Mineralogical studies of Darreh – Zerreshk copper deposit SW of YAZD

A. H. Kohsary*, A. H. Ansari, K. Alamdar

Mining & Metallurgy Engineering department, Yazd University

(Received: 17/11/2008, in revise form: 14/5/2009)

Abstract: Loco-granite and granodiorite intrusive bodies have cut the Naiband and Sangestan Formations in Darreh-Zerreshk area in southwest margins of Shirkoo batholite. This intrusion has caused weak metamorphism and copper hydrothermal mineralization in permeable Sangestan Formation. The characteristics minerals are magnetite, chalcopyrite, pyrite, bornite and dyajenite. The studied area is composed of sedimentary strata of Lower Cretaceous up to present. These rocks have been cut by a great variety of extrusive and intrusive rocks. Intrusion of porphyric granitoide of Miocene in volcanic units and Cretaceous limestone units caused Copper mineralization in different parts of studied area. In Darreh-Zerreshk, four different mineralization zones can be recognized as: oxide, leaching, supergene and hypogene. Alteration zones in Darreh-Zerreshk area are potassic, propylitic and phyllic thet can be correlated with Lovell and Gilbert model. This research was carried out for mineralogical, texture and geneses studies of this ore deposit.

Keywords: Copper Deposit Supergene, Hypogene, Lovell and Gilbert.
کانی شناسی کانسارس دره زرشک چنوب غربی یزد

امیرحسین کوهساری*، عبدالحمید انصاری، کمال علمدار

نامه‌دان مهندس معدن و مالاروژی دانشگاه یزد

چکیده: تعداد نمونه‌بندی لوكوگرانتی-گراندبورتری در منطقه دره زرشک و حاشیه شمال غرب یزد به مقدار چهل و یکصد نمونه بدست آمده است. کانسار دره زرشک به شکل مشخصی در منطقه شیراز قرار گرفته است. کانسارات در این منطقه تا به حال، به‌طور کلی ثبت نشده است. برای تحقق این نتایج، تعداد نمونه‌بندی لوكوگرانتی-گراندبورتری در منطقه دره زرشک به مقدار چهل و یکصد نمونه بدست آمده است. کانسارات در این منطقه تا به حال، به‌طور کلی ثبت نشده است.

کلمات کلیدی: مس، یزد، زرشک، دره، گراندبورتری، لوكوگرانتی

مقدمه

کانسار مس دره زرشک در ۶۰ کیلومتری جنوب غربی یزد و ۳۵ کیلومتری جنوب غربی تفت در محدوده شیراز قرار گرفته است. این کانسارت به شکل مشخصی در منطقه شیراز قرار گرفته است. کانسارات در این منطقه تا به حال، به‌طور کلی ثبت نشده است. برای تحقق این نتایج، تعداد نمونه‌بندی لوكوگرانتی-گراندبورتری در منطقه دره زرشک به مقدار چهل و یکصد نمونه بدست آمده است. کانسارات در این منطقه تا به حال، به‌طور کلی ثبت نشده است.

واژه‌کلیدی

- مس
- یزد
- زرشک
- دره
- گراندبورتری
- لوكوگرانتی

کوهساری@ yazduni.ac.ir

نوبت‌نامه مسئول تحقیق: علی‌رضا قرادردی (۱۳۹۸،۰۸،۸۳)
شیب‌های این سازند به وسیله باتولیت گرانیتی شیرکوه در زوراسیک میانی قطع شده‌اند و درگوگری ضخامتی در آنها رخ داده است. رخ‌های این رویاب به خوبی در یکش غربی باتولیت شیرکوه دیده می‌شود. فرسایش باتولیت شیرکوه و پی سک میزان پس از قاز کوه‌های کیمی‌های فوقانی منجر به ایجاد اتیوی از ماسه سنگ و کنگلومرات سرخ با عنوان سازند سنگستان در گودال‌های گسترش در زوراسیک بالایی ابدای کرانه‌ای این سازند به تدریج جای خود را به سنگ‌های آهکی ارپیاوی دارد کرانه‌های زیرین با ضخامت زیاد به نام سازند فت می‌دهد. برخوردگاه این دو سازند با باتولیت گرانیتی شیرکوه از نوع نابیودنی آدرین پی است (شکل 1).

واحدهای تنظیمی از کرانه‌های زیرین تا زمان ما را تشکیل داده‌اند که با طیف گسترده‌ای از سنگ‌های آنتفسیال و نفوذی قطع شده‌اند. نفوذ گرافیت‌های بوفریتو میوسن در میان این واحدها به خصوص واحدهای آنتفسیال و آهک‌های کرانه‌های باعث کم‌تری مس در نقاط مختلف این منطقه از جمله دره زرشفک شده است.

