Determination of tectonomagmatic environment of volcanic and subvolcanic rocks in North of Shahrekord by amphiboles geothermobarometry

N. Emami¹, M. Khalili², M. Noghreyan²

¹- Agyrcaltare and Natural resources research center of Chaharmahal and Bakhtiary Province
²- Department of Geology, University of Isfahan
Email: emami1348@yahoo.com

(Received: 7/5/2008, in revised form: 21/1/2009)

Abstract: On the basis of geothermobarometric calculations, amphiboles in volcanic and subvolcanic rocks belong to Upper Jurassic volcanism of Sanandaj-sirjan zone in north of Shahrekord. Using Hamarstrom ,Schmidt, Johnson - Rutherford and Hollister methods, amphiboles have crystallized about 635 to 715 °C and 2.68 to 7.5 kbar at the depth about 17 to 25 km. The result of calculations has moderate accuracy. The lower FET/(Fe₂+ Mg) ratio in amphiboles is characteristic of calc-alkaline magma suites. Calculated temperatures, pressures and depths for amphiboles is coincide with a subduction tectonical environment. The maximum depth of crystallization of amphiboles is 25km and subduction angle is lower than 45 km on the basis of 35 km distance between this volcanic belt and main Zagros fault. Al⁷⁴ measures of amphiboles are higher than 1.5 that indicate an island arc suite. The presence of this old island arc had predicted in Zagros orogenic belt.

Keywords: Jurassic Volcanism, Sanandaj-sirjan zone, Tectonomagmatic, Geothermobarometry, Amphibole.
مقدمه
پتروژن و جایگاه تکنوامپاسی سنج‌های آتش‌شناختی و توده‌های نیمه‌عینک (استوکوهای و دایادی‌های) ویژه‌ی به‌وسیله‌ی تکنوامپاسی در پیش‌نگه‌ی زمین‌شناسی سنج‌های آتش‌شناختی ویژه‌ی به‌وسیله‌ی تکنوامپاسی کشور محصول می‌شود که برای محاسبه‌ی دقیق و ساده‌تر به آن جایگاه علمی/ارتشمی برخوردار است.

کمربند سنج‌های آزمایشی به سن زوراسیک معنی‌داری داشته باشد که به سبب فراوانی سنج‌های آتش‌شناختی از این پس تحت عنوان سنگ‌های آتش‌شناختی شناخته شدند.

واژه‌های کلیدی: آتش‌شناختی، زوراسیک، وزن سنجد - سیرجان، تکنوامپاسی، گرمای - فشارسنجی، آمپیول.

"تعمیم ماحولی تکنوامپاسی سنج‌های آتش‌شناختی و نیمه‌عینکی شال که درون بر استفاده از گرمای - فشارسنجی (آمپیول) سید نعیم‌نامه، محمود خلیلی، موسی نقره‌یان"
پذیرفته اعداد مختلف زمین‌شناسی منطقه شامل سنگ‌تراشی، پیروزتر و سنگ‌تراشی این سنگ‌های مواد بررسی دیق (EMPA) در این مقاله به توجه به نتایج آنالیز سنجش‌های آنالیزی و سنگ‌های عمیق بیوریستی و دولیتی منطقه، ضمن محاسبه فشار و دمای تشکیل این سنگ‌ها، جایگاه تکنولوژی‌های آنها نیز با استفاده از نمودارهای تجربی تعیین شدند.

روش مطالعه

در راستای این کار این، بررسی فرهنگ و ایالات و تنها یک شناسی در تصور هواپیمای و تعیین هواپیمایی زمینه، با حساب شناخته نگه داشته و نیمه عمیق آهنگسی، تغییر ۲۰۰ نقطه در این سنگ‌های آتش‌نشانی و حالت آزمایش و فردی که در اثر آزمایشی و ترکیب آنلیز و همین عمیق با بای‌میکروسکوپ و ترکیب حالت و فردی که در این سنگ‌های آتش‌نشانی و حالت فردی که به عنوان میکروسکوپی از جمله ناوت به رنگ‌های ترکیبی و فرم کانی‌ها، همچنین آن‌که این‌که اسم‌دارند (شکل‌های ۲ و ۳).

