Geochemical and petrographic study of common minerals in the Taftan volcanic Rocks

H. Biabangard¹, A. Moradian²

¹- Department of Geology, Sistan and Baluchestan University, Zahedan, Iran
²- Department of Geology, Shahid Bahonar University of Kerman, Iran
Email: h.biabangard@yahoo.com

Abstract: Taftan volcano, is located in about 100 Km South to Southeast of Zahedan, Sistan and Baluchestan province in southeast of Iran. On geological point of view, it is located at the end of Nehbandan-Khash flysch and North Makran structural zones. Field, petrographic and geochemical studies from different samples of rocks show that the volcano mostly composed of andesitic and dacitic rocks. These rocks have no variety in mineralogy and mainly composed of plagioclase, biotite, hornblende and pyroxene minerals. Microanalyses on these minerals show that plagioclases are common minerals with reversal, oscillatory and normal zoning and are andesine to labradorite in chemical composition. Plagioclases have 57.2 to 60.2 wt% Silica contents in composition. These mineral shows variation in composition from the core to rim that is correlative with the microscopic evidence and may be resulted by changes in magma composition accompanied with pressure changes during the ascent of magma, magma mixing and variation in water pressure in magma. Structural formulate indicate that amphiboles, micas and pyroxenes minerals are magnesiohornblende, biotite, diopside and hystrephene composition, respectively.

Keywords: Taftan, Sistan and Baluchestan, Makran, Microanalyses.
بررسی سنگ شناختی و زئوژیمیایی کانی‌های اصلی سازنده سنگ‌های آنتیفقانی تفتان

حیت الله بیابان گردر، عباس مرادیان

1- دانشگاه سیستان و بلوچستان، دانشکده علوم، گروه زمین‌شناسی
2- دانشگاه شهید بهشتی، دانشکده علوم، گروه زمین‌شناسی
پست الکترونیکی: k.biabangard@yahoo.com

(دریافت مقاله: 27/08/1390، نسخه نهایی: 27/08/1390)

چکیده: کوه آنتیفقانی تفتان در جنوب خاوری ایران، استان سیستان و بلوچستان، به فاصله حدود یکصد کیلومتری جنوب و جنوب خاوری شهر زاهدان قرار دارد. از دیدگاه زمین‌شناسی این آنتیفقان در انتهای زون ساختمانی فلیش نهندان - خاش و شمال یک مکان واقع شده است. بررسی‌های سنجشی، سنگ‌شناختی و زئوژیمیایی نشان می‌دهد که سنگ‌های این آنتیفقان اغلب در حالت ترکیب اندزیتی تا داسیتی‌ای سنگ‌های تنواع کانی‌های بادکی زیادی تدار و معمولاً از کانی‌های اصلی پلاژیوکلاز، کوارتز، بیوتیت، هور البندر، و پیروکسین تشکیل شده‌اند. رژیم‌زنازانی انجام شده روی کانی‌های این سنگ‌ها نشان می‌دهد که پلاژیوکلازها فراوان، اغلب در همان منطقه بوده و بوده و گستره ترکیبی آن‌ها از اندزیت تا لاجوردور بوده است. مقداربرایس دسی‌کسیم آن‌ها معمولاً از ۵۰ تا ۵۲، و روی میکروسکوپی آن‌ها بوده که احتمالاً حاصل عوامل چون تغییرات ترکیبی سنگ‌های ماکا ممکناً تا تغییرات فشار، اختلاط ماکا، زئوژیمیایی و تغییرات فشار بخار بدن در این آنتیفقان است. فرمول ساختمانی آنتیفقان این میکا و پیروکسین‌های موجود در سنگ‌های این آنتیفقان نشان می‌دهد که ترکیب آن‌ها غالباً پیروکسین‌های مینرال‌دار، بیوتیت، هور بندی و دریبدت است.

واژه‌های کلیدی: تفتان، سنگ‌شناسی و بولوچستان، مکران، رژیم‌زنازانی

مقدمه

ایران دارای فعالیت‌های گسترده آنتیفقانی در طول زمان بوده است که از جمله آن‌ها فعالیت‌های آنتیفقانی کرانه‌ای تا کوارتز‌های این آنتیفقان ادامه دارد و سیستم‌های آن‌ها جوان کوارتزی چون آراز در ترکیب هرم از ایران در شمال باختری (سوت، سبزی، دمآوان، بزان، تفتان در ایران، و کوه سلطان در پاکستان) در ترتیبی از جنوب خاوری شده‌اند. در تحقیقات دیگر آنتیفقان تفتان در کردستان، فعال زئوژیمیایی مکران قرار می‌گیرد (شکل 1). بررسی‌های گسترده انجام شده روی
رشته شناسی آنتفیشان تفتان
تفتان یک آنتفیشان مركب لایه‌ای (استراتو ولکان) است. ارتفاع تقریبی آن ۴۰۰۰ متر از نواحی برخی دریا و ۲۰۰۰ متر از زمین پیرامون است. و مساحت در حدود ۱۳۰۰ کیلومتر مربع را می‌شود. بهترین راه دسترسی به این آنتفیشان مسیر جاده آسفالته زاهدان- خاش است. این آنتفیشان دارای قلهم‌های متعددی پناه‌ی در جنوب خاوری تا انداره‌ای شکل مخروطی خو مدّق یا به

شکل ۱ موقعیت زون‌های ساختاری مهم ایران همراه با گسترش نودهای نفوذی، خروجی و موقعیت آنتفیشان تفتان [افتبات از ۳۲۲]
جهش‌های آب گرم پیرامون، بینایی از جوان بودن آن است.

