Bi$_{1.66}$Pb$_{0.34}$Sr$_2$Ca$_2$Cu$_3$O superconductor preparation via solid-state reaction and sol-gel methods and the structural and magnetic properties compression with Aldrich sample

* Corresponding author, Tel.: +98 (0311) 3913717, Fax:+98 (0311) 3912376, E-mail: Salamati@cc.iut.ac.ir

Abstract: In this paper, Bi$_{1.66}$Pb$_{0.34}$Sr$_2$Ca$_2$Cu$_3$O superconductor powders have been prepared via sol-gel and solid-state reaction methods. The structural and magnetic properties have been studied by the X-Ray diffraction (Fullprof analysis) and magnetic susceptibility measurements. The superconductivity and structural properties of the samples have been compared with the properties of a commercially available sample from Aldrich Company.

Keywords: solid-state reaction method, sol-gel method, magnetic susceptibility.
ساخت ساختاری و مغناطیسی آنها با نمونه آلدریج (Aldrich)

هادی سلامتی*، پرویز کاملی، بتول محمدزاده، امین پاکزاد، زهرا طالبی، تکم مرشدلو
داود سهباری، اسماعیل عبدالحسینی

آرامیشگاه ابرسانایی، دانشگاه فردوسی، دانشگاه صنعتی اصفهان، اصفهان، ایران

(دریافت مقاله: ۸۷/۴۳/۷۸، نسخه نهایی: ۸۷/۴۳/۷۸)

چکیده: در این مقاله روش‌های واکنش حالت جامد و سل‌ز، Pb۵۴Sr۳Ca۴Cu۴O۱۲ با استفاده از آلدریج–گیری طیف پراش پترو ایکس، آنالیز ساختاری با نرمافزار FullProf و پذیرشی فیزیکی مورد بررسی قرار گرفت و با نمونه‌های شده از شرکت آلدریج مقایسه شده است.

واژه‌های کلیدی: روش واکنش حالت جامد، روش سل‌ز، پذیرشی مغناطیسی و ابرسانایی

مقدمه

YBCO به خاطر شکندگی زیاد و رنگ‌پذیری ضعیف و مرزدانگی که نانوی سیاست‌گیری کامپوزیت‌های دانه‌ای، نسبت به ترکیب‌های سوپرپورتری که جایگزین برای کمی دارد، سیستم‌های ابرسانایی (BCSCO) انتخاب می‌شوند. YBCO یکی از دلایل اصلی ایجاد این محدودیت‌ها پویش‌های ضعیف بین دانه‌ای و توانایی ضعف میکرومغناطیس شار است که تواند ناشی از وجود مرزدانگی‌ها، فضاهای خالی و کمپوزیت با شی arrests در این موارد مثل عنصر تنوعی اندازه‌گیری، اندازه‌گیری اثر فازات تاناه، اثر فازات و تعداد رشته‌ها از عوامل بسیار مؤثر در توانایی غیر قرین از نمونه ابرسانایی است. با

* توبنده مرکز، تلفن: ۰۲۱۱۲۲۶۲۴۷۷۷/۱۷۶۷/۹۸، تاریخ: ۰۲۰۱ (۱۷۱۱) ۳۷۴۱۳۷۹، پست الکترونیکی: Salamati@cc.iut.ac.ir
دانه‌گنده شد که گیاه اصلی از جهت یکی از اعمال مؤثر در افزایش چگالی گیاه بحرا نموده‌اند از رسانای. Bidin منظور استفاده از رویه‌های پیشرفته آب کاری مثل پودر‌سازی، اخیراً اثرات شدید گل‌های، می‌تواند بسیار سودمند باشد.

روش‌های محلول شیمیایی شامل رویه‌های هپسرژوی، سل-ژل، ماتیس بیلیمر و تجزیه‌کننده که نیاز به آسیب‌های مکرر ندارند، بوده‌ای که بسیاری از پرورش ریز فراهم می‌کند.