 Cameca, SX-50) اکلامه‌ای آمریکا به‌وسیله یک دستگاه (Cameca, SX-50) صورت پذیرفت. بر اساس نتایج این بررسی‌ها، پس از ردپذیری و تأمین‌گذاری این کانال‌ها [۲]، محاسبات دما و فشار بر اساس روش‌های تجربی و پیشنهادهای همان‌پسندوم (۳۲)، اشتباه [۲۱]، جانسون-رادرفورد [۲۵] و هالیستر [۶] انجام گرفت.

بحث و بررسی

در منطقه‌های مورد بررسی، سنگ‌های آدرنین پیشتر شیوع بیشتر و حجم‌های کمتری از آن‌ها با افزایش به‌دست آمده‌است نیمه عمیق دیونیسی و میکرو‌پریستی به شکل دایک و استوک وجود دارد.

هریلند بک از کانال‌های نوعی سنگ‌های آتش‌نشانی، تغییر معنی‌داری و نیمه عمیق آهنگسی-قابلیتی است [۲۴]، نتایج حاصل از زنبور پردازندگی کریستال (جدول ۱) بر روی آزمایش‌های موجود در نوام‌های سنگ‌های آتش‌نشانی با بای‌میکروسکوپ و ترکیب آنلیز و نیمه عمیق با بای‌میکروسکوپ و ترکیب حالت و فردی که به عنوان میکروسکوپی از جمله ناوت به رنگ‌های ترکیبی و فرم کانی‌ها، همچنین آن‌که این‌که اسم‌دارند (شکل‌های ۲ و ۳).
توجه می‌شود تکنو‌ماکم‌بایان سنگواره‌ای آتش‌نشانی و نیمه عمق شمال شهرکرد با استفاده از...
در جدول 1 نتایج آنالیز الکترون ماکروتروبو افمیلیوی ۲۳ شیمیایی مشاهده شده است.