(شکل ۲)

وسیله جریان غازهای ضخیم و جوان بودن شده است. خروج گازهای فیبرولی (فون اگراما) از دهانه این انتشال و (شکل ۲) دورنمایی از ریختشناسی کوه آنتشالی نفتان (مادکره و ترکوه).

زمین‌شناسی عمومی نفتان

در یک نوادگان کلی می‌توان رخسارهای سنگی این انتشال را در سه گروه سنگ‌های قدیمیتری از فعالیت‌های انتشالی نفتان، سنگ‌های حاصل از فعالیت‌های نفتان و سنگ‌های پس از فعالیت نفتان تقسیم بندی کرد.

گروه نخت یپ سنس انتشال نفتان بوده و پیش‌تر از سنگ‌های تغنشتی (جاون ماسه سنگ، شیل، سنگ اکیا، ترکیب‌های رخسارهای سنگین شال سنگ‌های اولترامافیک، بریدوئیدیتی‌ها، بازیک (گاوره‌ها و پاپیول‌ها)، اکمال‌های پلاژیت‌ها، رادیولاورت‌ها) و یا مقدار کمتر مجموعه سنگ‌های دگرگون (مانگورک‌ها، فیلتا، اسلیت‌ها و شیست‌ها) تشکیل شده‌اند (شکل ۳).

(شکل ۳)

گروه دوم عمدی محصولات انتشالی نفتان، پیش‌تر از سنگ‌های آذرواریونی که در تناوب با آنها جریان‌های گداره‌ای موجود ای نسبت به فراوانی دیده می‌شود. علاوه بر این، حجم زیادی از سخت‌تری انتشال نفتان گداره‌های ایگیچی‌تری و تغنشتی به‌صورت اختصاص داده‌اند. این سنگ‌های نفتان را با فله‌های گرانریزی و نکس‌های تکسیم‌بندی کرد. نخست سنگ‌های آذرواریونی و جریان‌های گداره‌یک که به طور مستقیم روی واحدهای گره نخست قرار گرفته‌اند (شکل ۴) و مزر آنها با مجموعه‌های زیرین در اغلب نقاط به خوبی دیده می‌شود. در قاعدتاً، این واحدهای رخسارهای گروه آذرواریونی بیشتر به صورت بر، ایگیچی‌تری، انتشال‌های پیوسته و خاک‌ریز با ضخامت‌های متغیر هستند (شکل ۳) واحدهای Q1. این مجموعه در اغلب نقاط واحدهای تونفی به‌رنگ Q2.
حجم بیشتر واحد‌های درگسا را توجه به ترکیب استبداد تا حد واسط تشکیل می‌دهند.

درگسایی و جابه‌جا‌یابی های قطعه‌های آتش‌نشانی‌اند، و زون‌های درگسایی یک درگسایی که از درون نسبی بسیار بالایی برخوردارند در اغلب مجموعه‌های آتش‌نشانی به چشم می‌خورند.

شکل ۳ نقشه زمین‌شناسی کوه آتش‌نشانی تفتان (اقتباس از [۲۸] با تبهیه‌های اساسی).

شکل ۴ آلیاژ تفتان‌ها فلیش (درازه) و آدرآوری‌های تفتان (در بالا در جواری روستای نارون. ب) توالی جریان‌های گداردای و سنگ‌های آدرآوری‌های تفتان حولی روستای تفتان.

روش بررسی
پس از بررسی‌های صحرایی و میکروسکوپی نمونه‌های سنگی جمع‌آوری شده، با توجه به امکانات موجود، تعداد 40 نمونه سنگی برای آنالیز عناصر اصلی سنگ‌های آن با دستگاه ICP در ALS Chemex شرکت به کانادا ارسال شدند. این نمونه‌ها با دقت بالا تجزیه و با نمونه‌های تجزیه شده قبلی از Rigaku آتش‌نشان تفتان که با پروانه X فلورورسان ریگاکو (XRF 327) در دانشگاه آکبیا زاین انجام شده بود [12] مقایسه و درستی آن‌ها مورد بررسی قرار گرفتند. برای بررسی زئوپتیوجی‌های اصلی تفتان با توجه به امکانات محدود.
جدول 1 تحلیل شیمیایی اپسیده‌های عناصر الیاف با دستگاه (Wt%) ICP-MS

<table>
<thead>
<tr>
<th>SampleNo</th>
<th>SiO2</th>
<th>Al2O3</th>
<th>Fe2O3</th>
<th>CaO</th>
<th>MgO</th>
<th>Na2O</th>
<th>K2O</th>
<th>Cr2O3</th>
<th>TiO2</th>
<th>MnO</th>
<th>P2O5</th>
<th>SbO</th>
<th>Ba</th>
<th>LOI</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>TSM-137</td>
<td>104</td>
<td>175</td>
<td>91</td>
<td>59</td>
<td>64</td>
<td>55</td>
<td>55</td>
<td>21</td>
<td>55</td>
<td>34</td>
<td>21</td>
<td>40</td>
<td>8</td>
<td>55</td>
<td>137</td>
</tr>
<tr>
<td>TSM-139</td>
<td>104</td>
<td>175</td>
<td>91</td>
<td>59</td>
<td>64</td>
<td>55</td>
<td>55</td>
<td>21</td>
<td>55</td>
<td>34</td>
<td>21</td>
<td>40</td>
<td>8</td>
<td>55</td>
<td>137</td>
</tr>
</tbody>
</table>

