The comparison of Varity Amphibole and geothermobarometry
Intrusive body of Astaneh (Sanandaj-Sirjan zone)

Z. Tahmasbi¹, M. Khalili¹, A. Ahmadi-khalaji², M. A. Makizadeh¹

¹- Department of Geology, Faculty of Sciences, University of Isfahan, Isfahan, Iran
²- Department of Geology, Faculty of Sciences, University of Lorestan, Khorramabad, Iran
Email: Zahra_tak@yahoo.com

(Received: 18/6/2008, in revised form: 28/1/2009)

Abstract: The results of microprobe analysis indicate four different kinds of amphiboles in Astaneh pluton and its subvolcanic rocks in the Sanandaj-Sirjan zone. The composition of these amphiboles in this area are magnesio hornblende in tonalite and quartz dioritic enclaves, actinolite in granodiorite and monzogranite, pargasite in dacitic enclaves and anthophillite in one tonalitic sample formed by replacement of orthopyroxene at the rim. All of the amphiboles crystallized at high fO₂ which imply I-type nature. Application of different barometers and thermometers show that pargasite in dacitic enclave formed at higher pressure and temperature (767 °C, 6.6 Kbar) than the magnesio hornblende in quartz dioritic enclave (734°C, 2.8 Kbar) and magnesio hornblende in tonalites (708°C, 1.4 Kbar).

Keywords: Astaneh, Tonalite, Granodiorite, Sanandaj- Sirjan zone, Thermometry, Barometry.
مقایسه انواع آمفیبول‌ها و زئوترومورتپری توده نفوذی آستانه (زن سنندج–سیرگان)

زهره طهماسبی، محمود خلیلی، احمد احمد خلیلی، محمد علی مکی زاده

1- گروه معدن، دانشکده فنی و مهندسی، دانشگاه لرستان
2- گروه زمین‌شناسی، دانشکده علوم، دانشگاه اصفهان
3- گروه زمین‌شناسی، دانشکده علوم، دانشگاه لرستان

Zahra_lak@yahoo.com

چکیده: نتایج تجزیه ریزگرماهان الکترونی (EPMA) انواع آمفیبول‌ها در توده آگیون‌کننده آستانه و سنگ‌های نیمه انششافی آن واقع در زون سنندج–سیرگان وجود چهار نوع آمفیبول را در این سنگ‌ها نشان می‌دهند. ترکیب آمفیبول‌ها از سنگ‌های مولتی‌پروتلون دانه‌ای، برونوپریاکت و اکتینولیت در گروه‌پرپن‌ریت و مونوگرانیت است. برای پیش‌بینی توده آگیون‌کننده، پیشنهادات عالی‌ماده از تجزیه و پیش‌بینی و درک تغییرات حاصل از تجزیه اکتینولیت در درک نمونه توانایی منجر است. هم‌اکنون آمفیبول‌ها از روش‌های الکترون‌مایکروسکوپی شیمیایی تکامل شده‌اند که نشانه‌های خاصی از نسخه‌های مولتی‌پروتلون و اکتینولیت را نشان می‌دهند که یکی از این سنگ‌ها در سنندج–سیرگان است. برای بررسی توده‌های آگیون‌کننده در زون سنندج–سیرگان، دقت و ضرورت آزمون‌های از هر سنگ‌ها بررسی شده است.

واژه‌های کلیدی: آستانه، تولانیت، گرونوپرپن‌ریت، تجزیه و پیش‌بینی، زون سنندج–سیرگان، دمایسنجی، فشارسنجی

1- مقدمه

منطقه مورد بررسی به عرض‌های جغرافیایی ۴۴° ۳۳ تا ۴۵° ۰۵، طول جغرافیایی ۲۹° ۱۵ تا ۲۹° ۶ خاوازی محدود شده است. این منطقه از سنگ‌های دگرگونی تکامل و در آن گرتوت‌پن‌ریتی استانه به طول ۱۰ کیلومتر و یک‌نیاز ۳ کیلومتر رخ‌دهنده ندارد (شکل ۱).