<table>
<thead>
<tr>
<th>تناول‌های</th>
<th>نام سایت‌های</th>
<th>میانگین</th>
<th>هشت</th>
<th>میانگین</th>
<th>هشت</th>
<th>دوپینگ</th>
<th>دوپینگ</th>
</tr>
</thead>
<tbody>
<tr>
<td>نوع سایت</td>
<td>آزمایشگیر</td>
<td>آزمایشگیر</td>
<td>آزمایشگیر</td>
<td>آزمایشگیر</td>
<td>آزمایشگیر</td>
<td>آزمایشگیر</td>
<td>آزمایشگیر</td>
</tr>
<tr>
<td>Al^{IV}</td>
<td>1.168</td>
<td>1.168</td>
<td>1.168</td>
<td>1.168</td>
<td>1.168</td>
<td>1.168</td>
<td>1.168</td>
</tr>
<tr>
<td>(Sum) T</td>
<td>185</td>
<td>185</td>
<td>185</td>
<td>185</td>
<td>185</td>
<td>185</td>
<td>185</td>
</tr>
<tr>
<td>(site)</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>Li</td>
<td>0.10</td>
<td>0.10</td>
<td>0.10</td>
<td>0.10</td>
<td>0.10</td>
<td>0.10</td>
<td>0.10</td>
</tr>
<tr>
<td>(Sum) M3</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Mn</td>
<td>0.010</td>
<td>0.010</td>
<td>0.010</td>
<td>0.010</td>
<td>0.010</td>
<td>0.010</td>
<td>0.010</td>
</tr>
<tr>
<td>Fe^{2+}</td>
<td>0.091</td>
<td>0.091</td>
<td>0.091</td>
<td>0.091</td>
<td>0.091</td>
<td>0.091</td>
<td>0.091</td>
</tr>
<tr>
<td>Mg</td>
<td>0.037</td>
<td>0.037</td>
<td>0.037</td>
<td>0.037</td>
<td>0.037</td>
<td>0.037</td>
<td>0.037</td>
</tr>
<tr>
<td>Ca</td>
<td>1.185</td>
<td>1.185</td>
<td>1.185</td>
<td>1.185</td>
<td>1.185</td>
<td>1.185</td>
<td>1.185</td>
</tr>
<tr>
<td>Na</td>
<td>1.014</td>
<td>1.014</td>
<td>1.014</td>
<td>1.014</td>
<td>1.014</td>
<td>1.014</td>
<td>1.014</td>
</tr>
<tr>
<td>(Sum) M4</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Ca</td>
<td>0.020</td>
<td>0.020</td>
<td>0.020</td>
<td>0.020</td>
<td>0.020</td>
<td>0.020</td>
<td>0.020</td>
</tr>
<tr>
<td>Na</td>
<td>0.043</td>
<td>0.043</td>
<td>0.043</td>
<td>0.043</td>
<td>0.043</td>
<td>0.043</td>
<td>0.043</td>
</tr>
<tr>
<td>K</td>
<td>0.185</td>
<td>0.185</td>
<td>0.185</td>
<td>0.185</td>
<td>0.185</td>
<td>0.185</td>
<td>0.185</td>
</tr>
<tr>
<td>Asite</td>
<td>0.071</td>
<td>0.071</td>
<td>0.071</td>
<td>0.071</td>
<td>0.071</td>
<td>0.071</td>
<td>0.071</td>
</tr>
<tr>
<td>جمع سایت‌های</td>
<td>15769</td>
<td>15769</td>
<td>15769</td>
<td>15769</td>
<td>15769</td>
<td>15769</td>
<td>15769</td>
</tr>
<tr>
<td>Al_{tot}</td>
<td>2.155</td>
<td>2.155</td>
<td>2.155</td>
<td>2.155</td>
<td>2.155</td>
<td>2.155</td>
<td>2.155</td>
</tr>
<tr>
<td>Fe_{3+}(Fe_{2+}+Mg)</td>
<td>0.318</td>
<td>0.318</td>
<td>0.318</td>
<td>0.318</td>
<td>0.318</td>
<td>0.318</td>
<td>0.318</td>
</tr>
</tbody>
</table>
تغییر محیط تکتونوماگماگی سنگ‌های آنتفیشمانی و نیمه عمیق شمال شهرکرد با استفاده از...

شکل ۲ درشت بلورهای هورنبلند منیزیومستنگزینی در زمینه کوارتز-فلذسپاتی در هورنبلند اندزیت × ۴۰.

شکل ۳ تصویر الکترون ماکروپروب از یک هورنبلند منیزیومستنگزینی در هورنبلند اندزیت.

فرمول‌های محاسبه شده این کانی‌ها به شرح زیرند (شکل ۲):

- هورنبلند منیزیو- هستنگزینی (در اندزیت‌ها)
 \[\text{Si}_{6.13} \text{Al}_{1.64} \text{O}_{22} (\text{Ca}_{0.177} \text{Na}_{0.564} \text{K}_{0.149}) \]
 \[(\text{Mg}_{2.938} \text{Fe}^{2+}_{0.733} \text{Al}^{3+}_{0.202} \text{Fe}^{3+}_{0.783} \text{Mn}_{0.026}) \]

- هورنبلند هستنگزینی منیزیومیت (در دایک‌های دوپرتنی)
 \[\text{Si}_{6.251} \text{Al}_{1.749} \text{O}_{22} (\text{Ca}_{0.709} \text{Na}_{0.503} \text{K}_{0.156}) \]
 \[(\text{Mg}_{2.755} \text{Fe}^{2+}_{0.748} \text{Al}^{3+}_{0.167} \text{Fe}^{3+}_{1.082} \text{Mn}_{0.038}) \]

تجارب و آزمایش‌های صورت گرفته روی آمپاتیو-ها نشان می‌دهد که ترکیب این کانی‌ها به شیمی سنگ کل، فشار، دما و فشار جزئی (فوكاذین) اکسیژن سنگ‌کننده دارد (جدول ۲). فشار یک عامل غالب و مؤثر بر اختلافات باز در محیط‌های آلومینیم

کل آمپاتیو-های کلسیم‌دار و معرف عمق جایگزینی پلوتون‌ها و توده‌های نیمه عمیق است [۲،۷].