گروههای، اپسیده‌ها، و لاستونیت، روتین، اسپکتومتیست، رودیت، کرومات، و اکسیدنیک بوده‌اند. قطر برخی از این کلیه‌ها است. نتایج انالیز نمونه‌های سگی، ریز‌پوستاری و فرمول‌سازی به ترتیب در جدول‌های 1، 2 و 4 ارائه می‌شوند. فرمول کانی‌های پاپت‌کلاژن و پارتیکل، به‌عنوان محاسبه نشده، تعداد ۴ نمونه سنگی با شماره‌های ۱۳۹، ۱۳۷، TSM-152 و TSS-49 برای آنالیز کامپیوتر پاپت‌کلاژن. پارتاکرون و کلیپیدریپس، آمپیوز، بیونید، و تیناگِنگیت انتخاب شد. زیز پدالیت با یک ابر پدالیت گروه‌های افزایش ۲۰ کلویول و خودکاکل مدل XJA-8600 با ولتاژ شاره‌هایی ۲۰ کلویول و جریان ۱۰ نانوامپر در مرکز تحقیقات و فناوری مواد مدفون ایران صورت گرفت. استانداردهای استفاده شده، آلیت، پریکلاژ.
<table>
<thead>
<tr>
<th>Sample</th>
<th>Core</th>
<th>PL1</th>
<th>PL2</th>
<th>PL3</th>
<th>PL4</th>
<th>PL5</th>
<th>PL6</th>
<th>PL7</th>
<th>PL8</th>
</tr>
</thead>
<tbody>
<tr>
<td>PI1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PI2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PI3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PI4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PI5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PI6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PI7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PI8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sample</th>
<th>Core</th>
<th>TSM-151</th>
<th>TSM-152</th>
<th>TSM-153</th>
<th>TSM-154</th>
<th>TSM-155</th>
<th>TSM-156</th>
<th>TSM-157</th>
<th>TSM-158</th>
</tr>
</thead>
<tbody>
<tr>
<td>PI1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PI2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PI3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PI4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PI5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PI6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PI7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PI8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sample</th>
<th>Core</th>
<th>TSM-151</th>
<th>TSM-152</th>
<th>TSM-153</th>
<th>TSM-154</th>
<th>TSM-155</th>
<th>TSM-156</th>
<th>TSM-157</th>
<th>TSM-158</th>
</tr>
</thead>
<tbody>
<tr>
<td>PI1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PI2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PI3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PI4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PI5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PI6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PI7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PI8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sample</th>
<th>Core</th>
<th>TSM-151</th>
<th>TSM-152</th>
<th>TSM-153</th>
<th>TSM-154</th>
<th>TSM-155</th>
<th>TSM-156</th>
<th>TSM-157</th>
<th>TSM-158</th>
</tr>
</thead>
<tbody>
<tr>
<td>PI1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PI2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PI3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PI4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PI5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PI6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PI7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PI8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sample</th>
<th>Core</th>
<th>TSM-151</th>
<th>TSM-152</th>
<th>TSM-153</th>
<th>TSM-154</th>
<th>TSM-155</th>
<th>TSM-156</th>
<th>TSM-157</th>
<th>TSM-158</th>
</tr>
</thead>
<tbody>
<tr>
<td>PI1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PI2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PI3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PI4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PI5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PI6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PI7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PI8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
جدول 3 آنالیز شیمیایی آمفیبول‌های موجود در سنگ‌های آنتشفانی تفتان.

