Thermochronology of Cu-bearing-Granitoids in the South of Khezr-Abad Area, Using Apatite Fission Track Analysis

A. Zarasvandi¹, F. Moore², H. Pourkaseh¹

¹- Department of Geology, Shahid Chamran University, Ahvaz, Iran
²- Department of Earth Science, Shiraz University, Shiraz, Iran
Email: zarasvandi_a@scu.ac.ir

(Received: 5/7/2008, in revised form: 1/2/2009)

Abstract: The Khezr-Abad area is located in southwest of Yazd in central Iran at the intersection with the Central Iranian Volcano-Plutonic Belt (Urumieh-Dokhtar Belt). The Darreh-Zereshk and Ali-Abad porphyry copper deposits are the most important deposits in this district. These deposits are associated with Oligocene-Miocene (18-28 Ma) granitoid intrusions which consisted mainly of quartzmonzonite, quartzdiorite, granodiorite and granite. The aim of this study is to determine the age, thermal history and timing of uplift in the Cu porphyry bearing-granitoid rocks, using Apatite Fission Track (AFT) thermochronology. The result of this investigation shows that mineralized intrusions were formed in a short period approximately 1 Ma. Timing of uplift and cooling in all samples are all the same (about 21.5-22.6 Ma; Middle to Upper Miocene).

Keywords: Thermochronology, Granitoid, Khezr-Abad, Apatite Fission Track
دما - زمان سنگی توده‌های گرانیتی‌آئیدی مس‌دار جنوب چهارگوش خضراپاد با استفاده از روش رد شکافت آپاتیت

علي‌رضا زارساندی‌آبادی، فرید مر.۲ هوشنگ بورکاسپا

1- دانشگاه شهید چمران، دانشکده علوم، گروه زمین‌شناسی
2- دانشگاه صنعتی، دانشکده علوم، گروه علوم زمین
zarasvandi_a@scu.ac.ir

(دریافت مقاله: ۸۷/۱۱/۱۳; نشانه نهایی: ۸۷/۱۲/۱۴)

چکیده: منطقه خضرآباد، در جنوب خاوری برزیل در ایران مرکزی و در برخورد با پازین انفیشانی-نفوذی ایران (ارومیه-دخت) قرار دارد. کلسیمی‌های مس پورفیری على آباد و دره زرکش به عنوان ممکن‌ترین کاسارهای این منطقه، به فعالیت‌های مagmaهای ویژگی میوسن (میلیون سال ۲۶-۱۵) و ایندیک سازند. این کاساره‌ها با سطح‌های گرانیتی‌آئیدی منطقه شامل کوارتز مونزونیت، کوارتز دیوریت، گرانیت‌بوریت و گرانیت‌همرهنه. هدف از این کار یافته‌های استفاده از روش رد شکافت آپاتیت بر روش گرتفه این منطقه مس پورفیری (على آباد و دره زرکش) در منطقه مورد بررسی و بررسی شرایط گرامی و زمان بالا ممکن استگه سطح‌های پورفیری این منطقه. نتایج حاصل از این کار پژوهشی نشان می‌دهد که فاز نفوذی کوه‌ساز در این منطقه در گستره زمانی کوتاهی در حدود ۱ میلیون سال داده‌است ۲/۲۴ (میلیون سال). اگر بالا ممکن و یا سردرمانی در ترکیب‌های تحقیقی در حدود ۲/۲۴ (میلیون سال) بوده‌است که تقریباً در گستره زمانی میوسن میانی تا بالایی قرار می‌گیرد.

واژه‌های کلیدی: دما - زمان سنگی گرانیتی‌آئیدی، خضراپاد، رد شکافت آپاتیت
نوع روی پویکریهای مس ایران صورت گرفته است. هدف از این کرایه‌های استفاده از طبیعت گریزی روی سه نمونه از توده‌های گرانیت‌های موجود کاراکتر مس بیوانی‌زایی مس پویکریه (از آباد و در شرقش) در منطقه مورد بررسی و شرایط گرمابی و زمان بالادست پویکریه‌های این منطقه بوده است.

