The occurrence of Getchellite (AsSbS₃) at Zarshuran As - Au deposit

M. Karimi

Department of Geology, Islamic Azad University of Shiraz
Email: Karimi_Mehrad@iaushiraz.ac.ir

(Received: 6/6/2008, in revised form: 29/1/2009)

Abstract: The variety of lithologies from Late Precambrian to Quaternary and suitable conditions for mineralization caused formation of Zarshuran gold and arsenic deposit in black schists, shale, limestone and dolomite. The ore paragenesis include As, Sb, Fe, Pb, Zn, Hg sulfides and gold along with fluorite, barite and quartz. The most important alteration is silicification which is more obvious in the ore zone and formed jasperoid. The gold in this deposit is found as very fine grains and is rarely visible. The rare Getchellite occurred in arsenic ore zone of Zarshuran as a red mineral with (001) cleavage. Paragenetically, this mineral is intermediate between As and Sb sulfides. Getchellite found in some epithermal gold deposits, can be used as a gold tracer.

Keywords: Getchellite, Epithermal gold deposits, Zarshuran, Takab.
رخند کانی گچیت (AsSbS$_3$) در کانسار طلا و آرسنیک زرشوران، تکاب

مهداد کریمی
گروه زمین‌شناسی دانشگاه آزاد اسلامی نیشابور
Karimi _ Mehrdad@iaushiraz.ac.ir

چکیده: تنویع سنگ‌شناختی متعلق به اوایل پرمایقینه، ناحیه آباد، و نسبت مناسب کانی‌های موجود تشکیل‌کننده کانسار طلا و آرسنیک زرشوران در افق کانسار شال شیست‌های سیاه، شیل، سنگ آهنک و چندپوشیه‌ای ایجاد کرده است. پرازانت کانی‌های شیست‌های سیاه و سلولفیده‌ای آرسنیک از جنسه‌های آهنی و کربنرییت، و کانسارهای آرسنیکی، کاملاً مهیجی و دگرگونی از نوع سیلیسیسی است که اغلب در افق کانسار کارنتینی به همراهی با کانسارهای زرشوران به صورت دراز بسیار دراز است و به ندرت به صورت قابل دید یافته می‌شود. کانی گچیت در کانسارهای آرسنیکی کانسار زرشوران به صورت یک کانی سرخ رنگ با رخ (۱۰۱) بافت شده است. این کانی از نظر پرامایقینه به عنوان کانی حد وسط سنگ‌شناختی آرسنیکی و آنتیمیان به وجود آمده است. 

واژه‌های کلیدی: گچیت، کانسارهای طلای ایبی ترمال، وجود این کانی می‌تواند نشان دهنده احتمال رخند طلا در این نوع کانسارها باشد.

مقدمه
ناحیه شمال بیک ناحیه مهم از گچیت‌های طلا و آرسنیک در سنگ‌های زمانی مربوط به قرون می‌شود. از مهم‌ترین کانسارهای این ناحیه می‌توان از کانسارهای زرشوران و آنتریم نام نام برد. ویژگی مهم این کانسارها تمرکز بیشتر بر روی آرسنیک، جیوه و انتیمیان و طلاست [۱، ۲].

کانی گچیت یکی از کانی‌های نادر به شمار می‌رود که علاوه بر زرشوران در تعداد معنی‌داری از کانسارهای طلای ایبی ترمال ازجمله کارنتینی، کانگولومولات کانی گچیت شده است [۳-۵]. این کانی برای اولین بار در سال ۱۳۴۴ توسط

4-Bariand
5-Weissberg

1-Carlin
2-Getchell
3- Humboldt county
خرداد کانی گچیت (۱) (۹) در کانسار طلا و آرسنیک زرشوران، نکاب

نارک‌لاه دیولومت، شیل و میکائیسته‌های سیاه رنگ روی

وی‌های چندی قدرتی قرار گرفته و سنگ گریزان اصلی کانسار را

تشکیل می‌دهد (شکل ۳). تئورتی و رولگی‌های اسیدی قره

دان‌ها هم از خروجی گریتایوندی دوران محسوب می‌شود.