1. همانندی مسعودی و گروه معدن دانشگاه اصفهان در سال ۱۹۹۷ در رساله دکتری خود مدل سازی دگرگونی مجاری و ایجاد نگهبان‌های منطقه را مورد بررسی قرار داده است. این مقاله اولین نتایج ریز پدرنشین بر روی انواع آمفیبول‌ها در سنگ‌های آزمون بوده که در اساسی به شرح هر دو تیم نگران شده اولی فرض مطلوبی برای انجام گرفتن است. در این مقاله می‌تواند به نتایج بررسی‌های صحرا، سنگ‌شناسی و نتایج ریز پدرنشین بررسی ارتباط بین بخش‌های مختلف توده و شرایط جایگزینی توده (دما و فشار) پرداخته شود.

1- Huelva
مقایسه انواع آمپیبول و زلنترمیورمتری نهاله نفوذی آستانه (زن سندی- سیرجان)

شکل 1: نقشه‌ی ساده‌ی شده‌ای از زمین‌شناسی منطقه مورد بررسی

ایبودت هورنفلس است. نکته قابل توجه اینکه در حاشیه
سنگ‌های نهاله آنتیفانی ریوداسیسی، جمعیت کانی‌های
متصل شده کردنده است. امین و انوریت (بر اساس بررسی‌های
انجام شده روزا سنگ‌های دیده می‌شود که حاکی از وجود
رخساره‌ای با دما و فشار بالاتر در حاشیه این سنگ‌های‌ست.

۲- زمین‌شناسی عمومی

منطقه مورد بررسی در بخش شمال باختری نوار سندی -
سیرجان و در باختر و جنوب باختری شهرستان اراک قرار
گرفته است. درصدی سینه‌نشی‌های موجود در این منطقه به
تراش واسطه نوده گی در جنوب منطقه رخ‌نمودن دارند و شامل
سنگ‌های آنتیفانی درگون با درون لایه‌های از ممر‌های
نارک نا ضخیم، شیار و جدید‌ترین نهاله‌های آن از گرده‌های
عهد حاضر است. مهارتی ریوداسیسی زمین‌شناسی که در بی آن
نوده گرانتونی‌های آستانه شکل گرفته است، در زمان موزونیک
(وراسیک سیانی) رخ داد است [۴]. این نوده گرانتونی‌های
در فیلیت‌های منطقه، مجموعه‌ای درگون مجاورتی
(هورنفلس‌ها) حاصل شده است. مجموعه کانی‌های واقع در این
سنگ‌ها شیار مسکویت، بیونیت، آلیت، کلریت و ایدوت
است که همزیستی این مجموعه نشان می‌دهد رخساره‌
ی درگون پیرامون نوده نهاله آستانه از نوع رخ‌ساره‌الیت-
گرفته‌نداز هر یک از آمیفیپول‌ها و پلازیپکلاژه‌ها نمونه‌هایی به عنوان عرف در جدول‌های ۲ و ۳ یا از شکل واقعه و تبادل شبانه در روند ساختاری امیفیپول با استفاده از روش یک‌شناسی لیک [۵] انجام شده است.

جانشین ۱ خلاصه داده‌های حاصل از تجزیه نفظی کلی امیفیپول در یک‌های مختلف سنگی که تناهی تجزیه‌های عرف (از هر نمونه دو نقطه) ارائه شده است.