<table>
<thead>
<tr>
<th>Sample</th>
<th>AM-1</th>
<th>AM-2</th>
<th>AM-3</th>
<th>AM-4</th>
<th>AM-5</th>
<th>Core</th>
<th>TSS-49</th>
<th>Rim</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO₂</td>
<td>0.93</td>
<td>0.95</td>
<td>0.97</td>
<td>0.92</td>
<td>0.96</td>
<td>5.22</td>
<td>5.27</td>
<td>5.22</td>
</tr>
<tr>
<td>TiO₂</td>
<td>0.94</td>
<td>0.97</td>
<td>0.94</td>
<td>0.97</td>
<td>0.94</td>
<td>1.98</td>
<td>1.98</td>
<td>1.98</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>0.98</td>
<td>0.95</td>
<td>0.91</td>
<td>0.95</td>
<td>0.91</td>
<td>0.23</td>
<td>0.23</td>
<td>0.23</td>
</tr>
<tr>
<td>Fe₂O₃</td>
<td>1.01</td>
<td>1.02</td>
<td>1.03</td>
<td>1.00</td>
<td>1.02</td>
<td>0.23</td>
<td>0.23</td>
<td>0.23</td>
</tr>
<tr>
<td>MnO</td>
<td>0.97</td>
<td>0.98</td>
<td>0.94</td>
<td>0.97</td>
<td>0.95</td>
<td>0.23</td>
<td>0.23</td>
<td>0.23</td>
</tr>
<tr>
<td>MgO</td>
<td>0.95</td>
<td>0.93</td>
<td>0.99</td>
<td>1.03</td>
<td>0.93</td>
<td>0.24</td>
<td>0.24</td>
<td>0.24</td>
</tr>
<tr>
<td>CaO</td>
<td>1.15</td>
<td>1.14</td>
<td>1.05</td>
<td>1.15</td>
<td>1.05</td>
<td>0.24</td>
<td>0.24</td>
<td>0.24</td>
</tr>
<tr>
<td>Na₂O</td>
<td>1.19</td>
<td>1.18</td>
<td>1.18</td>
<td>1.18</td>
<td>1.18</td>
<td>0.24</td>
<td>0.24</td>
<td>0.24</td>
</tr>
<tr>
<td>K₂O</td>
<td>0.98</td>
<td>0.98</td>
<td>0.98</td>
<td>0.98</td>
<td>0.98</td>
<td>0.24</td>
<td>0.24</td>
<td>0.24</td>
</tr>
<tr>
<td>H₂O</td>
<td>2.13</td>
<td>2.13</td>
<td>2.13</td>
<td>2.13</td>
<td>2.13</td>
<td>0.24</td>
<td>0.24</td>
<td>0.24</td>
</tr>
<tr>
<td>Si</td>
<td>4.97</td>
<td>4.97</td>
<td>4.97</td>
<td>4.97</td>
<td>4.97</td>
<td>0.24</td>
<td>0.24</td>
<td>0.24</td>
</tr>
<tr>
<td>Al</td>
<td>1.10</td>
<td>1.10</td>
<td>1.10</td>
<td>1.10</td>
<td>1.10</td>
<td>0.24</td>
<td>0.24</td>
<td>0.24</td>
</tr>
<tr>
<td>Ti</td>
<td>0.97</td>
<td>0.97</td>
<td>0.97</td>
<td>0.97</td>
<td>0.97</td>
<td>0.24</td>
<td>0.24</td>
<td>0.24</td>
</tr>
<tr>
<td>Mg</td>
<td>3.05</td>
<td>3.05</td>
<td>3.05</td>
<td>3.05</td>
<td>3.05</td>
<td>0.24</td>
<td>0.24</td>
<td>0.24</td>
</tr>
<tr>
<td>O-site</td>
<td>0.97</td>
<td>0.97</td>
<td>0.97</td>
<td>0.97</td>
<td>0.97</td>
<td>0.24</td>
<td>0.24</td>
<td>0.24</td>
</tr>
<tr>
<td>Ca</td>
<td>1.33</td>
<td>1.33</td>
<td>1.33</td>
<td>1.33</td>
<td>1.33</td>
<td>0.24</td>
<td>0.24</td>
<td>0.24</td>
</tr>
<tr>
<td>Na</td>
<td>0.99</td>
<td>0.99</td>
<td>0.99</td>
<td>0.99</td>
<td>0.99</td>
<td>0.24</td>
<td>0.24</td>
<td>0.24</td>
</tr>
<tr>
<td>K</td>
<td>0.10</td>
<td>0.10</td>
<td>0.10</td>
<td>0.10</td>
<td>0.10</td>
<td>0.24</td>
<td>0.24</td>
<td>0.24</td>
</tr>
<tr>
<td>A-site</td>
<td>2.27</td>
<td>2.27</td>
<td>2.27</td>
<td>2.27</td>
<td>2.27</td>
<td>0.24</td>
<td>0.24</td>
<td>0.24</td>
</tr>
<tr>
<td>OH</td>
<td>0.29</td>
<td>0.29</td>
<td>0.29</td>
<td>0.29</td>
<td>0.29</td>
<td>0.24</td>
<td>0.24</td>
<td>0.24</td>
</tr>
</tbody>
</table>

جدول 4 آنالیز شیمیایی کانی‌های بوتیت و پروکس موجود در سنگ‌های آنتشفانی تفتان.