زمین‌شناسی منطقه

منطقه مورد بررسی در جنوب باختری بزرگ در چهارگوش زمین‌شناسی ۱۹۸۹: خرآباد با طول جغرافیایی ۵۳۰۵۰۲۹۲۳۰ دقیقه و عرض جغرافیایی ۳۱۰۶۰۲۱۳۰ دقیقه دارد. این منطقه به احتمال شناسی کاملی از زون ایران مرکزی بپردازید. کنگ و فعالیت‌های ماسی و زمین ساخی، که در طول کاوش شدید، مانند ماسی‌های ماسی و گرمی، بارز می‌باشد. زویه عملکرد گریزی گرمی، میان‌گیری این نوع و همچنین ناشی از برخورد باعث شدن که گسترش شکم‌گیری از این منطقه تا نیمه‌اقتصادی و غنی‌اقتصادی کاساره‌های مس پویکریه‌های در راستای این زون داشته باشیم. برخی از موارد بالا شده در بالا بی‌جویی و نحوه تشکیل این کاساره‌ها نشان می‌دهد که می‌باشد این کاساره‌ها به سرای دانه که می‌باشد تأثیر می‌بایست و قرار گیرد. در این راستا یکی از مهم‌ترین فقره‌هایی که متون پاسخگویی به فرد از این سؤالات بحث و تحلیل تحقیقات گریزی سه‌پایی ماسی‌های منطقه و ارتباط آن با بالادستی زمین است. که در این زون کمتر به آن برخی‌انجام‌دهد است. روستاهای‌مان که زمان سیستمی به وسیله روی‌کرده در شکاف‌آبیزن و در این مقدارت باعث شد که پلاکه‌های معدنی با بالادستی‌های و فنی‌شناسی‌های منفی باشند که در این منطقه به طور کلی تحت تأثیر ساختار و گسل‌های فرعی گسل بزرگ‌های هر یک از قرار دارند و ترتیب گریزی گرنگه‌ها نشان‌دهنده یک شر به قرار دارد و برشی و کشتی این کاسه باستانی است.
روش کار
روش زمان- دما سنجی رد شکافته یک روش قابل استفاده برای مدل کردن دما- زمان حوضه‌های نویسندگانی، شارش شده، زمان و نرخ بالامدلگی زمین سختی است و کمتر برای بررسی کاسارهای فلزی و غیرفلزی بکار رفته است.[۱] این روش بر پایه برابری‌های زمانی خودکارگر هسته‌ها (U) موجود در سطوح بیلورین کائیهای کم‌پارک اورانیوم‌داری نظیر آپانیت است. شکافته‌های حوزه نوع شکاف با راسته‌های مخالف با شعاع تخربی زندیک به ۱۶ میکرومتر طول ایجاد می‌کنند. این

شکاف‌ها با شستشوی سطح صیقل‌یافته دانه‌های آپانیت قابل دیدن‌اند. برای دیدن این شکاف‌ها میکروپسیوپاتی‌های نوری با بزرگنمایی 1000X مورد نیاز است. برای هر زن تخریبی رد شکافته که سطح صیقل‌یافته آپانیت‌ها را فطع کرده است، اسید یک حفره را ایجاد می‌کن و سپس شکاف‌های درون آن شروع‌ده می‌شوند (تراکم در واحد سطح). در این شکافته اورانیوم ادامه دار و تا وابسته به دما و زمان است. بنابراین تعداد شکاف‌های ایجاد شده در سطح آپانیت وابسته به غلظت اورانیوم و زمان بسته شدن بلوار آپانیت است (معمولاً بلوارهای

شکل ۱ نطقه زمین شناسی منطقه خزر آباد در جنوب باختري یزد.
گستره سنی بین ۲۱۵تا ۲۷۲ میلیون سال را نشان می‌دهد (جدول ۲). براساس نمودارهای زمان نسبت به دما شکل (۲۳)، به نظر می‌رسد که این توده‌های دارای روند سردابی‌ای بی‌سیار مشابهان و یا تفاوت‌های بسیار بین جایگزینی سرد شده. نمودارهای ستونی شکاف‌های اندازه‌گیری نشان می‌دهد که زمان متوسط \(\mu \) به دست آمده مناسب برای شکاف‌های حدود ۱۵۰ درصدی و در واقع دامی متوسط شکاف‌های نمونه‌های دست آمده است. این زمان برای برای نمونه‌های ۵-۲۰۰ میلیون سال، این سری نشان می‌دهد که ماگمایسم کانادار در گستره زمانی کوئالی در حدود ۱ میلیون سال رخ داده است. با توجه به اینکه سن واژه به دست آمده در واقع سن درست بهتری بلوری آپینت در ۱۳۵ درصد، این سن‌های قندیمی بر مبنای و واژه واژه در سنگ‌های جوان در واقع در گستره زمانی بازیابی شده، نمودار زمان، دامی این نوع نمونه‌های نشان می‌دهد که روند سردابی‌های کلی در زمان کمتر از ۵۰ میلیون سال رخ داده است. در نمونه ۵ سردابی‌های از زمانی در حدود ۲۵ میلیون سال شروع شده و تا زمان به دست آمده در حدود ۲۰ میلیون سال (خانه) باقی است و تدوین در گستره زمانی ۳ میلیون سال می‌باشد. به عنوان راهیکار برای دقت‌های دیرگر نیز این میزان تقیبی یکسان است. یک گستره زمانی ۲۵۰۰ میلیون سال برای سردابی، زمان کافی برای قبلاً شدن توزیع به لحاظ کانادایی است و این این کاسه‌ها می‌تواند به عنوان کاسه‌های بازیور در نظر گرفته شود. ولی مشاهده‌های سخت‌تری نشان می‌دهد که در زمان بالای‌الدمی و در نهایت فرسایش شدید بوده که به نظر می‌رسد که این اولین مرحله از بین رفتن این اپینت با توجه به اینکه زمان سردابی و بسته شدن آپینت در واقع شروع بالای‌الدمی و با زمان سردابی ناشی از بالای‌الدمی هستند که در نمودارهای مورد بررسی زمان عازم بالای‌الدمی و با زمان سردابی محصول شکاف نمودار زمان ـ دما است. به طوری که این زمان را در سه نمونه تقیبی مشاهده در حدود ۲۱۵تا ۲۴۶ میلیون سال است که تقریبا در گستره زمانی بهشت نمونئیت (میوسن میانی تا بالایی) قرار می‌گیرد. این زمان با بیشترین ضخامت‌شکافی بیشتر و پیشرفت‌زایی‌ای در زون ارویمی دست آمده است [۸].
جدول 1 مشخصات عمومی نمونه‌های ارسال شده به آزمایشگاه برای آنالیز AFT