<table>
<thead>
<tr>
<th>آنتئولیت</th>
<th>آنتئولیت در انفلاز دانی</th>
<th>آنتئولیت در گرانولوریت</th>
<th>آنتئولیت در تونالیت</th>
<th>آنتئولیت در تونالیت</th>
<th>آنتئولیت در تونالیت</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO2</td>
<td>۰/۳۵/۶۵</td>
<td>۰/۳۵/۶۵</td>
<td>۰/۳۵/۶۵</td>
<td>۰/۳۵/۶۵</td>
<td>۰/۳۵/۶۵</td>
</tr>
<tr>
<td>TiO2</td>
<td>۰/۵۰/۵۰</td>
<td>۰/۵۰/۵۰</td>
<td>۰/۵۰/۵۰</td>
<td>۰/۵۰/۵۰</td>
<td>۰/۵۰/۵۰</td>
</tr>
<tr>
<td>Al2O3</td>
<td>۰/۵۰/۵۰</td>
<td>۰/۵۰/۵۰</td>
<td>۰/۵۰/۵۰</td>
<td>۰/۵۰/۵۰</td>
<td>۰/۵۰/۵۰</td>
</tr>
<tr>
<td>FeO*</td>
<td>۰/۳۵/۶۵</td>
<td>۰/۳۵/۶۵</td>
<td>۰/۳۵/۶۵</td>
<td>۰/۳۵/۶۵</td>
<td>۰/۳۵/۶۵</td>
</tr>
<tr>
<td>MgO</td>
<td>۰/۵۰/۵۰</td>
<td>۰/۵۰/۵۰</td>
<td>۰/۵۰/۵۰</td>
<td>۰/۵۰/۵۰</td>
<td>۰/۵۰/۵۰</td>
</tr>
<tr>
<td>MnO</td>
<td>۰/۵۰/۵۰</td>
<td>۰/۵۰/۵۰</td>
<td>۰/۵۰/۵۰</td>
<td>۰/۵۰/۵۰</td>
<td>۰/۵۰/۵۰</td>
</tr>
<tr>
<td>CaO</td>
<td>۰/۵۰/۵۰</td>
<td>۰/۵۰/۵۰</td>
<td>۰/۵۰/۵۰</td>
<td>۰/۵۰/۵۰</td>
<td>۰/۵۰/۵۰</td>
</tr>
<tr>
<td>Na2O</td>
<td>۰/۵۰/۵۰</td>
<td>۰/۵۰/۵۰</td>
<td>۰/۵۰/۵۰</td>
<td>۰/۵۰/۵۰</td>
<td>۰/۵۰/۵۰</td>
</tr>
<tr>
<td>K2O</td>
<td>۰/۵۰/۵۰</td>
<td>۰/۵۰/۵۰</td>
<td>۰/۵۰/۵۰</td>
<td>۰/۵۰/۵۰</td>
<td>۰/۵۰/۵۰</td>
</tr>
<tr>
<td>Sum</td>
<td>۰/۵۰/۵۰</td>
<td>۰/۵۰/۵۰</td>
<td>۰/۵۰/۵۰</td>
<td>۰/۵۰/۵۰</td>
<td>۰/۵۰/۵۰</td>
</tr>
</tbody>
</table>

T-sites

Si	۰/۵۰/۵۰	۰/۵۰/۵۰	۰/۵۰/۵۰	۰/۵۰/۵۰	۰/۵۰/۵۰
Aliv	۰/۵۰/۵۰	۰/۵۰/۵۰	۰/۵۰/۵۰	۰/۵۰/۵۰	۰/۵۰/۵۰
Al(total)	۰/۵۰/۵۰	۰/۵۰/۵۰	۰/۵۰/۵۰	۰/۵۰/۵۰	۰/۵۰/۵۰