<table>
<thead>
<tr>
<th>Sample</th>
<th>Bi-1</th>
<th>Bi-2</th>
<th>Bi-3</th>
<th>Bi-4</th>
<th>Bi-5</th>
<th>OPX-1</th>
<th>OPX-2</th>
<th>OPX-3</th>
<th>OPX-4</th>
<th>CPX-1</th>
<th>CPX-2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oxides</td>
<td>Core</td>
<td>TSM-193</td>
<td>Core</td>
<td>TSM-152</td>
<td>Core</td>
<td>TSM-152</td>
<td>Core</td>
<td>TSM-152</td>
<td>Core</td>
<td>TSM-152</td>
<td>Core</td>
</tr>
<tr>
<td>SiO₂</td>
<td>0.97</td>
<td>0.98</td>
<td>0.99</td>
<td>0.99</td>
<td>0.99</td>
<td>0.99</td>
<td>0.99</td>
<td>0.99</td>
<td>0.99</td>
<td>0.99</td>
<td>0.99</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>0.97</td>
<td>0.98</td>
<td>0.99</td>
<td>0.99</td>
<td>0.99</td>
<td>0.99</td>
<td>0.99</td>
<td>0.99</td>
<td>0.99</td>
<td>0.99</td>
<td>0.99</td>
</tr>
<tr>
<td>Fe₂O₃</td>
<td>1.01</td>
<td>1.02</td>
<td>1.03</td>
<td>1.00</td>
<td>1.02</td>
<td>0.23</td>
<td>0.23</td>
<td>0.23</td>
<td>0.23</td>
<td>0.23</td>
<td>0.23</td>
</tr>
<tr>
<td>MnO</td>
<td>0.97</td>
<td>0.98</td>
<td>0.94</td>
<td>0.97</td>
<td>0.95</td>
<td>0.23</td>
<td>0.23</td>
<td>0.23</td>
<td>0.23</td>
<td>0.23</td>
<td>0.23</td>
</tr>
<tr>
<td>MgO</td>
<td>0.95</td>
<td>0.93</td>
<td>0.99</td>
<td>1.03</td>
<td>0.93</td>
<td>0.24</td>
<td>0.24</td>
<td>0.24</td>
<td>0.24</td>
<td>0.24</td>
<td>0.24</td>
</tr>
<tr>
<td>CaO</td>
<td>1.15</td>
<td>1.14</td>
<td>1.05</td>
<td>1.15</td>
<td>1.05</td>
<td>0.24</td>
<td>0.24</td>
<td>0.24</td>
<td>0.24</td>
<td>0.24</td>
<td>0.24</td>
</tr>
<tr>
<td>Na₂O</td>
<td>1.19</td>
<td>1.18</td>
<td>1.18</td>
<td>1.15</td>
<td>1.18</td>
<td>0.24</td>
<td>0.24</td>
<td>0.24</td>
<td>0.24</td>
<td>0.24</td>
<td>0.24</td>
</tr>
<tr>
<td>K₂O</td>
<td>0.98</td>
<td>0.98</td>
<td>0.98</td>
<td>0.98</td>
<td>0.98</td>
<td>0.24</td>
<td>0.24</td>
<td>0.24</td>
<td>0.24</td>
<td>0.24</td>
<td>0.24</td>
</tr>
<tr>
<td>H₂O</td>
<td>2.13</td>
<td>2.13</td>
<td>2.13</td>
<td>2.13</td>
<td>2.13</td>
<td>0.24</td>
<td>0.24</td>
<td>0.24</td>
<td>0.24</td>
<td>0.24</td>
<td>0.24</td>
</tr>
<tr>
<td>Si</td>
<td>4.97</td>
<td>4.97</td>
<td>4.97</td>
<td>4.97</td>
<td>4.97</td>
<td>0.24</td>
<td>0.24</td>
<td>0.24</td>
<td>0.24</td>
<td>0.24</td>
<td>0.24</td>
</tr>
<tr>
<td>Al</td>
<td>1.10</td>
<td>1.10</td>
<td>1.10</td>
<td>1.10</td>
<td>1.10</td>
<td>0.24</td>
<td>0.24</td>
<td>0.24</td>
<td>0.24</td>
<td>0.24</td>
<td>0.24</td>
</tr>
<tr>
<td>Ti</td>
<td>0.97</td>
<td>0.97</td>
<td>0.97</td>
<td>0.97</td>
<td>0.97</td>
<td>0.24</td>
<td>0.24</td>
<td>0.24</td>
<td>0.24</td>
<td>0.24</td>
<td>0.24</td>
</tr>
<tr>
<td>Mg</td>
<td>3.05</td>
<td>3.05</td>
<td>3.05</td>
<td>3.05</td>
<td>3.05</td>
<td>0.24</td>
<td>0.24</td>
<td>0.24</td>
<td>0.24</td>
<td>0.24</td>
<td>0.24</td>
</tr>
<tr>
<td>O-site</td>
<td>0.97</td>
<td>0.97</td>
<td>0.97</td>
<td>0.97</td>
<td>0.97</td>
<td>0.24</td>
<td>0.24</td>
<td>0.24</td>
<td>0.24</td>
<td>0.24</td>
<td>0.24</td>
</tr>
<tr>
<td>Ca</td>
<td>1.33</td>
<td>1.33</td>
<td>1.33</td>
<td>1.33</td>
<td>1.33</td>
<td>0.24</td>
<td>0.24</td>
<td>0.24</td>
<td>0.24</td>
<td>0.24</td>
<td>0.24</td>
</tr>
<tr>
<td>Na</td>
<td>0.99</td>
<td>0.99</td>
<td>0.99</td>
<td>0.99</td>
<td>0.99</td>
<td>0.24</td>
<td>0.24</td>
<td>0.24</td>
<td>0.24</td>
<td>0.24</td>
<td>0.24</td>
</tr>
<tr>
<td>K</td>
<td>0.10</td>
<td>0.10</td>
<td>0.10</td>
<td>0.10</td>
<td>0.10</td>
<td>0.24</td>
<td>0.24</td>
<td>0.24</td>
<td>0.24</td>
<td>0.24</td>
<td>0.24</td>
</tr>
<tr>
<td>A-site</td>
<td>2.27</td>
<td>2.27</td>
<td>2.27</td>
<td>2.27</td>
<td>2.27</td>
<td>0.24</td>
<td>0.24</td>
<td>0.24</td>
<td>0.24</td>
<td>0.24</td>
<td>0.24</td>
</tr>
<tr>
<td>OH</td>
<td>0.29</td>
<td>0.29</td>
<td>0.29</td>
<td>0.29</td>
<td>0.29</td>
<td>0.24</td>
<td>0.24</td>
<td>0.24</td>
<td>0.24</td>
<td>0.24</td>
<td>0.24</td>
</tr>
<tr>
<td>Mg#</td>
<td>0.94</td>
<td>0.94</td>
<td>0.94</td>
<td>0.94</td>
<td>0.94</td>
<td>0.24</td>
<td>0.24</td>
<td>0.24</td>
<td>0.24</td>
<td>0.24</td>
<td>0.24</td>
</tr>
</tbody>
</table>
در شکل ۶ دیه می‌شود. در این شکل بی‌پداست که کانی‌های پلاژیوکلاز موجود در سنگ‌های تفتان گرچه بینظمی و نوسان- هایی در ترکیب از لحاظ مقدارپردازی و کلیسم نشان می‌دهد، ولی از مرکز به کرانه درشت پلاژیوکلاز، معمولاً مقدار آنتورتیت افزایش نشان می‌دهد (جدول ۱). میکروپتیه‌های پلاژیوکلاز موجود در خمیره آندزیت‌ها، نسبت به شدت کانی‌های پلاژیوکلاز موجود در سنگ‌های آنتشانی تفتان معمولاً دارای منطقه‌بندی معکوس و کمتر نوسانی و ترمال هستند. بی‌نظمی و نوسان در ترکیب شیمیایی پلاژیوکلازها معمولاً بیانگر تغییر مشکل آنها در شرایط نامتعادل است. و معمولاً ناشی از تغییرات فشار [۱۴٫۱۲]، اختلال ماکمی و یا فروتنده سریع ماکم [۱۶٫۱۵] هستند. ولی به نظر می‌رسد که تغییرات ترکیب شیمیایی پلاژیوکلازها موجود در سنگ‌های آنتشانی تفتان بیشتر در اثر تغییر ترکیب شیمیایی ماکم‌ها تا نب‌تغییرات فشار و اختلال ماکمی به وجود آمد به‌خاتمه.