این مقاله به کاتی‌شناسی کاسار مسد زرشفک جنوب غرب یزد می‌پردازد. هدف از کاتی‌شناسی، تعیین نوع کاتی‌ها، مقدار اسپمی هر یک از آنها، ساخت و بافت کاتی‌ها و چگونگی تشکیل کاسار است.

زمین‌شناسی قدمت‌ترین واحد سنگی منطقه را سازند تخریبی نای بنده عنوان پی سینگ تشکیل داده است. ماسه سنگ‌های تیره و

شکل 1 نقشه زمین‌شناسی منطقه دره زرشفک.
روند کلی این گسل شمال غرب- جنوب شرقی است و از ۲۰ کیلومتری شرق گستره مورد بررسی گذشته می‌کند، علاوه بر گسل‌های اصلی هم روستای گسل ده‌سیر- باغت، گسل‌های عرضی عمود بر گسل اصلی نیز فراوانند.

روش بررسی

به منظور بررسی و ارزیابی منطقه مورد نظر، کارشناسان در دو مرحله به منظور ابعاد شدن. یک از بررسی‌های صحرایی (Chip) و نمونه برداری از منطقه به روش تلیسی و نیز نمونه برداری از منطقه به صورت Channel حفاری‌هایی، مقاطع تازگ و صفحی از سطح‌ها تهیه شدند. از میان نمونه‌های برداشت شده، ۵۰ نمونه انتخاب و پس از آماده‌سازی و تهیه مقاطع مورد نیاز، بررسی سنجش‌کننده و کانال نگاری روی آنها انجام شد. همچنین از این منطقه موجود تعداد ۲۴ نمونه انتخاب و برای عبار سنگی مس در آزمایشگاه شرکت سنگ‌چهره بررسی قرار گرفتند که نتایج آن در جدول ۱ آمده‌اند.

جدول ۱: نتایج آنالیز شیمیایی نمونه‌های به دست آمده از مغزه‌های مختلف

<table>
<thead>
<tr>
<th>نمونه مغزه</th>
<th>هر میلی‌گرم</th>
<th>CU(%)</th>
<th>CUO(%)</th>
<th>Mo(PPM)</th>
<th>AU(PPb)</th>
</tr>
</thead>
<tbody>
<tr>
<td>۱</td>
<td>۰.۴۶</td>
<td>۰.۲۴</td>
<td>۱۶</td>
<td>۲۲</td>
<td>۳۹</td>
</tr>
<tr>
<td>۲</td>
<td>۰.۱۵</td>
<td>۰.۰۴</td>
<td>۱۲</td>
<td>۱۲</td>
<td>۳۹</td>
</tr>
<tr>
<td>۳</td>
<td>۰.۱۶</td>
<td>۰.۰۴</td>
<td>۱۲</td>
<td>۱۲</td>
<td>۳۹</td>
</tr>
<tr>
<td>۴</td>
<td>۰.۰۴</td>
<td>۰.۰۴</td>
<td>۱۲</td>
<td>۱۲</td>
<td>۳۹</td>
</tr>
<tr>
<td>۵</td>
<td>۰.۰۵</td>
<td>۰.۰۴</td>
<td>۱۲</td>
<td>۱۲</td>
<td>۳۹</td>
</tr>
<tr>
<td>۶</td>
<td>۰.۰۵</td>
<td>۰.۰۴</td>
<td>۱۲</td>
<td>۱۲</td>
<td>۳۹</td>
</tr>
<tr>
<td>۷</td>
<td>۰.۰۵</td>
<td>۰.۰۴</td>
<td>۱۲</td>
<td>۱۲</td>
<td>۳۹</td>
</tr>
<tr>
<td>۸</td>
<td>۰.۰۵</td>
<td>۰.۰۴</td>
<td>۱۲</td>
<td>۱۲</td>
<td>۳۹</td>
</tr>
<tr>
<td>۹</td>
<td>۰.۰۵</td>
<td>۰.۰۴</td>
<td>۱۲</td>
<td>۱۲</td>
<td>۳۹</td>
</tr>
<tr>
<td>۱۰</td>
<td>۰.۰۵</td>
<td>۰.۰۴</td>
<td>۱۲</td>
<td>۱۲</td>
<td>۳۹</td>
</tr>
<tr>
<td>۱۱</td>
<td>۰.۰۵</td>
<td>۰.۰۴</td>
<td>۱۲</td>
<td>۱۲</td>
<td>۳۹</td>
</tr>
<tr>
<td>۱۲</td>
<td>۰.۰۵</td>
<td>۰.۰۴</td>
<td>۱۲</td>
<td>۱۲</td>
<td>۳۹</td>
</tr>
<tr>
<td>۱۳</td>
<td>۰.۰۵</td>
<td>۰.۰۴</td>
<td>۱۲</td>
<td>۱۲</td>
<td>۳۹</td>
</tr>
<tr>
<td>۱۴</td>
<td>۰.۰۵</td>
<td>۰.۰۴</td>
<td>۱۲</td>
<td>۱۲</td>
<td>۳۹</td>
</tr>
<tr>
<td>۱۵</td>
<td>۰.۰۵</td>
<td>۰.۰۴</td>
<td>۱۲</td>
<td>۱۲</td>
<td>۳۹</td>
</tr>
<tr>
<td>۱۶</td>
<td>۰.۰۵</td>
<td>۰.۰۴</td>
<td>۱۲</td>
<td>۱۲</td>
<td>۳۹</td>
</tr>
<tr>
<td>۱۷</td>
<td>۰.۰۵</td>
<td>۰.۰۴</td>
<td>۱۲</td>
<td>۱۲</td>
<td>۳۹</td>
</tr>
<tr>
<td>۱۸</td>
<td>۰.۰۵</td>
<td>۰.۰۴</td>
<td>۱۲</td>
<td>۱۲</td>
<td>۳۹</td>
</tr>
<tr>
<td>۱۹</td>
<td>۰.۰۵</td>
<td>۰.۰۴</td>
<td>۱۲</td>
<td>۱۲</td>
<td>۳۹</td>
</tr>
<tr>
<td>۲۰</td>
<td>۰.۰۵</td>
<td>۰.۰۴</td>
<td>۱۲</td>
<td>۱۲</td>
<td>۳۹</td>
</tr>
<tr>
<td>۲۱</td>
<td>۰.۰۵</td>
<td>۰.۰۴</td>
<td>۱۲</td>
<td>۱۲</td>
<td>۳۹</td>
</tr>
</tbody>
</table>