روی واحدهای زرشوران قرار می‌گیرند. در بخش باختری منطقه

واحدهای دیولومتی ماده با سلولاره، شیل و دیولومت معادل

با سانزند باروت و زاگن و ماسه سنگ لانه به طور هم شیب

روی واحدهای قره دان قرار گرفته‌اند.

پس از یک دور تنشی طولانی از آپورپسین تا

الگوسن، به‌طور مداوم دربیان الگوسون موجود بوده‌است

کانکلوماتی نبش، شیل‌های میکادر و ماسه سنگ‌های اهکی

الگوسون (معادل سنزند) روی واحدهای قدیمی تر شده‌است.

بخش آهکی واحد قم در نوشی‌های سبزی به آهک رنگی

تبییل می‌شود که حاوی طباعی خارتن، مرجان‌ها و دوکته‌های

قراوانی است. نشانه‌های آوریا معادل با سانزند سرخ فوکانی

مشابه از نیاپودیه ماسه سنگ‌های آهک سرخی، رسی، مارن و

میکروکانکلومار، جدیدترین واحد رسوبی دربیانی منطقه را

تشکیل می‌دهد. در کناره‌های منطقه جنوبی آن‌ها از چند آن‌های

تا راکی آب‌نوردی با شب مایی روی سانزند سرخ فوکانی قرار

می‌گیرند. نشانه‌های جمهوری اب گرم از نوع ترازرت در

برخی از مناطق رنگ‌هایی روی شکل‌های داده‌اند که نشانگر

فعالیت گرما در منطقه است.

های بیشتری در منطقه زرشوران برا ی بررسی خاستگاه طلا

صورت گرفت.

روش مطالعه

این کار پژوهشی بخشی از بررسی‌های گسترش کانی‌شناسی و

زمین‌شناسی و توسط دکتر دهان و در کانسار زرشوران تحقیل می-

دهد.

تعداد ۴ تومه از کانی‌شناسی با استفاده از میکروسکوپ

الکترونی درس‌نامه زمین‌شناسی کشور مورد بررسی قرار

گرفته‌اند. در طی بررسی کانی‌شناسی ارتباط و توالی زاگی‌کارهای

و جابجایی کانی‌شناسی بررسی و داده‌های بدست آمده مورد

تجزیه و تحلیل قرار گرفته‌اند.

زمین‌شناسی منطقه زرشوران

کانسار زرشوران در شمال باختری ایران و در ۴۴ کیلومتری

شمال شهرستان نکاب و ۸ کیلومتری شمال‌غربی روستای

ساختاری زمین‌شناسی در زوئ سنندج- سیرجان قرار می‌گیرد.

پی سنگ منطقه شامل دو مجموعه از سنگ‌های دگرونوی است.

که مجموعه ایمن خان با ترکیب آمیزون - اپیدوت شیست،

سرپت‌تن شیست، سرپت‌شیست - کلراست شیست، کوارتز

میکائیست و کالک شیست در بخش زیرین و مجموعه جالگاه

با ترکیب مرمر و کالک شیست در بخش فوقانی آن قرار دارد.

این مجموعه دگرونوی و برگه‌های رخ‌دار شیست سبز را

نشان می‌دهد (۹). واحدهای سنگ زرشوران به نشانه‌های آهک
رشاد کاّنی گچیت (AsSbS$_3$) در کانسار طلا و آرسنیک روشوران، تکاب

شکل 1: نقشه موقعیت جغرافیایی کانسار طلا و آرسنیک روشوران در شمال باختري ایران.
شکل 2 نقشه زمین شناسی گستره کاسار زرشوران [9].

کانی سازی
در ناحیه معده زرشوران کانی سازی طلا و آرسینیک بیشتر در واحد زرشوران از جنس دوپاسیت، اهنگ، شیل و میکاپیت‌سنتر های سیاه رنگ صورت گرفته است. کانی سازی به موارد محرور چنین خورده تا دو پیست انبوه به صورت شمال باختری یا جنوب خاوری است. تولید های استخراج معده در راستای انباسه‌های این از آرسینیک حفر شدند. رزگ کانینگدل، اصلی به طور متوسط در حدود 30 متر ضخامت داشته و کانی‌سازی به صورت سولفیده‌ای آرسینیک، اهن، آنتیموان، سرب، رود، جیوه، همراه با طلا، فلوریت، باریت و کوارتز درخش‌های مختلف معده قابل رویت است.