روش سل-ژل برای ایجاد پودر‌های سبز، به توزیع یکنواخت سیستمی است. برترین این روش نسبت به روش‌های دیگر، توزیع‌های نرم‌تر و واکنش‌های بلار از اینجیه‌کاهش مراحل ساخت، ریزساختار ریز و چگالی بالاتر ارسفانایی است.

ردیف ساخت و آزمایش

| Bi, Pb, Sr, Ca, Cu, Ox | با تهیه نمونه با ترکیب اسما | ازدوم روش واکنش حالت جامد و سل-ژل استفاده شده است. در روش حالت جامد پودر‌سازی از اکسید و با کربنات‌های عناصر اولیه استفاده می‌شود و با آسیب‌های مکرر همراه با گیاه‌هایی می‌باشد. پودر تهیه حاصل می‌شود. برای ساخت نمونه به روش واکنش حالت جامد (نمونه A) پورده با SrCO₃ و کربنات CaO, CuO, Bi₂O₃ و PbO درجهای واکنش به درصد استفاده شده است. پورده با ‌هم مخلوط و به مدت 1 ساعت آسیب شدند و سپس با ریختن مخلوط به مدت درست بسیار آمیزه‌ای و قرین داده‌اند. آن در کوره‌های مکعبی برای 24 ساعت در دمای درجه سانتی‌گراد 100 درصد ساخت با تکلسی شد. عمل آسیب و تکلسی برای سه بار متوالی تكرار شد. محصول به دست آمده درقبال‌های ویژه در دانشجوی مفسد 12 تا به صورت قرص‌هایی به قطر 40 میلی‌متر و با فرمول: 1/3 بیولوژیک و شایع علائم گیاه‌های در مرحله کلارسازی در فضای محدود و بدون استفاده از اکسیژن آب‌زایی شده، زیرا نمونه‌های اکسیژن‌های اضافی را از دست می‌دهد و با کمیک اکسیژن

1- Co precipitation
2- Sol-Gel
3- Polymer Matrix
4- Decomposition
نتایج و بحث

عمل میدان مغناطیسی متناوب به نمونه‌ها، اختلاف فازی در
تابع پاسخ نمونه‌ها به وجود می‌آورد که شامل دو جمله همبسته
و اثر همبسته است. برای یک نمونه ایرسیاتنی و معادله پوشاک
افجای و یک فاز ایرسیاتنی از پاسخ‌های مغناطیسی و حکم
خطو شار مغناطیسی هستند. نتایج حاصل از این‌دسته‌گری
پذیرفتاری متناوب و تغییرات محتوایی‌های
(بخش حذفی محتوایی
(بخش مویومنس محتوایی) به میدان مغناطیسی
متناوب اطلاعاتی از یک‌گروه‌های ساختاری نمونه در
برداشت و می‌توان با استفاده از آن تعدادی از پارامترهای
سری‌شدن و تغییرات آنها را بررسی کرد. مهمترین ویژگی که باید
به آن اشاره کرد، ویژگی ایرسیاتنی‌گرایی
در دماهای بالا (آبادان) که تا نیم محتوایی می‌تواند در
و گرمایش دما میدان مغناطیسی نخست بین دانه‌های ایرسیاتنی تغییر
کند (تشکل گردایه‌های دانه‌های ایرسیاتنی)، که با
دومین تشکیل بخش حذفی محتوایی پذیرفتاری هم‌خوانی دارد.
و سپس به درون دانه‌های ایرسیاتنی نیز افزایش
که این با اولین افت بخش حذفی محتوایی
پذیرفتاری هم‌خوانی است.