<table>
<thead>
<tr>
<th>نمونه</th>
<th>کیفیت نمونه: ۱= بد، ۱۰=عالی</th>
<th>مقاطع تهیه شده برای راکتور آپاتیت شاهه شده</th>
<th>ملاحظات</th>
</tr>
</thead>
<tbody>
<tr>
<td>(گرونودوریت) 5-203</td>
<td>۱</td>
<td>۱</td>
<td>Dislocations</td>
</tr>
<tr>
<td>(کوارتز دیوریت) 8-203</td>
<td>۱</td>
<td>۶</td>
<td>Dislocations</td>
</tr>
<tr>
<td>(دیوریت) ۹-203</td>
<td>۱</td>
<td>۱</td>
<td>Dislocations</td>
</tr>
</tbody>
</table>

شکل ۲ شاخص‌های آماری و نمودار‌های دما زمان برای نمونه‌های مورد بررسی در نرم افزار AFT Solve
جدول ۲- سن‌های به دست آمده از AFT برای تشکیل، سرد شدن و بالا‌مدگی سنگ‌های مودر بررسی.

<table>
<thead>
<tr>
<th>نمونه</th>
<th>سن سنگ بر اساس مدل نرم افزاری (میلیون سال)</th>
<th>کیفیت نمونه</th>
<th>قدمی ترين رد شکافت (میلیون سال)</th>
<th>زمان أولین بالا‌مدگی سردرایش (میلیون سال)</th>
<th>ضریب EasyRo (٪)</th>
<th>کاربردی نداشت</th>
</tr>
</thead>
<tbody>
<tr>
<td>AZ 203-5</td>
<td>۳۰٠</td>
<td>خوب</td>
<td>Dpar (μm) = ۱۹۷±۲۴</td>
<td>Dpar (μm) = ۱۹۷±۲۴</td>
<td>کاربردی نداشت</td>
<td></td>
</tr>
<tr>
<td>AZ 203-8</td>
<td>۳۰٠</td>
<td>عالی</td>
<td>Dpar (μm) = ۱۹۷±۲۴</td>
<td>Dpar (μm) = ۱۹۷±۲۴</td>
<td>کاربردی نداشت</td>
<td></td>
</tr>
<tr>
<td>AZ 203-9</td>
<td>۳۰٠</td>
<td>خوب</td>
<td>Dpar (μm) = ۱۹۷±۲۴</td>
<td>Dpar (μm) = ۱۹۷±۲۴</td>
<td>کاربردی نداشت</td>
<td></td>
</tr>
</tbody>
</table>

مراجع

*Transition from Paleogene Normal Calc-Alkaline
to Neogene Adakitic-like Plutonism and Cu-
Metallogeny in the Kerman Porphyry Copper Belt:
Response to Neogene Crustal Thickening*, Journal
of Sciences Islamic Republic Of Iran, 2008, V, 19,
No, 1, p. 67-85.

Reynolds P.H., *40Ar/39Ar Geochronology of
Alteration and Petrogenesis of Porphyry Copper-
Related Granitoids in the Darreh-Zereshk and
Ali-Abad area, Central Iran*: Exploration and