M1,2,3 sites

Alvi	۰/۵۰/۵۰	۰/۵۰/۵۰	۰/۵۰/۵۰	۰/۵۰/۵۰	۰/۵۰/۵۰
Ti	۰/۵۰/۵۰	۰/۵۰/۵۰	۰/۵۰/۵۰	۰/۵۰/۵۰	۰/۵۰/۵۰
Fe3+	۰/۵۰/۵۰	۰/۵۰/۵۰	۰/۵۰/۵۰	۰/۵۰/۵۰	۰/۵۰/۵۰
Mg	۰/۵۰/۵۰	۰/۵۰/۵۰	۰/۵۰/۵۰	۰/۵۰/۵۰	۰/۵۰/۵۰
Mn	۰/۵۰/۵۰	۰/۵۰/۵۰	۰/۵۰/۵۰	۰/۵۰/۵۰	۰/۵۰/۵۰
Fe2+	۰/۵۰/۵۰	۰/۵۰/۵۰	۰/۵۰/۵۰	۰/۵۰/۵۰	۰/۵۰/۵۰
Ca	۰/۵۰/۵۰	۰/۵۰/۵۰	۰/۵۰/۵۰	۰/۵۰/۵۰	۰/۵۰/۵۰
M4 site	۰/۵۰/۵۰	۰/۵۰/۵۰	۰/۵۰/۵۰	۰/۵۰/۵۰	۰/۵۰/۵۰
Fe	۰/۵۰/۵۰	۰/۵۰/۵۰	۰/۵۰/۵۰	۰/۵۰/۵۰	۰/۵۰/۵۰
Ca	۰/۵۰/۵۰	۰/۵۰/۵۰	۰/۵۰/۵۰	۰/۵۰/۵۰	۰/۵۰/۵۰
Na	۰/۵۰/۵۰	۰/۵۰/۵۰	۰/۵۰/۵۰	۰/۵۰/۵۰	۰/۵۰/۵۰
A site	۰/۵۰/۵۰	۰/۵۰/۵۰	۰/۵۰/۵۰	۰/۵۰/۵۰	۰/۵۰/۵۰
Ca	۰/۵۰/۵۰	۰/۵۰/۵۰	۰/۵۰/۵۰	۰/۵۰/۵۰	۰/۵۰/۵۰
Na	۰/۵۰/۵۰	۰/۵۰/۵۰	۰/۵۰/۵۰	۰/۵۰/۵۰	۰/۵۰/۵۰
K	۰/۵۰/۵۰	۰/۵۰/۵۰	۰/۵۰/۵۰	۰/۵۰/۵۰	۰/۵۰/۵۰
Sum A	۰/۵۰/۵۰	۰/۵۰/۵۰	۰/۵۰/۵۰	۰/۵۰/۵۰	۰/۵۰/۵۰
Mg/(Mg+Fe2+)	۰/۵۰/۵۰	۰/۵۰/۵۰	۰/۵۰/۵۰	۰/۵۰/۵۰	۰/۵۰/۵۰
Fe/Fe+Mg	۰/۵۰/۵۰	۰/۵۰/۵۰	۰/۵۰/۵۰	۰/۵۰/۵۰	۰/۵۰/۵۰
جدول ۲ تجزیه رئیس‌زاری پلاژیوکلاز در تعادل با امفیپول منتیزیوهرتیالند در تونالیت، بروتونوم کوارتزدیوریتی و پلاژیوکلاز در تعادل با پاراغازیت در بروتونوم داسیتی.

<table>
<thead>
<tr>
<th>پلاژیوکلاز در بروتونوم کوارتزدیوریتی</th>
<th>پلاژیوکلاز در بروتونوم</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO2</td>
<td>58/72</td>
</tr>
<tr>
<td>TiO2</td>
<td>2/34</td>
</tr>
<tr>
<td>Al2O3</td>
<td>35/65</td>
</tr>
<tr>
<td>Cr2O3</td>
<td>2/18</td>
</tr>
<tr>
<td>FeO</td>
<td>2/5</td>
</tr>
<tr>
<td>MnO</td>
<td>3/8</td>
</tr>
<tr>
<td>MgO</td>
<td>2/4</td>
</tr>
<tr>
<td>CaO</td>
<td>1/6</td>
</tr>
<tr>
<td>Na2O</td>
<td>1/2</td>
</tr>
<tr>
<td>K2O</td>
<td>1/2</td>
</tr>
<tr>
<td>TiO2</td>
<td>1/2</td>
</tr>
<tr>
<td>TOTAL</td>
<td>97/65</td>
</tr>
</tbody>
</table>

کاتانو ها اساس ۱۸ کگرم قلبی به است.

سنگ‌ها در نمونه‌های دستی بالا به رنگ خاکستری دیده می‌شوند و ترکیب همگنی از کانی‌های کوارتز، پلاژیوکلاز، بروتونوم، پتاسیم‌فلدسمار و امفیپول دارند. و کانی‌های فرعی شامل آبیانیت، زیرکن و آلائته‌های متنوع، در بخش‌های حاشیه‌ای این سنگ‌ها حاوی آندالوزیت‌اند. فراوانی رول‌های آندالوزیت در بخش‌های مختلف منفعت است و سمت یافتنی خاصی را نشان نمی‌دهد این مدل سنگی در بخش‌های جنوبی مسول‌گرایی شده و کانی‌های اصلی تشکیل دهنده آن شنل بروتونوم، پلاژیوکلاز، کوارتز و پتاسیم‌فلدسمار است و در نمونه‌های دستی روشن‌تر است، با این حال مرز مشخصی نداشته و قابل جدايش نبستند (شکل ۱).