شکل 1 نمودار گرمایش در مرحله تکیه و کلکسیون نمونه‌ی
Bi–II در روش و اکتش حالت جامد.
شده در نظر گرفته شده است. در همه این نمونه‌ها فاز با ساختار بلوری چارگوشی (گروه \(\text{I4/MMM} \)) و تابه‌های شبکه \(A = 5.42 \text{ Å} \) و \(b = 5.39 \text{ Å} \) با ساختار بلوری راستگوشی (گروه \(\text{P}2_1/a \)) و تابه‌های شبکه \(a = 5.42 \text{ Å} \) و \(c = 37.1 \text{ Å} \) و نیز فاز با ساختار بلوری NRI (گروه فضایی \(\text{CaCu}_2\text{Sr}_2\text{Bi}_6\text{O}_{12} \)) و تابه‌های شبکه \(A = 5.39 \text{ Å} \) و \(b = 5.42 \text{ Å} \) با ساختار بلوری چارگوشی (گروه \(\text{I4/MMM} \)) و تابه‌های شبکه \(a = 5.42 \text{ Å} \) و \(c = 37.1 \text{ Å} \) وجود دارد. درصد فاز های برای فاز \(Bi_{2223} \) به ترتیب \(8.6 \) و \(0.6 \) درصد، برای فاز \(Bi_{2212} \) به ترتیب \(7.1 \) و \(12 \) درصد و برای فاز \(Bi_{2201} \) به ترتیب \(5.5 \) و \(7 \) درصد است. این نتایج نشان می‌دهند که درصد فاز \(Bi_{2223} \) در نمونه نهایی شده به روش سل-زل بیشتر است.

![Graph](image)

شکل (۲) دمای گذر بین دالهای ۱۰۵ کلوین RA برای نمونه B و دمای گذر بین دالهای ۱۰۸ کلوین RA برای نمونه A نشان می‌دهد. ویل با توجه به اینکه افت \(\chi \) در نمونه B بیشتر است و در دمای ۷۷ کلوین، مقدار کمتری را نشان می‌دهد، نمونه B در جدول (۱)، در صورت افزایش اهمیت بیشتر است.

طرح برای بررسی میله‌های میر و بیشتر به ۳ فاز، \(\text{Pb}_2\text{Bi}_3\text{O}_7 \) و \(\text{CuBi}_2\text{O}_4 \) با ساختارهای بلوری متوسط که در \(\text{CuBi}_2\text{O}_4 \) و \(\text{SrBi}_2\text{Cu}_3\text{O}_7 \) وجود دارند.
جدول ۱. ساختار بلوری فازهای نشان داده شده در نوش نش بیترو x برای پودر نمونه B پس از مرحله ششک کردن.

<table>
<thead>
<tr>
<th>فاز</th>
<th>ساختار بلوری</th>
<th>گروه فضایی</th>
<th>ثابت‌های شبکه</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pb₁Bi₃O₁₁</td>
<td>تک میل</td>
<td>P2₁M</td>
<td>a (Å) = 6.772/121, b (Å) = 5.568/133, c (Å) = 3.76/536</td>
</tr>
<tr>
<td>(Sr, Ca)CO₃</td>
<td>راست‌گوشی</td>
<td>Pmcn</td>
<td>a (Å) = 6.0/472/303, b (Å) = 8.21/82/83, c (Å) = 8.88/85/68</td>
</tr>
<tr>
<td>CuBi₂O₄</td>
<td>چارگوشی</td>
<td>P4/ncc</td>
<td>a (Å) = 5.6/479/1329, b (Å) = 5.83/20/90, c (Å) = 5.83/20/90</td>
</tr>
</tbody>
</table>

شکل ۲. نش نش بیترو x برای پودر نمونه B پس از مرحله ششک کردن.

شکل ۳. تصاویر SEM از نمونه B در مرحله نهایی.
برداشت

برقراری ابرسانایی در ساخت با Bi₁₋ₓPbₓSr₂Ca₂Cu₃Oₓ به دو روش وانکش

حالت جامد و سل زل ساختمانی انتقال بسیاری مغناطیسی و آنتی‌الهای

نشان می‌دهد که نمونه‌سازی Full Prof شده به دو روش سل-زل دارای وابستگی‌های بین دانه‌ای به‌ته، و

تشکیل بی‌بی‌بی نسبت به نمونه‌سازی شده به روش وانکش

حالت جامد است. با مقایسه پارامترهای شبکه و درصد فازهای

تشکیل شده در نمونه‌های ساخته شده و نمونه‌های خردبازی شده از

مراجع