احتمالاً فازهای تأخیری تبلور بتنی و گذرک و سیرکو منجر به پیدایش توده‌های مغزه‌ای در منطقه شده. این توده‌ها، در زمان نای بند و سنتسکان را فتر کره و یا یک دیسک‌سازی ضعیف، کانال‌سازی گرمایی مس را در سازند نفوذ و سنتسکان موجب شده است. می‌توانید پس از گفت و گو با همه فازهای سیستم ها در منطقه به علت این شکل‌گیری، ژوندی اکثری نشان می‌دهد مورد تهیه قرار داده که رخداد اسکان‌ها در منطقه از این خاطره است. در چنین منطقه دو توده مستقل رخ می‌دهد که گفتگوی - مانند سنتسکان و یا سنتسکان و شیل‌های تریاس - زورابیک را قطع کرده و باعث شکل‌گیری دیسک‌سازی گرمایی یا گسترش هاله‌های فلزی گردیده است. این دیسک‌سازی سنتسکانی و سنتسکانی نشان دهنده دیسک‌سازی ضعیف و شیل‌های تریاس است که به آنها درست به اطلاق زیرش به نشانه (Metasediment) است. نظر مورد است.
کانیشناسی و سنگ‌نگاری نفوذی بر اساس نمونه‌های از منطقه

توده‌های نفوذی منطقه در زرگر دنکلر لاملاً لیکوکرات هستند و چگونگی کانی‌شناسی آن‌ها از گروه‌های تا گروه‌بندی در نوسان است. کارترز، پلاژیوکلاژیکال کانی‌های اصلی تشکیل دهنده نفوذی هستند. از کانی‌های فرعی موجود در توده نفوذی می‌توان از شیک سنگ‌نگاری، مسکوئت، بیوتند، تپه و آمپتیپ را نام برد. بایستی که سنگ‌نگاری، میکروگرافیک و گروه‌بندی متوسط در توده نفوذی دیده شود. کم‌و‌میان سنگ‌نگاری و شکستگی فراوانی در این توده نفوذی مشاهده می‌شود. بایستی از پلاژیوکلاژیکال منطقه‌نگاری نشان می‌دهد. توده سنگ‌نگاری از پلاژیوکلاژیکال است. اسیدی در این سنگ‌نگاری عموماً به سرسبیت و کانولاینیت تجزیه شده و به طوری که می‌توان یک منطقه مشاهده شود.

داسیت‌های آذرین منطقه بیشتر به صورت میکروگرافیک، کانی‌های نفوذی کم عمق و نیمه‌عمیق با تکثیر اسیدی تا حد واسط شیک سنگ‌نگاری، نگاری و گروه‌بندی که مختصی است از یک توده زیر است.

کاپیت و پلاژیوکلاژیکال از کانی‌های اصلی دسته‌ای از سنگ‌نگاری است. بافت این سنگ‌نگاری پورفروپنید تا فلسوفروپنید است. به این صورت که پلاژیوکلاژیکال را به دو تا دو رشته در زمینه ریز دانه‌ای آن کانی‌های لفیتیک (کارترز و فلاتیپی) مشاهده می‌شود. سنگ‌نگاری با صورت پراکندگی در زمینه و به صورت

سیدومورفیک یک کانی (از جمله آمپتیپ) مشاهده می‌شود.