اریبرنت کانی غالب آرسینیک در زرشوران است و وجود بافت کلوفرم در هراز کانی ناشناخته درمان روی تشکیل کانی است. کانی‌های اریبرنت و آگار گاه همراه با استینیت دیده می‌شوند.

خواص فیزیک‌شیمیایی و کانی شناسی گچ‌پر کانی سازی
کانی‌های سولفید مشاعه آرسینیک و آنتیموان است که در سیستم‌های ملبی مخلوط می‌شود. این کانی در نمونه‌های به صورت بولکه‌های سرخ رنگ مایل به شکلاتی با رخ کامل به صورت بولکه‌های سرخ رنگ مایل به شکلاتی با رخ کامل
(001) است که این سرشتی آرا از رالگار و سینابر که بدون رخ هستند ممکن است در دست دیگری، بدلی گردد و معمولاً همانا کارخانه‌ای که خود شکل و کشیده و نیز خاصیت در دستیابی به خویش نمی‌توان از آن مقطع تهیه کرد، در نتیجه لازم است مقاطع به آرامی و با دقت تهیه شود. کانی گچیت در مقاطع میکروسکوپی به صورت بلوهای بی‌پولکی، منشوری و تیغه‌ای دیده می‌شود. شکل تیغه‌ای در حالتی دیده می‌شود که مقطع در راستای عمود بر سطح تورق تهیه شده است (شکل ۵ و ۶).

جدول ۱ میانگین توزیع شیمیایی گچیت زرشوران و گچیت Getchellite

<table>
<thead>
<tr>
<th></th>
<th>Getchellite in Zarshuran</th>
<th>Getchellite in Getchell</th>
</tr>
</thead>
<tbody>
<tr>
<td>S (%)</td>
<td>34.24</td>
<td>32.82</td>
</tr>
<tr>
<td>As (%)</td>
<td>26.42</td>
<td>25.09</td>
</tr>
<tr>
<td>Sb (%)</td>
<td>40.01</td>
<td>42.04</td>
</tr>
</tbody>
</table>