شکل ۵ ترکیب شیمیایی پلاژیوکلاز‌های موجود در سنگ‌های آنتشانی تفتان.

شیمی کانی‌ها
پلاژیوکلاز: بلورهای پلاژیوکلاز حدود ۷۵ درصد پلاژیوکلاز سنگ‌های آنتشانی تفتان را تشکیل می‌دهند و جزء اصلی - ترین کانی‌های تشکیل دهنده آنها به شمار می‌روند. این کانی‌ها در سنگ‌های آنتشانی تفتان دارای منطقه‌بندی بوده و نسل‌های متفرقی از تبلور را نشان می‌دهند به طوری که در بسیاری موارد در حاشیه پلاژیوکلاز‌های قدمی تشكل نسل جدیدتری را داده‌اند. مقدار اکسید سیلیس در نمونه‌های تجزیه شده این کانی‌ها از ۶۵ درصد تا ۶۲ درصد واقع تغییر می‌کند که ارتباط آن با اکسید آلومینوم معکوس است.

نتایج ریز‌بردازی الکترونی پلاژیوکلاز‌های سنگ‌های آنتشانی تفتان در جدول ۲‌امروزه شده‌اند. به منظور نامگذاری آنها از نموندار الیت-آنتورتیت و اروز استفاده شده است. یادآورای رده- بنی‌که (شکل ۵)، الکتری‌پلاژیوکلازهای تجزیه شده در گروه کثیف آندزیت نا‌پاهای قرار می‌گیرند. مسلماً اگر نمونه‌ای بیشتری آنانی شوند گستره کثیف‌تری از پلاژیوکلاز‌های تفتات به دست خواهد آمد. تغییرات مقدارپردازی از مرکز تا حاشیه این بلورها...
تغییر تركیب شیمیایی ماکما توانای تغییرات فشار نوسان‌های فشار به ویژه فشار بخار آب در ماگماهای آهکی-قلایی مناطق آنتی‌شکنی امروزی کاملاً عادی و معمول است. با کاهش فشار و خروج سریع بخارها، شیب منحنی اجمام پلاژیوکلاز منفی است که باعث احیال و ایجاد نوسان‌های تركیب در تركیب پلاژیوکلاز می‌شود. [17] نشان داده‌اند که در یک سیستم تک‌ما، معنی‌دار با افزایش فشار بخار آب منحنی اجمام یا بین آمده و در صورتی که سرعت سرد شدن آهسته
انجام و سیاست و حل شدن و حل شدن بلورها، سهولت صعودماگها به سطح زمین و نهایتاً افزایش نرخ انتشار می‌شود
[16] میزان آب در ماگه‌های تپه‌ای ایجاد شده ماگه‌های اشکال‌پذیر افزایش یافته است. این افزایش بالاست. دلیل افزایش فرآیند کاهش‌آمیزه‌ای حاوی بیشتری به خاک با کاهش فشار است. و انتشار این اندازه افزایش در این نموداری که نمودار فیش فشار اولیه لبه آن نمودار
است. لذا به نظر می‌رسد که تغییرات فشار به خاکی به شکلی که یکی از سه مقدار انتقال در شبکه گرافی است. این نموداری که نمودار فیش فشار اولیه لبه آن نمودار
است. لذا به نظر می‌رسد که تغییرات فشار به خاکی به شکلی که یکی از سه مقدار انتقال در شبکه گرافی است. این نموداری که نمودار فیش فشار اولیه لبه آن نمودار

