن در آن در پایان با استفاده از میکروسکوب، دانه‌های زیرکن از کانی‌های سنگین روشن دیگر جدا کردم. این مرحله با توجه به ریز بودن دانه‌های زیرکن با پیش‌بینی دقیق و صحیح زیبایی صورت می‌گرفت و تا حد ممکن دانه‌های زیرکن سالم و بدون میان‌ای نظام الکتریکی شدن، سپس دانه‌های زیرکن جمع‌آوری شده را با استفاده از جسم ایکسیس دو جزیی و تشییب آن روی لام، با استفاده از یک میکروسکوب عورقی با برهم‌گامی عرضی 200 و 400 بررسی کردیم. همچنین برای بررسی دقیق ریخت‌شکلی دانه‌های زیرکن با میکروسکوپ الکترونی میکروسکوب به تعداد 12 دانه زیرکن را صفحه مخصوص تشخیص‌سنجیده و با کریسن‌ها و پوست‌های پوستی ریز دانه‌های شکسته نشده انجام گرفت و نیز جمع‌بندی و ضرب گرماپی. طول و عرض دانه‌ها و نیز منطقه‌بندی و نفوذی تعبیه شدند.
شکل ۳ در نمودار نسبت ۱۰۰۰۰*Ga/Al براساس نسبت ۳Ga بررسی ریخت‌شناسی زیرکنِ گرانیتی قلعده‌ز است. در راستای این بررسی، نخست در حدود ۳۳۰ نمونه از دانه‌های زیرکن جدا شدند و از بین آنها سالم و بدون آنتارگودشگی را جدا کردیم. در بررسی انجام شده روی این دانه‌ها زیرکن جدا شده از گرانیت قلعده‌ز بیشتر دانه‌های

شکل ۲ بلوهره‌ی زیرکن از سنگ‌های گرانیتی قلعده‌ز (۵:A، حاوی مینی‌بی‌یت آپاتیت، ۵:B، با میان‌بای مذاب و شکستگی)، (۵:C، دارای ماهک و پرگ، (۵:D، با میان‌بای مذاب و شکستگی)، (۵:E، دارای میان‌بای مذاب)، (۵:F، دارای میان‌بای مذاب و شکستگی)، (۵:G، حاوی مینی‌بی‌یت آپاتیت مته و دیگر)، (۵:H، با میان‌بای مذاب)، (۵:I، دارای میان‌بای مذاب)، (۵:J، دارای میان‌بای مذاب و شکستگی)، (۵:K، دارای میان‌بای مذاب و شکستگی)، (۵:L، دارای میان‌بای مذاب و شکستگی)، (۵:M، دارای میان‌بای مذاب و شکستگی)، (۵:N، دارای میان‌بای مذاب و شکستگی)، (۵:O، دارای میان‌بای مذاب و شکستگی)، (۵:P، حاوی مینی‌بی‌یت مذاب و شکستگی).
شکل ۵ تصاویر میکروسکوپی عموری از ال‌ف) یک دانه زبرگن دارای منطقه‌بندی مشخص، ماهی، آتار منامیکت شدن و میان‌آتایی (Ap) یک دانه زبرگن دارای میان‌آتایی مذاب (MI) و آتایی (Ap).

شکل ۶ تصاویر میکروسکوپی الکترونی روبشی از دانه‌های زبرگن واپسی به پلاتون قلعدز.

دانه‌های زبرگن دارای منطقه‌بندی هم مركب ترکیبی به مواد سطوح مشوری بوده (شکل ۴) که بین‌گذر جداره‌پلورین و ماهیت ماده‌بلورین مشخص است [۱۵] به طوریکه رنگ بخش مرکزی آن تیره بوده است که حاصل ترکیب مواد راپیکانیو در مرکز آن است و گاهی در بخش میانی آتار تخریب حاصل واپش مواد اورانیوم‌دار (منامیکت) به صورت شکستنی به چشم می‌خورد (شکل ۴) و [۱۵] دانه‌های زبرگن حاوی D۴ و ۵ به طور پلورهای زبرکن ۱۷۶ - ۱۷۶ میکرومتر و رنگ‌های آنها ۱۶۴ - ۱۶۴ میکرومتر و نسبت طول به

۲- Typological Evolutionary Trend
دهنده یک خاستگاه گوشته‌ای برای آن است و بر اساس شکل بلور زیرکن (به عنوان زمین دماسنجی) دمای تشکیل بلورهای زیرکن در حدود ۴۵۰ درجه سانتی‌گراد است. همچنین درهم رشدی هیدروزیرکن نیز می‌تواند برای اکتشافات قرار گیرد. برای اکتشافات از این روش باسیست شرایط زیر وجود داشته باشد:

- ماهیت مگنا باسیست مالتومیونس باشد.
- جمعیت زیرکن باسیستی‌ها و گزناخربست‌های با همان باشد.
- دانه‌های زیرکن باسیستی در کل سنگ توزیع همگن و یکنواختی داشته باشند.
- نمودارهای دو تایی شاخه تفریق بر حسب عنصر کم‌باسیستی همیستگی منفی داشته باشند.