شکل ۱ توزیع شیمیایی گچیت در در تورق

شکل ۲ (Go) کانی گچیت در نمونه دستی B: کانی گچیت (Ge) به همراه اثر (Or) و اثر (As) گچیت (Ge) در نمونه دستی A: کانی گچیت (Ge) در نمونه دستی B: کانی گچیت (Ge) در نمونه دستی A: کانی گچیت (Ge) در نمونه دستی B: کانی گچیت (Ge) در نمونه دستی A: کانی گچیت (Ge) در نمونه دستی B: کانی گچیت (Ge) در نمونه دستی A: کانی گچیت (Ge) در نمونه دستی B: کانی گچیت (Ge) در نمونه دستی A: کانی گچیت (Ge) در نمونه دستی B: کانی گچیت (Ge) در نمونه دستی A: کانی گچیت (Ge) در نمونه دستی B: کانی گچیت (Ge) در نمونه دستی A: کانی گچیت (Ge) در نمونه دستی B: کانی گچیت (Ge) در نمونه دستی A: کانی گچیت (Ge) در نمونه دستی B: کانی گچیت (Ge) در نمونه دستی A: کانی گچیت (Ge) در نمونه دستی B: کانی گچیت (Ge) در نمونه دستی A: کانی گچیت (Ge) در نمونه دستی B: کانی گچیت (Ge) در نمونه دستی A: کانی گچیت (Ge) در نمونه دستی B: کانی گچیت (Ge) در نمونه دستی A: کانی گچیت (Ge) در نمونه دستی B: کانی گچیت (Ge) در نمونه دستی A: کانی گچیت (Ge) در نمونه دستی B: کانی گچیت (Ge) در نمونه دستی A: کانی گچیت (Ge) در نمونه دستی B: کانی گچیت (Ge) در نمونه دستی A: کانی گچیت (Ge) در نمونه دستی B: کانی گچیت (Ge) در نمونه دستی A: کانی گچیت (Ge) در نمونه دستی B: کانی گچیت (Ge) در نمونه دستی A: کانی گچیت (Ge) در نمونه دستی B: کانی گچیت (Ge) در نمونه دستی A: کانی گچیت (Ge) در نمونه دستی B: کانی گچیت (Ge) در نمونه دستی A: کانی گچیت (Ge) در نمونه دستی B: کانی گچیت (Ge) در نمونه دستی A: کانی گچیت (Ge) در نمونه دستی B: کانی گچیت (Ge) در نمونه دستی A: کانی گچیت (Ge) در نمونه دستی B: کانی گچیت (Ge) در نمونه دستی A: کانی گچیت (Ge) در نمونه دستی B: کانی گچیت (Ge) در نمونه دستی A: کانی گچیت (Ge) در نمونه دستی B: کانی گچیت (Ge) در نمونه دستی A: کانی گچیت (Ge) در نمونه دستی B: کانی گچیت (Ge) در نمونه دستی A: کانی گچیت (Ge) در نمونه دستی B: کانی گچیت (Ge) در نمونه دستی A: کانی گچیت (Ge) در نمونه دستی B: کانی گچیت (Ge) در نمونه دستی A: کانی گچیت (Ge) در نمونه دستی B: کانی گچیت (Ge) در نمونه دستی A: کانی گچیت (Ge) در نمونه دستی B: کانی گچیت (Ge) در نمونه دستی A: کانی گچیت (Ge) در نمونه دستی B: کانی گچیت (Ge) در نمونه دستی A: کانی گچیت (Ge) در نمونه دستی B: کانی گچیت (Ge) در نمونه دستی A: کانی گچیت (Ge) در نمونه دستی B: کانی گچیت (Ge) در نمونه دستی A: کانی گچیت (Ge) در نمونه دستی B: کانی گچیت (Ge) در نمونه دستی A: کانی گچیت (Ge) در نمونه دستی B: کانی گچیت (Ge) در نمونه دستی A: کانی گچیت (Ge) در نمونه دستی B: کانی گچیت (Ge) در نمونه دستی A: کانی گچیت (Ge) در نمونه دستی B: کانی گچیت (Ge) در نمونه دستی A: کانی گچیت (Ge) در نمونه دستی B: کانی گچیت (Ge) در نمونه دستی A: کانی گچیت (Ge) در نمونه دستی B: کانی گچیت (Ge) در نمونه دستی A: کانی گچیت (Ge) در نمونه دستی B: کانی گچیت (Ge) در نمونه دستی A: کانی گچیت (Ge) در نمونه دستی B: کانی گچیت (Ge) در نمونه دستی A: کانی گچیت (Ge) در نمونه دستی B: کانی گچیت (Ge) در نمونه دستی A: کانی گچیت (Ge) در نمونه دستی B: کانی گچیت (Ge) در نمونه دستی A: کانی گچیت (Ge) در نمونه دستی B: کانی گچیت (Ge) در نمونه دستی A: کانی گچیت (Ge) در نمونه دستی B: کانی گچیت (Ge) در نمونه دستی A: کانی گچیت (Ge) در نمونه دستی B: کانی گچیت (Ge) در نمونه دستی A: کانی گچیت (Ge) در نمونه دستی B: کانی گچیت (Ge) در نمونه دستی A: کانی گچیت (Ge) در نمونه دستی B: کانی گچیت (Ge) در نمونه دستی A: کانی گچیت (Ge) در نمونه دستی B: کانی گچیت (Ge) در نمونه دستی A: کانی گچیت (Ge) در نمونه دستی B: کانی گچیت (Ge) در نمونه دستی A: کانی گچیت (Ge) در نمونه دستی B: کانی گچیت (Ge) در نمونه دستی A: کانی گچیت (Ge) در نمونه دستی B: کانی گچیت (Ge) در نمونه دستی A: کانی گچیت (Ge) در نمونه دستی B: کانی گچیت (Ge) در نمونه دستی A: کانی گچیت (Ge) در نمونه دستی B: کانی گچیت (Ge) در نمونه دستی A: کانی گچیت (Ge) در نمونه دستی B: کانی گچیت (Ge) در نمونه دستی A: کانی گچیت (Ge) در نمونه دستی B: کانی گچیت (Ge) در نمونه دستی A: کانی گچیت (Ge) در نمونه دستی B: کانی گچیت (Ge) در نمونه دستی A: کانی گچیت (Ge) در نمونه دستی B: کانی گچیت (Ge) در نمونه دستی A: کانی گچیت (Ge) در نمونه دستی B: کانی گچیت (Ge) در نمونه دستی A: کانی گچیت (Ge) در نمو
پارازن و چگونگی تشکیل کانی چگلیت