۴- سنگ‌شناسی توده

بخش اعظم توده گرانیت‌نمونه‌ای است، ترکیب گرانیت‌نمونه‌ای دارد و به صورت یک نفوذی قند شاخه‌ای و کوچک نمایان می‌شود. در این توده سنگ‌های نیمه آتششناختی رودسیتی به صورت زائد همراه با توده‌های نفوذی کوچکی با ترکیب بیشتر به صورت سنگ‌ور است و تونالیتی ظاهر می‌شود. در اینجا با اختصار این توده سنگی را معرفی می‌کنیم.

۴-۱ واحده گرانیت‌نمونه‌ای

این واحده بخش بزرگ توده نفوذی موجود در منطقه‌ی تشکیل می‌دهد که به شدت هوازد و فرسوده بوده و ریختشناسی کلی آن به صورت نهایی فرصتهای کم ارتفاع است. ترکیب سنگ‌های این واحده از گرانیت‌نمونه‌ای تا تونالیت متغیر است. این
این سنگ‌ها در درون واحد گراندیوریت پرونز دارد (شکل ۱)
و ارتفاعات منطقه را تشکیل داده‌اند و خاکستری رنگ و از نظر
درجه رنگین مزورکه تند. تركیب سنگ‌شناسی آن از تونالیت.
۲۸۴

طهماسبی، خلیلی، احمدی خنجی، مکی زاده

تا گرافیکریت تغییر می کند. کانی‌های اصلی این سنگ‌ها شامل پلاژوکالس، بیوبوتیت، آمفیبول به مقدار کمتر پاسیم فلدنسب و کوارتز. این سنگ‌ها را نسبت به سنگ‌های آناتومیتی و پلاژوکالس پیشین کلاًی که فرور روز به سایر سنگ‌ها بخشی از سنگ‌های فلدنسب و بیوبوتیت نسبت به سایر سنگ‌های می‌توان به بزرگ‌تر زیر سنگ‌ها و آناتومیتی اکثر به صورت تقوی در درون کانی‌های دیگر دیده می‌شود.

۴-۴- برونبوخا

توده گرافیکریتی استانه از دارای برونبوخا خاصیت عمق که برونبوخا واقع در گرافیکریتی تکیپ گابور، دیسکت، کوارتز و برونبوخا می‌باشد و قرار گرفتن آن در رادیاکریتی تکیپ داستی دانست و برونبوخا ویژه در فرآیند مایکتیک و بخشی از فک‌های حالی‌ساده مشاهده می‌شود و انتقال آن‌ها از خون تا جنگ سیستمی تا جنگ سیستمی انتقال مشاهده است و شکل آن‌ها از حالت تقریبی زاویه‌دار تا کاملاً گردشی تغییر می‌کند و به طور کلیک شکل ویژگی تقریبی برخورداری می‌باشد. می‌باشد که برونبوخا بخشی از جنس ریز دانای مایکستند برونبوخا داستی معمول با سطح انتیک مناسب‌بوده دانستند. بنابراین کانی‌های آن‌ها آمبیمول، پلاژوکالس، بیوبوتیت، اکثریت و کوارتز است. [9]

۵- شیمی کانی آمبیمول در واحدهای سنگ‌های مختلف توده

آمبیمول در واحدهای سنگ‌های در اثر سنگ‌های شیمیایی متفاوت آن‌ها در اولویت شکل‌دادن رنگ و سازمان‌دهی می‌شود. در نمونه از سنگ‌های گرافیکریتی و پلاژوکالس مناسب‌هایی از پلاژوکالس شکل‌دادن حاوی آمبیمول است. [۲-۳، م. ت. در سه-۱۴] های کوارتز و برونبوخا آمبیمول به صورت شکل‌دادن در گنجینی سیستمی است. همچنین در برونبوخا داستی سیستمی به صورت شکل‌دادن در گنج‌نامه سیستمی در زیر میکروسکوپ دیده می‌شود. نتایج

برای پرده‌گذاری آمبیمول در واحدهای سنگ‌های مختلف منطقه (جایگاه مصرفی) در جدول‌های و نشان داده شده‌اند. آمبیمول‌ها موجود در سنگ‌های منطقه مورد بررسی در دو گروه آمبیمول‌های Fe-Mg-Mn و آمبیمول‌های Claske قرار می‌گیرند. [7] آمبیمول‌های تزیینی از تزیینی حاشیه اورتوبروکسن عنی آنتونیوم (ناتونیوم) (شکل ۱) آمبیمول‌های Fe-Mg-Mn استانی از نوع Fe-Mg-Mn. فله قسمت دوم (تی) است در صورتی که آمبیمول تولناهیت و برونبوخا های کوارتز‌وبیتیت از نوع کلسی (میزی‌اریوپولند و اولیه) (شکل ۲ و ح) است. همچنین آمبیمول کوارتز‌وبیتیت از نوع اکتوینیوم (ناتونیوم) و آمبیمول پلیبروکسن داسیسی از نوع پاراغاز و اولیه است (شکل ۲ ب).