روش محاسبه دما برای اکتشاف بیش از زیرکن

روش محاسبه دما برای اکتشاف بیش از زیرکن

(۱۹۸۹) با استفاده از داده‌های جدید و بالاتر دمای خروجی و سطح مرزی Zr می‌توانند بر اساس ترکیب M و SiO2 و بر اساس مدل مذاب مذاب مذاب مذاب مذاب مذاب M = (Na + K + 2.Ca)/ (Al.Si)

de.png
درجه ۱ نتایج آزمایش IGP-MS/ES

<table>
<thead>
<tr>
<th>ELEMENT</th>
<th>SiO$_2$</th>
<th>Al2O$_3$</th>
<th>CaO</th>
<th>Na2O</th>
<th>K2O</th>
<th>Zr</th>
<th>Zr Saturation</th>
</tr>
</thead>
<tbody>
<tr>
<td>UNITS</td>
<td>ppm</td>
<td>ppm</td>
<td>ppm</td>
<td>ppm</td>
<td>ppm</td>
<td>ppm</td>
<td>ppm</td>
</tr>
<tr>
<td>N2-6</td>
<td>73.69</td>
<td>12.44</td>
<td>3.5</td>
<td>5.5</td>
<td>9.75</td>
<td>11.12</td>
<td>0.128</td>
</tr>
<tr>
<td>N1-4</td>
<td>68.74</td>
<td>14.98</td>
<td>3.6</td>
<td>5.5</td>
<td>9.75</td>
<td>11.12</td>
<td>0.128</td>
</tr>
<tr>
<td>N2-11</td>
<td>68.44</td>
<td>31.42</td>
<td>3.6</td>
<td>5.5</td>
<td>9.75</td>
<td>11.12</td>
<td>0.128</td>
</tr>
<tr>
<td>Na2-11</td>
<td>77.1</td>
<td>14.98</td>
<td>3.6</td>
<td>5.5</td>
<td>9.75</td>
<td>11.12</td>
<td>0.128</td>
</tr>
<tr>
<td>N3-8</td>
<td>77.8</td>
<td>13.47</td>
<td>3.6</td>
<td>5.5</td>
<td>9.75</td>
<td>11.12</td>
<td>0.128</td>
</tr>
<tr>
<td>N4-2</td>
<td>74.2</td>
<td>13.75</td>
<td>3.6</td>
<td>5.5</td>
<td>9.75</td>
<td>11.12</td>
<td>0.128</td>
</tr>
<tr>
<td>N2-4</td>
<td>73.3</td>
<td>13.67</td>
<td>3.6</td>
<td>5.5</td>
<td>9.75</td>
<td>11.12</td>
<td>0.128</td>
</tr>
<tr>
<td>N4-3</td>
<td>70.3</td>
<td>13.81</td>
<td>3.6</td>
<td>5.5</td>
<td>9.75</td>
<td>11.12</td>
<td>0.128</td>
</tr>
<tr>
<td>N1-2</td>
<td>73.3</td>
<td>13.39</td>
<td>3.6</td>
<td>5.5</td>
<td>9.75</td>
<td>11.12</td>
<td>0.128</td>
</tr>
</tbody>
</table>

شکل ۸ نمایش همبستگی منفی بین Zr و SiO$_2$.

تیپ کانال زیرکن در گرانیت قلعه‌دز استفاده کرد (جدول ۱). [۲۲]

برای این منظور می‌توان هم از روش محاسبه و هم از روش ICP-AES و ICP-MS ترسیم نمونه‌های آنالیز شده به روش روی نمو وارد استفاده کرد. چنانچه در شکل ۹ دیده می‌شود، دمای تیپ زیرکن در این توده گرانیت‌های بین $80-88$ درجه سانتی‌گراد متغیر است که این جذب دنده یک دمای تیپ متوسط در حدود $85^\circ C$ خواهد بود. برآورد می‌شود که این دمای به دست آمده بر مبنای ریخت‌ساختار زیرکن [۵] بیش 85 درجه سانتی‌گراد دارای همبستگی نزدیکی دارد.

برداشت

۱- دمای تیپ زیرکن می‌تواند یک مقدار خشک است.
The chemical composition of igneous zircon suites: implications for geochemical tracer studies

The composition of zircon and igneous and metamorphic petrogenesis

Zircon trace-element compositions as indicators of source rock type

Atlas of zircon textures. In: Zircon

Zircon and granite petrology

Contributions to Mineralogy and Petrology 73 (1980) 207–220.

On the kinematics of zircon growth and its petrogenetic significance: A cathodoluminescence study