دوبیشتری را حساب می‌دهد. همین دسته بلورها در مقایسه با ریز
بلورهای پلازموکلاژ خمره، حلال شونده و منطقه بندی
بیشتری دارند. عبیره‌های پیشین به ترتیب این دو دسته از
کل موارد تفاوت‌های بیشتری را حساب می‌دهد. این نموداری که نمودار فیش فشار اولیه لبه آن نمودار

شکل 7 الف: شکل گرمی پوششی گیرالود پیرامون گیرالود پلازموکلاژ اسکه‌های داسیتی تخت. ب) بافت اندامی (گرابی) در داشت بلورهای
پلازموکلاژ اسکه‌های داسیتی تختان.
اختلال ماکما

به اعتقاد [19] منطقه‌بندی نوسانی و سیستم منطقه‌بندی معمولی در بلورهای پلاژکالاس می‌تواند در اثر تغییر ترکیب ماکما در مراحل مختلف رشد بلور حاصل شود و به عبارتی در نتیجه رشد پلاژکالاس بدی روز بلور پلاژکالاس، در ماکما

در حال تغییر شیمیایی، منطقه بندی نوسانی شکل می‌گیرد. زیرا در این شرایط، بلور به بخش‌هایی که دارای ترکیب کلیسم-

دارترین هستند منقل شده و در نتیجه پلاژکالاس کلیسم‌دار

روی بلور قبیل رشد می‌کند. از طرفی با من اکما می‌توان

اختلال ماکما در حال تغییر ترکیب شیمیایی است بنابراین

بلور پلاژکالاس وقتی به بخش‌های سدیم‌دار تر ماکما می‌رسد

پلاژکالاس سدیم‌دار روب آن رشد می‌کند. این جرخه چنین

بار نکار می‌شود و در نتیجه بلور پلاژکالاس با منطقه‌بندی

نوسانی شکل می‌گیرد. و سپس زمانی که ماکما به تعادل

شیمیایی و دینامیکی رسید این رویداد بلور به کوشی‌های پیش

می‌روید که ترکیب ماکما سدیم‌دار تر می‌شود و پلاژکالاس

سپردها تر قبیل را پوشش می‌دهد و در نتیجه هسته بلور

پلاژکالاس با منطقه‌بندی نوسانی با خانواده منطقه‌بندی

معمولی تغییر ترکیب و انتروپی

در یک نمونه پلاژکالاس نمونه 139 از مركز (نقطه 1) تا

کره (نقطه 3) نشان داده شده است. جانه‌ای مشاهده می‌شود

از نقطه 3 تا نقطه 5 در صد آنتروپی افزایش ولی درصد آنتروپی

کاهش می‌یابد و یک منطقه‌بندی معمولی را به نمایش می-

گذارد که می‌تواند نشان دهنده تعادل شیمیایی و دینامیکی

نتوی [20] شکل 8 ترکیب شیمیایی پیروکسن‌های موجود در سنگ‌های آنتشنانی تفتان.
در غالب سنگ‌های آنتفاسی نفتان کلیه آب‌یاد بیوتیت و و هورتیت حضور دارند. این دو کانی که معمولاً به صورت شکل دار تا نیمه مکمک می‌شود بلور با مانگین اندازه 1 تا 5 میلیمتر و به صورت میکروفلز در خمیری حضور دارد. سوختنی و ناشناخته با شدت‌های متفاوت را نشان می‌دهند (شکل 11 اف). که گاهی شدتی را یافت که در سختی و در طول‌العمل به ناگفته به نشان می‌دهد.

بیوتیت‌ها و هورتیت‌ها اولیه اند زیرا شواده‌های جون عدم همراهی اکسایش در کرانه‌های خرد شده بیوتیت، حضور ماگنتینت در درشت بلورها (بیولز درکاتی فسفات) جون تولید می‌کنند. و عدم حضور ماگنتینت به مقدار قابل توجهی در خمیره‌های بی‌پایی (به علت عدم شرایط اکسایش) در سنگ‌های آنتفاسی نفتان دیده می‌شود. بیوروسکس‌ها علیرغم دارا بودن دمای بالای تشکیل از فرایندهای نامتوان می‌باشد ناشناخته که بخشی صورت، اکسیده، کرده و شده‌کننده نشان داده‌می‌شود (شکل 11 ب). بر اساس تجربیات شیمیایی از مرکز و کرانه‌ای این

پیروکسنس، مرکب آن‌ها از منیزیم غنی تر است که کره‌ی این همان روند

شکل 9 ترکیب شیمیایی آمپولیه‌های موجود در سنگ‌های آنتفاسی نفتان در رده‌نی [21]