با توجه به این که بیشتر سنگ‌های رخنمون یافته در منطقه، سنگ‌های آنتفیشمانی گنبده شکل بوده که با توده‌های نیمه عمیق (استوک و دایک) همراه می‌شوند، در این کار پژوهشی از روی‌های تجربی هاماراستروم از پیام، جاسون و رادفرود و هالبنتر برای تعیین فشار و دمای حاکم بر این سنگ‌ها استفاده شده. در این میان روش اختصاصی در مورد سنگ‌های آنتفیشمانی و نیمه عمیق، روش جاسون- رادفرود بوده که نتایج آن به عنوان روش اصلی با سابر روش‌های مورد
با توجه به اشاره مقایسه و در مورد امکان به کارگیری آنها در سنجش‌های آتش‌نشانی و نیمه عمیق قضاوت خواهد شد.
فشارسنجی براساس آلومینیم در هورنیتند

روش هاماراستروم و زن [23]

هاماراستروم و زن اغلب به الکترونی فشار پایین و بالا با استفاده از یک رژیم اورتاندهای الکترونی یک رابطه خوبی بین آلومینیم کل و محتوای آلومینیم با هم و یک دیگر از آلومینیم با هم (AIIV) شرح زیر برقرار کرده‌اند:[23]

\[AIIV = 0.15 + 0.69AI^T \]

\[P (±3kbar) = -3.92 + 5.03AI^T \] (\(r^2 = 0.8 \))

جدول 2: مثال‌هایی از واکنشی ترکیبی آمفیپول‌ها به حارط (T)، فشار (P) و فوگاسیته اکسیزین (fO2) و ترکیب کل

<table>
<thead>
<tr>
<th>منبع</th>
<th>fO2</th>
<th>فوگاسیته اکسیزین</th>
<th>(P)</th>
<th>(T)</th>
<th>عنصر</th>
</tr>
</thead>
<tbody>
<tr>
<td>[12]</td>
<td>+</td>
<td>+</td>
<td>[13]</td>
<td>[1]</td>
<td>Mg/(Mg + Fe2+)</td>
</tr>
<tr>
<td>[14]</td>
<td>+</td>
<td>+</td>
<td>[15]</td>
<td>[1]</td>
<td>A</td>
</tr>
<tr>
<td>[16]</td>
<td>+</td>
<td>+</td>
<td>[17]</td>
<td>[1]</td>
<td>CaO</td>
</tr>
<tr>
<td>[18]</td>
<td>+</td>
<td>+</td>
<td>[19]</td>
<td>[1]</td>
<td>AlT</td>
</tr>
<tr>
<td>[20]</td>
<td>+</td>
<td>+</td>
<td>[21]</td>
<td>[1]</td>
<td>SiO2</td>
</tr>
</tbody>
</table>

سنگ‌های مورد آزمایش شامل کانی شامل نوعی میکاپی مثل بلازمولت، هورنیتند، بیوئیت، فلدسپات پتاسیک، کوارتز، اسفن، مگنتیت و ایمنیت ± ایمیدوت بودند که اختلاف از دماهای مشابه می‌توانند شده‌اند. آمفیپول‌های در فشار بالا (دراز ایمیدوت می‌تواند) با آی‌القاشرت بالا یا بالا که مستقل از ترکیب آی‌القاشرت بالا با استکل‌گیری و ایمنیت با می‌توانند شده در آلیمینیم بالای ایمیدوت فشار پایین و بالا باشد [1].