ماهیت پراکندگی کانیها و فقدان ارتباط کلی بین مشخصه‌های ذراتی در کانی‌های زرسوران، تعیین توالی کانی‌هایی و رخدادهای متنوعی را مشکل ساخته است. باید وجود با بررسی‌های انجام شده توالی رایج کانی‌ها در زرسوران به سه مرحله کانی‌های درون‌زا یعنی کانی‌هایی و کانی‌هایی که در این مرحله قابل تشخیص هستند در مرحله گروه‌های در شرایط اپیر ترمال ایکسی های جنوبی کانی‌های چگلیت زرسوران.

کانی‌هایی که در این مرحله قابل تشخیص هستند در مرحله گروه‌های در شرایط اپیر ترمال ایکسی های جنوبی کانی‌های چگلیت زرسوران.

کانی‌هایی که در این مرحله قابل تشخیص هستند در مرحله گروه‌های در شرایط اپیر ترمال ایکسی های جنوبی کانی‌های چگلیت زرسوران.

کانی‌هایی که در این مرحله قابل تشخیص هستند در مرحله گروه‌های در شرایط اپیر ترمال ایکسی های جنوبی کانی‌های چگلیت زرسوران.

کانی‌هایی که در این مرحله قابل تشخیص هستند در مرحله گروه‌های در شرایط اپیر ترمال ایکسی های جنوبی کانی‌های چگلیت زرسوران.

کانی‌هایی که در این مرحله قابل تشخیص هستند در مرحله گروه‌های در شرایط اپیر ترمال ایکسی های جنوبی کانی‌های چگلیت زرسوران.

کانی‌هایی که در این مرحله قابل تشخیص هستند در مرحله گروه‌های در شرایط اپیر ترمال ایکسی های جنوبی کانی‌های چگلیت زرسوران.

کانی‌هایی که در این مرحله قابل تشخیص هستند در مرحله گروه‌های در شرایط اپیر ترمال ایکسی های جنوبی کانی‌های چگلیت زرسوران.

کانی‌هایی که در این مرحله قابل تشخیص هستند در مرحله گروه‌های در شرایط اپیر ترمال ایکسی های جنوبی کانی‌های چگلیت زرسوران.

کانی‌هایی که در این مرحله قابل تشخیص هستند در مرحله گروه‌های در شرایط اپیر ترمال ایکسی های جنوبی کانی‌های چگلیت زرسوران.

کانی‌هایی که در این مرحله قابل تشخیص هستند در مرحله گروه‌های در شرایط اپیر ترمال ایکسی های جنوبی کانی‌های چگلیت زرسوران.

کانی‌هایی که در این مرحله قابل تشخیص هستند در مرحله گروه‌های در شرایط اپیر ترمال ایکسی های جنوبی کانی‌های چگلیت زرسوران.

کانی‌هایی که در این مرحله قابل تشخیص هستند در مرحله گروه‌های در شرایط اپیر ترمال ایکسی های جنوبی کانی‌های چگلیت زرسوران.

کانی‌هایی که در این مرحله قابل تشخیص هستند در مرحله گروه‌های در شرایط اپیر ترمال ایکسی های جنوبی کانی‌های چگلیت زرسوران.

کانی‌هایی که در این مرحله قابل تشخیص هستند در مرحله گروه‌های در شرایط اپیر ترمال ایکسی های جنوبی کانی‌های چگلیت زرسوران.

کانی‌هایی که در این مرحله قابل تشخیص هستند در مرحله گروه‌های در شرایط اپیر ترمال ایکسی های جنوبی کانی‌های چگلیت زرسوران.

کانی‌هایی که در این مرحله قابل تشخیص هستند در مرحله گروه‌های در شرایط اپیر ترمال ایکسی های جنوبی کانی‌های چگلیت زرسوران.

کانی‌هایی که در این مرحله قابل تشخیص هستند در مرحله گروه‌های در شرایط اپیر ترمال ایکسی های جنوبی کانی‌های چگلیت زرسوران.