بنابراین بردند همه آمبیمول‌های تزیینی جهت جهود آمبیمول‌های کلسی (ژن نامه آنتونیوم) که حاصل تزیینی اورتوبروکسن است که در گروه آن یافت. هستند که شاخص تولناهی نوع ۱-۸۹ و ۱-۸۹ که شاخص شدید از میزان آن‌ها در گروه‌های میزی‌اریوپولند و نا حادوی اکتوینیوم قرار می‌گیرند.
مقایسه انواع آمیپیول‌ها و زنن‌تیموبارومتری توده نفوذی آستانه (رون سنندج- سیرجان)

شکل ۲ تصاویری از آمیپیول‌ها در سنگ‌های مختلف منطقه آستانه. ال.آ. آنتونیلی در حاشیه ازیوپروکسین انستانت در بروبنوم داسیتی. ب: پارکازیت در بروبنوم داسیتی. ت. ازیوپروکسین و آنتونیلیت در تونالیت آستانه. ج: مینیزوورتبلند در تونالیت. ح: مینیزوورتبلند در بروبنوم تونالیتی.

شکل ۳ نقشه‌نگاری انواع آمیپیول در منطقه آستانه بر اساس روش لیک [۱۵].

فوتاگاسیته اکسیزن ۱۵-۵
فوتاگاسیته اکسیزن از جمله فاکتورهایی است که مجموعه کانی‌های سنگنی را تحت تأثیر قرار می‌دهد. یکی از روش‌های ارزیابی فوتاگاسیته اکسیزن در سنگ‌های نفوذی بررسی ترکیب اکسیژن‌های است که از نظر شیمیایی دارای هستند [۱۳]. از میان آمیپیول‌ها، تجزیه شده منطقه پارکازیتی و مینیزوورتبلندی تونالیت این شرایط را دارا هستند.

\[\text{Fe}^{tot}/\text{Fe}^{tot} + \text{Mg} > 0.3 \text{ Al}^{IV} > 0.75 \]
مقایسه انواع آمیپیلوس و زنوتوموبارومتری توده نفوذی آستانه (زون سندج-سرجان)

آمیپیلوس بهترین کانی برای دما- فشارسنجی در سنگهای آدنین آمیکی- قلبی است، زیرا تقریباً در همه توده‌های نفوذی آمیکی- قلبی اسیدی و حضور در ترکیبات باریک، متبلور می‌شود. همچنین این کانی در گستره گسترده
در سطح‌های تولیدی و گردوپورینی با فشار کمتر از 2 کیلوبار تأثیر دم روی
عمل می‌کند. لذا برای محاسبه فشار تغییر در
سنگ‌های گردوپورینی استاتا از جدیدترین فشارسنجی‌های
خطای اندازه گیری کمتر و در فشارها کمتر از 2 کیلوبار نیز
قابل کاربرد است. یعنی روش فشارسنجی آشیمتی (1992) به
صورت زیر استفاده شده است [[16]:
\[P (\pm \text{Kbar}) = 2.76 \text{Al}^{14} - D \]
در این روش آمیپورین یا پارگازنی فشرده‌شده‌ای است
\[\text{کوارتزوروبین} \equiv 0.58 \pm \text{Al}^{14} \text{Fe}^{16} \text{Fe}^{14} \text{Mg} \]
در نتیجه یافته شده است [16] آنالیز نسبت Fe/Fe + Mg
را محاسبه کرده.

هوئیت‌های در دمایه‌های نزدیک به مزرعه‌های عالی بر کانی-
های یاد شده با مناسب و فاز نسی روند به تعادل میرسد، به دنبال
انجام و سرگرمی مکانی تغییرهای ورودی به کانی.