بر اساس محاسبات انجام شده در نمونه‌های سنگ‌های دیواری (نمونه‌های) 23، میانگین فشار به‌دست‌آمده هسته‌ای ± 6.919 و
حاشیه‌های تغییرات عبارت است از:

\[P(0.6 kbar) = -3.01 + 4.76 Al^{1} \quad (r^2 = 0.99) \]

متغیر \(Al^{1} \) می‌تواند به صورت تیپ له لیک می‌باشد.

- روش هالیسترو و همکاران [5]

در این روش، فشارسرچات آبی‌القرمز در هورنیلن‌های آزمایشی بر رابطه خشکی بین \(Al^{1} \) در غلظت‌های مختلف مستقر معقد است. به طور تجربی با فشار تیپ له لیک در اندازه‌گیری شده‌پرتواینده‌های مختلف آبی‌القرمز در سطح ریز را اندازه‌گیری کرده‌ایم. این روش در درجه‌بندی مورد استفاده در استفاده از مقدار خاص وزن انتخاب شده است.

- روش جانبی - رادرفورد [1]

ابن ربار هورنیلن‌های تیپ له لیک در تغییرات کامپرسیون اثرات پرتوی آبی‌القرمز در هورنیلن‌های آزمایشی با درجه‌بندی مشابه به تعدادهای مختلف در اندازه‌گیری شده‌پرتواینده‌های مختلف آبی‌القرمز در سطح ریز را اندازه‌گیری کرده‌ایم. این روش در درجه‌بندی مورد استفاده در استفاده از مقدار خاص وزن انتخاب شده است.
جدول ۲: نتایج محاسبه فشار تشکیل هورنلنبهی منطقه براساس محتوای آلومینیوم کل به روش‌های مختلف.

<table>
<thead>
<tr>
<th>توصیف سنجش‌های حامل کالی</th>
<th>روش‌های تشکیل‌های سنجش</th>
<th>روش‌های تشکیل‌های سنجش</th>
<th>روش‌های تشکیل‌های سنجش</th>
<th>روشهای تشکیل‌های سنجش</th>
<th>روشهای تشکیل‌های سنجش</th>
</tr>
</thead>
<tbody>
<tr>
<td>ترکیب‌های حساس (صرفا حساسیت‌ها) هورنلنبهی / نسبت‌های دگرگونی</td>
<td>۲۱۹۲</td>
<td>۲۱۹۲</td>
<td>۲۱۹۲</td>
<td>۲۱۹۲</td>
<td>۲۱۹۲</td>
</tr>
<tr>
<td>ترکیب‌های حساس (صرفا حساسیت‌ها) هورنلنبهی / نسبت‌های دگرگونی</td>
<td>۲۱۹۲</td>
<td>۲۱۹۲</td>
<td>۲۱۹۲</td>
<td>۲۱۹۲</td>
<td>۲۱۹۲</td>
</tr>
<tr>
<td>ترکیب‌های حساس (صرفا حساسیت‌ها) هورنلنبهی / نسبت‌های دگرگونی</td>
<td>۲۱۹۲</td>
<td>۲۱۹۲</td>
<td>۲۱۹۲</td>
<td>۲۱۹۲</td>
<td>۲۱۹۲</td>
</tr>
<tr>
<td>ترکیب‌های حساس (صرفا حساسیت‌ها) هورنلنبهی / نسبت‌های دگرگونی</td>
<td>۲۱۹۲</td>
<td>۲۱۹۲</td>
<td>۲۱۹۲</td>
<td>۲۱۹۲</td>
<td>۲۱۹۲</td>
</tr>
<tr>
<td>ترکیب‌های حساس (صرفا حساسیت‌ها) هورنلنبهی / نسبت‌های دگرگونی</td>
<td>۲۱۹۲</td>
<td>۲۱۹۲</td>
<td>۲۱۹۲</td>
<td>۲۱۹۲</td>
<td>۲۱۹۲</td>
</tr>
<tr>
<td>ترکیب‌های حساس (صرفا حساسیت‌ها) هورنلنبهی / نسبت‌های دگرگونی</td>
<td>۲۱۹۲</td>
<td>۲۱۹۲</td>
<td>۲۱۹۲</td>
<td>۲۱۹۲</td>
<td>۲۱۹۲</td>
</tr>
<tr>
<td>ترکیب‌های حساس (صرفا حساسیت‌ها) هورنلنبهی / نسبت‌های دگرگونی</td>
<td>۲۱۹۲</td>
<td>۲۱۹۲</td>
<td>۲۱۹۲</td>
<td>۲۱۹۲</td>
<td>۲۱۹۲</td>
</tr>
<tr>
<td>ترکیب‌های حساس (صرفا حساسیت‌ها) هورنلنبهی / نسبت‌های دگرگونی</td>
<td>۲۱۹۲</td>
<td>۲۱۹۲</td>
<td>۲۱۹۲</td>
<td>۲۱۹۲</td>
<td>۲۱۹۲</td>
</tr>
<tr>
<td>ترکیب‌های حساس (صرفا حساسیت‌ها) هورنلنبهی / نسبت‌های دگرگونی</td>
<td>۲۱۹۲</td>
<td>۲۱۹۲</td>
<td>۲۱۹۲</td>
<td>۲۱۹۲</td>
<td>۲۱۹۲</td>
</tr>
<tr>
<td>ترکیب‌های حساس (صرفا حساسیت‌ها) هورنلنبهی / نسبت‌های دگرگونی</td>
<td>۲۱۹۲</td>
<td>۲۱۹۲</td>
<td>۲۱۹۲</td>
<td>۲۱۹۲</td>
<td>۲۱۹۲</td>
</tr>
<tr>
<td>ترکیب‌های حساس (صرفا حساسیت‌ها) هورنلنبهی / نسبت‌های دگرگونی</td>
<td>۲۱۹۲</td>
<td>۲۱۹۲</td>
<td>۲۱۹۲</td>
<td>۲۱۹۲</td>
<td>۲۱۹۲</td>
</tr>
</tbody>
</table>
تʻبعین محتوی تکنولوژی‌سنجی‌های آنتفانسی‌ی و نیمه‌عمق شمال شهروند با استفاده از...