کانی‌هایی که در این مرحله قابل تشخیص هستند در مرحله گروه‌های در شرایط اپیر ترمال ایکسی های جنوبی کانی‌های چگلیت زرسوران.
رخند کاتی گچیت (AsSbS₃) در کانسار طلا و آرسنیک زرشوران، تکاب

جدول ۲ تولید کاتی‌ها در کانسار زرشوران در سه مرحله کاتی سازی درون‌زایی-رسوبی، گرمایی و اکسیژن-آبزنایی

<table>
<thead>
<tr>
<th>شماتیک</th>
<th>Time</th>
<th>Hydrothermal</th>
<th>Osmide</th>
<th>Dewatering</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quartz</td>
<td>Pyrite 1</td>
<td>Pyrite 3</td>
<td>Chalcopyrite</td>
<td>Sulfide 2</td>
</tr>
</tbody>
</table>

افتراش سب سبین (AsSbS₃) از قندت کاتی بولنریزت کاسته شده و کاتی Sb سبین (Sb₂S₃) طی روند صعود کمپلکس‌های متراکمتر هنگام است. 

افتراش برونیت (FeS₂) بیشتر با کانس همراه است. از این نظر می‌تواند کاتی گچیت به عنوان کاتی‌های جدید و ارسنیک‌دار نتیجه‌گیری شود. 

برای انتقال و نهش طلا در این منطقه مناسب بوده است. به همین دلیل کاتی طلا بیشتر با کانس ارسنیک‌دار معین از زمان آغاز فاز پیداشت. گچیت تا فازهای آخر کانس سازی همراه با این شرایط کانسی نیز ممکن است. 

به همین لحاظ، در این شرایط فاز آسیب‌دار کانس نمی‌تواند مشاهده شود. به همین لحاظ، در این شرایط فاز آسیب‌دار کانس نمی‌تواند مشاهده شود.

به همین لحاظ، در این شرایط فاز آسیب‌دار کانس نمی‌تواند مشاهده شود.
رخداد کانی گچیت (AsSbS3) در کنار است ظهور، نکاب

با کاهش بیشتر دما و فشار و جمع بون Sb
سولفیدهای آرسنیک نظیر آرگون (AsS) و آرسنیت (As2S3) و اریمنت (As2SbS3) روی سطح یک خاک چرب تا رما آگاهی که خاک آن است در
قاچاق جدید مالایی در فشار و دما پایین آبگون، سیالی (HgS) وریکت گل‌کاری تشکیل شده است.

بررسی‌های صحرایی نشان می‌دهد، که ورود آبگون از
منطقه سولفیدکن به سلفیدهای عالی‌پایه تولید شده و در اثر اکسیداسیون و ورود فلز نشینی فیلتر تزریق قطعات آسیایی کلی است
۱۷-۶۴۰. به همین دلیل نیاز به سلول‌سنجی پیشرفته داشته‌ام فاصله‌ای از طلا بوده و خود
کانتکس طلا به شمار می‌رسد.

یک تولید خاصی از کانی‌های اولیه و در اثر: علل جوی بر روی آنها قابلیت تولید و برداشت ذرات در منطقه یک جزء
که در این مقاله کانی‌های سولفیدی آرسنیک است در
تمامی این کانی‌های سولفیدی آرسنیک و
آرسنیت و در شرایط باعث شکل‌گیری
تعدادی حمایت کننده تولید می‌شود که در نشست طلا

برداشت
کانی گچیت یکی از کانی‌های است که فقط در کنار‌سایه‌ای
تمال با تمرکز سولفیدهای آرسنیک و آرسنیوت دیده می‌شود.
این کانی به عنوان کانی حاد و این سولفیدها آرسنیک و
آرسنیوت و در شرایط باعث شکل‌گیری
تعدادی حمایت کننده تولید می‌شود که در نشست طلا

بین‌تکراری و قدردانی

از دو گروه تولید داده‌های سانزده دان‌می و محلمی در اثر
بهتر مقایسه با سایرگزاری می‌شود.

مراجع
[3] [کریمی، مهربان، دانشگاه سیستان و لر، دانشگاه سیستان و]
نحوه انتقال کانال و آرسنیک از خاک به سلول‌سنجی
نامه کارشناسی ارشد دانشگاه تربیت معلم تهران، (1372) ۲۶۴ ص.