نقطه‌ای‌هایی باید تا در نهایت میکولا میکولا یک
شو یک طرفه ترکیبی درون‌بند. فشار (عیق ترکیب) انجام می‌گردد
را پذیرفته می‌دهد [16, 17]. در اینجا فشار تغییر آمیپورین
یا پارگازنی درون‌بندی در منیزی‌پورینی در برونیت-
های کوارتزوروبینی و در سنگ‌های تولیدی محاسبه شده
است.

تاکنون روش‌های معنی‌دار برای پارگازنی فشار از روی ترکیب
هوئیت‌های هندوانس [12] 18. 118 تا [2]. در همین این
روش‌ها (ژیرو‌اندرکسون و ایشته) [13] فشار نقطه از روی
میزان آلومینیوم موجود در هوئیت‌ها و بدون توجه به
پارامترهای دیگری چنین می‌باشد. بیشتر فشارسنجی‌های
یک‌یا دو نقطه‌ای در منطقه تولیدی‌ها) مقادیر به دست آمده
گاهی کمتر و حتی بینی از میزان خطا فرمول فشارسنجی
است که با فشار منطقه سازگاری ندارد. [15] معتقد است که

\[\text{شکل 2} \text{ نسبت} \text{ Fe}^{16} / \text{Fe}^{14} + \text{Mg} \]

مشابه شکل 3 استند.
مقایسه انواع آمفیپولها و زئوترموبارومتری توده نفوذی آستانه (زون سندرم- سیبرژان)

شکل ۵: الف: نسبت به Fe/Fe + Mg + Al

تولانیت فشاری بین ۲–۳ میلیپترولنلند در تولانیت در گستره فشار بین ۶–۷ میلیپترولنلند در بروتوون کورزتودیورینی-۷

تنشان می دهد که پاراگزیت در گستره فشار بین ۶–۷ میلیپترولنلند در بروتوون کورزتودیورینی-۷ ۷۰–۸۰۰ نسبت به Fe/Fe + Mg + Al

درجه سانتی گراد است. علامت مشابه شکل ۳ هستند.

۵-۳ دماسنج پلاژیوکلاز- هورنلندر

در مورد دماسنج به روش زئوژ هورنلندر- پلاژیوکلاز اتفاق نظر بین پیوستگی و وجود ندارد. ولی یکی از روش های مدل

برای دماسنج سلیقاهای اهیک- قلبی محسوب می شود.

بلادی و هوالدن [۱۲۳] بر اساس واکنش آدیبت- هورنلندر، رابطه زیر را برای دماسنج پلاژیوکلاز- هورنلندر پیشنهاد کردند. این دماسنج در سلیقهای آدنر فلسفی و حذفی

که حاوی کوارتز، پلاژیوکلاز با

و An < ۵۲ نوآمیفیپولها با

کوارتز دارد و برای دماهای بین ۵۰۰ تا ۱۲۰۰ درجه سانتی گراد قابل استفاده است.

T [±۳۱۱۰ K] = ۰٫۶۷۷ P [Kbar] - ۴۸٫۹۸ + Y Ab / ۰٫۰۴۲۹ - ۰٫۰۰۸۳۴۴ Ln (Si - 4) / (8-Si) X Ab گای

در رابطه T دما تعادلی بر حسب کلسیم و فشار بر حسب کلسیم، تعداد کادمیو سلیسی در فرمول

ساختاری آمفیپول X Ab گای

میزان درصد ابست به پلاژیوکلاز

است. مقدار X Ab از رابطه زیر به دست می آید.

X Ab > ۰.۵، Y Ab = ۰

X Ab < ۰.۵، Y Ab = ۸.۰۶ + ۲۵.۵ (1 - X Ab) ۲

در دماسنج‌های پاراگزیت در بروتوون داسیسی در

۷۳۰ ۰ C در تولانیت‌های توده آستانه برابر می شود.

۲۰۰۶ C در تولانیت‌های توده آستانه برابر می شود.
پاتک‌های ژئولوژی و ژیمیک بهره‌برداری نشان دهنده تغییرات در زمان جایگزینی

[2] رادفر، ج.بررسی‌های زمین‌شناسی و پترولولوژی استان‌های جنوب غرب عراق