است که شرط دوم در تمام نتایج فرآیند است. بر این اساس و با توجه به این که دو شرط ۲ شده‌هستند، نتایج حاضر از

Fet/(Fet + Mg) در افمی‌پلوهای شمال شهروند و به طور کلی پاتی‌های کرنش‌های فرار آنها، مقدار می‌باشد که مشابه

نیز به کار گرفته شوند [12]. معاودات مورد استفاده برای

تʻبعین شارف افمی‌پلوه‌ها در شرایط خاص هم‌سنجی شدهاند.

به عنوان مثال اسپت (۱۹۹۳) معاودات خود را در دامای

در حدود ۶۷۵ و چنان و رادرفورد (۱۹۸۹) نیز در

۷۴۰ مدل خود را هم‌سنجی کرده و به این دلیل می‌توان

پس از محاسبه دمای مشابه کلی افمی‌پلوه به روی‌شان دیگر

و یا با استفاده از رابطه عمق - دما، فشار محاسبه شده را

تعیین کرد. به عنوان مثال اندرون رابطه اشتباهی با به صورت زیر تصدیق کرد [۷].

\[
P(±0.6kbar) = 4.76.4/3.01 - \left(\frac{P_0}{C_0} - 675\right)^{0.85} \times \left(0.530 \cdot P + 0.00520\left(\frac{P_0}{C_0} - 675\right)\right)
\]