شکل 10 ترکیب شیمیایی بیوتیت‌های موجود در سنگ‌های آنتفاسی نفتان در رده‌نی [22]
مورد کاربرد شیمی سطح و کاتی
تزیج شیمیایی سطح‌های کو انتشاراتی نتنان در جدول ۱
نشان می‌دهد که مقدار کسب شیمی‌سازی موجود در آن‌ها به
طور متوسط در حد ۱۶۹.۲ است. همچنین، مقدار سطح‌های
براساس به بندی ازانه‌های داده شده توسط [۲۳] (مجموعه قلب‌پایی)
نسبت به آکسی سیلیسیم (TAS) صورت گرفته است (شکل
۱۲). معلوم شد که سطح‌های تکمیل‌شده و ساده
قرار بسته‌های این انتشارات می‌باشد. این همگی
قرار بسته‌های انتشارات اسیدی در یک انتشارات احتمال واقع
جزء از یک یک‌درو multinodular فرآیند با حاشیه قاره می‌دهد.
از طرفی در نمودار سیلیس - قلب شکل ۱۳ اغلب سطح‌های این
انتشارات در گستره ادکل- قلب‌بردار قرار می‌گیرد. [۲۴] بررسی
شیمی که اگر آمیفیروی موجود در سطح‌های انتشاراتی
نتنان در داشتن ۴.۶۴+۱.۷۲ اغلب سطح‌های این
نتنان با داشتن ۴.۶۴+۱.۷۲ ریپ هبایه و مقدار Mg
که آن با انتشارات از ۱.۰۵+۰.۵۰ به عنوان
در TiO۲ و FeO به کار می‌آید.

دما پایین جداس حاصل کرده‌اند. ضرب جدایی
اضافه‌ی که به دلیل بیش‌هر دارد که در شرایط پست‌فتواسیون،
مقدار این ضرب بین ۵ تا ۱۰ در سطح‌های انتشاراتی، و در
سطح‌های درونی بین ۰ تا ۵ [۲۵] است. در سطح‌های نتنان
این مقدار بین ۲ تا ۴ تغییر می‌کند که نشان می‌دهد بطور
در پیک مکانی در حالت سیاه و یا آشامگی مکانیکی تبدیل به
سطح نانوه‌سیالی است. نتایج حاصل از تجزیه شیمیی بطور
بوتند موجود در نتنان نشان می‌دهد که آن‌ها با
دایش پنلیم نسبت با‌الا نشانه (جدول ۴) چنین اثر نشان
می‌دهد که هم‌یاری آن‌ها به عضویت شیمیایی می‌دهد که آن
ها در جدول ۴ و گستره‌های آن از اندیش نتایج استرودریت
است. منطقه‌بندی معکوس در بطور مکانیکی
می‌دهد که تلفیق شیمیایی آن‌ها به طور کامل پیش‌زن نشته است و می‌توان بگفت که در محیط کشت شکل قرص‌های
این تغییرات در کاتی‌های موجود در سطح‌های انتشاراتی معکوس ناشی از
شرایط سردایش سرعی بطور است [۲۶]. به اعتبار [۲۶] منطقه
بندی نوسان در بالا‌پلیکول‌ها احتیامالی انت‌انگ‌میس رشد،
بلند ویک و کنن‌ای شایده در حالی که آن‌ها از تغییرات ترکیب
شیمیایی کاتی‌های اصلی سازنده نتنان حاصل عواملی جوی
رطوبت‌های فشار بخار آب، تغییر ترکیب شیمیایی مکانیکی همراه
با اکتی‌شیر و در برخی موارد در نتیجه‌ی اختلال مکانیکی
حاصل شده است.
گستره هورنینگ منیزیمی و در میزان کمتری نیز بیوتیت است. این کانال‌های لعیسی باعث می‌شود که کانال‌های محلولی شود. سوختنی و ناشی از ترکیب پراکندگی کانال در خورشید. نشتهای پراکندگی اکسی‌های آهن در میوبوری، همچنین، در حد شدن و به ندرت منطقه‌بندی نشان می‌دهد که هم‌اکنون نشانه‌ای از نامتعادل بودن میکت تشکیل آن هاست. بیوروس‌ها هم معمولاً از پروکس (هیپرسنت) و کلینوبروکس (دیپرسید) هستند و دارای شواهد چون حاصل در کرانه‌های بلورها، اکسایش و گرد شدن است که در این کانال‌ها نیز مشاهده می‌شود.

مراجع
[2] Stocklin J., “Structural history and tectonic of Iran”, a review, American Association of
Some chemical controls on igneous amphibole compositions: examples from the Galway granite, Connemara, Ireland, Mineralogy and Petrology 79 (2002) 63-74.

[20] Poldervaart A., Hess H.H., “Nomenclature of clinopyroxine in the system CaMgSi2O6-CaFeSi2O6-Mg2SiO4-Fe2SiO5”, J. Geol. V, 59 (1951) 472-476.


[20] Poldervaart A., Hess H.H., “Nomenclature of clinopyroxine in the system CaMgSi2O6-CaFeSi2O6-Mg2SiO4-Fe2SiO5”, J. Geol. V, 59 (1951) 472-476.


[20] Poldervaart A., Hess H.H., “Nomenclature of clinopyroxine in the system CaMgSi2O6-CaFeSi2O6-Mg2SiO4-Fe2SiO5”, J. Geol. V, 59 (1951) 472-476.