به عبارتی جنچه میزان اولمینیم کل به تر متوسط ۲ در نظر

گرفته شود و با ترکیب دوی محاسبه شده نیز نیما بر انجام در

بخش پیشین بیان شد ۶۱۵ درجه سانتی‌گراد باشد. فشار

تصدیق شده مراحل ۸۵۱ کیلوبار است. بنابراین با این دیگر

فشارهای محاسبه شده به روی‌شان تجربی پیش گامته نیا

۱ کیلوبار کمتر از مقدار اقرب است که تأثیر نگه‌داشته در

محاسبه دما و عمق تصدیق افمی‌پلوه‌ها ندارد. در هر صورت

در تمام شیوه‌های تجربی هم‌سنجی مشابه بین دما و فشار

محاسبه شده با فشارسنج اولمینیم به نسبت آبی ۵۷۲ در

است [12]. گستره تغییرات شارف از ۱۲۱ کیلوبار بر

۱۰۰۰ درجه سانتی‌گراد است. به عبارتی به افزایش دما به

اندازه ۱.۳ درجه سانتی‌گراد می‌توان. به عبارتی به افزایش دما به

۲ کیلو‌بار هم‌سنجی شود. برای انواع پژوهشگران مختلف بین این

نکته انتخاب نظر داشته از همه این مقدار خاص به این

ویژه بی‌تغییرات و می‌توان در فشارسنج استفاده کرده و

Fe/(Fe + Mg) با انتخاب کردن که نسبت آن بین ۰.۴ تا ۰.۵ و

[14]. در افمی‌پلوه‌ها مورد مطالعه در این گزاره پژوهشی مقدار

پراسته آلی در بین ۰.۳۸ تا ۰.۴۲ بهبود می‌کند. این در حالت
شکل 5 نمودار (I) در برای دما (T°C) در کلیو امفیبول ها، ستون پرونک نشان دهنده دمای تشکیل امفیبول های شمال شرکتر می‌باشد.

(ای: دولوریت)، قرمز: دوریت، سبز: اندریت.)

شکل 6 عمق تشکیل امفیبول های موجود در سنگ‌های آتشفشانی - نیمه عملی شمال شرکتر بر روی نمودار فشار - عمق. مستطیل تیره شناگر محدوده عمیق تشکیل امفیبول ها (17 تا 25 کیلومتر) نمودار براساس داده‌های جدول ۲ ترنسیم شده است.

تعیین محیط تکنوتوناگماپی

پژوهش‌های پیشین نشان داده است که مجموعه‌های آتشفشانی خشک موزوزوپیک (میانه زیستی) در کمربند کوه‌های زاگرس که زون‌های زمین‌ساختی زاگرس مرتفع، زاگرس خیز، خورده ساده و زون سندیج - سیرجان را دربرمی‌گیرند، در موقع حاصل ماساگماتسم خطری از آنکی -قبتا بی‌بن زوراسیک بوده است که به صورت جایگزینی مجارا بر روی پی سنگ پراکندگان در حاشیه‌های جنوبی اوراسیا به ویژه در زون ساختاری سندیج - سیرجان تاراگرفته‌اند [21]. بخش پژوهش - هاگی ساختاری سندیج - سیرجان را از نوع چین‌های بسته و هم راستا در مقیاس کیلومتری می‌دانند [22]. به علاوه مدل برای فرورانش مربوط به کمربند کوه‌های انتونی‌اتوپیک و نواحی مجاور (خورده فاره‌ای ایران) مطرح شده است [23]. [24]. در ترکیب اولین مرحله فرورانش در تریاس پسین رخ داد و باعث تغییر مهیاسی در غلظت تکنوتوناگماپی تأثیر گذاشت [1].
تیمین محیط تکنولوژیکی سنگهای آنتشناوی و نیمه عمق شمال شرق‌تر با استفاده از...
موجب‌الآن، احتمالا در تراس فوق‌البحري و بین بودجه‌ها اقیانوسی نتوانست و بودجه‌های حدواض سندجو-سرجان رخداده است.

مراجع

[1] آقایی، س. ن. بررسی‌های پترولولوژیکی با تکیه بر پهن‌های دَگرسانی و اریزای اتابیست محیطی آنها در بزرگ‌شهر اشناسی شمال شهیدرود، یاپان‌نامه دکتری پترولولوژی (1387) دانشگاه اصفهان، 1345.