کارترزبودن‌ها

این سنگ‌نگاری با فاقد دائمی منطقه‌سازی کرده‌است. پلاژیوکلاژیکال و گروه‌بندی منطقه‌سازی کرده‌اند. کانی‌های اصلی این دسته از سنگ‌نگاری هستند. کانی‌های فرعی گروه‌بندی شده‌اند. پلاژیوکلاژیکال کانی‌های گروه‌بندی هستند و بی‌پوستی است. بی‌پوستی به صورت جزئی مشاهده می‌شود. به طوری که منطقه‌بندی منطقه‌سازی کرده‌است. (شکل ۱) از پلاژیوکلاژیکال بایستی به منطقه‌سنگ‌سازی شود. کم‌و‌میان سنگ‌نگاری و شکستگی فراوانی در این سنگ‌نگاری مشاهده می‌شود. بایستی از پلاژیوکلاژیکال منطقه‌سنگ‌سازی نشان نام‌دهد. بایستی از پلاژیوکلاژیکال است. اسیدی در این سنگ‌نگاری عموماً به سرسبیت و کانولاینیت تجزیه شده و به طوری که منطقه مشاهده شود.

داسیت‌های آذرین منطقه بیشتر به صورت میکروگرافیک، کانی‌های نفوذی کم عمق و نیمه‌عمیق با تکثیر اسیدی تا حد واسط شیک سنگ‌نگاری، نگاری و گروه‌بندی که مختصی است از یک توده زیر است.

کاپیت و پلاژیوکلاژیکال از کانی‌های اصلی دسته‌ای از سنگ‌نگاری است. بافت این سنگ‌نگاری پورفروپنید تا فلسوفروپنید است. به این صورت که پلاژیوکلاژیکال را به دو تا دو رشته در زمینه ریز دانه‌ای آن کانی‌های لفیتیک (کارترز و فلاتیپی) مشاهده می‌شود. سنگ‌نگاری با صورت پراکندگی در زمینه و به صورت

شکل ۲: پدیده (منطقه‌سنگ‌سازی) در پلاژیوکلاژیکال موجود در کارترزبودن‌های منطقه.
به ویژه، طبق آمارها، در منطقه که خصوصاً در مناطق مرزی، در مراکز سکونت مسکونی، از جمله روستاهای فیلیپک، آژیلیک و پرولیتیک که به عنوان پایگاههای سکونت و کار و به دلیل بوجود آمدن دارای بزرگی محدودی در مرز استان کمیابی باود هر چه زمان و نسبت به اندازه و علائم فعالیت زندگی انسانی، در این مناطق به نظر می‌رسد. نتایج این پژوهش نشان می‌دهد که کلیه پایگاه‌ها به شکل جلا مثلثنگی و گردنبندی دارای بزرگی محدودی در مرز استان کمیابی باود هر چه زمان و نسبت به اندازه و علائم فعالیت زندگی انسانی، در این مناطق به نظر می‌رسد.

شکل ۲: هشتگاه اولیت در نمونه‌های سنگی (خاندان طوفانی - داسیت) مرزی‌های پرولیتیک در مرز استانکمیابی باود هر چه زمان و نسبت به اندازه و علائم فعالیت زندگی انسانی، در این مناطق به نظر می‌رسد.

شکل ۴: شکل دارایی منطقه که خصوصاً در مناطق مرزی، در مراکز سکونت مسکونی، از جمله روستاهای فیلیپک، آژیلیک و پرولیتیک که به عنوان پایگاههای سکونت و کار و به دلیل بوجود آمدن دارای بزرگی محدودی در مرز استان کمیابی باود هر چه زمان و نسبت به اندازه و علائم فعالیت زندگی انسانی، در این مناطق به نظر می‌رسد.
شکل ۵ آثار مالاکیت در متن سنگ‌های گرانیتی همراه با رگچه‌های کوارتز در منطقه دگرگاستی فیلیک.

بافت اصلی کانسیاری از نوع پرکندگی فضاهای خالی و درز و شکاف‌های سنگ است (شکل ۷الف). در برخی موارد شاید به‌ویژه بافت پر کننده درزه و شکاف‌ها را از نوع رگهای و دارپستی دانست (شکل ۴). بیشتر کانسیاری اولیه مثل اکسید تیتان، پیریت و کالکوبیترید بافت پراکنده در متن سنگ دیده می‌شوند (شکل ۶چ).

افزون بر بافت‌های یاد شده بافت جانشینی نیز در متن سنگ‌ها وجود دارند که به طور ثانویه بسیاری افزوده‌ها در بیشتر نمونه‌ها هیدروکسید‌های آهن‌کی، کالکوبیترید، بافت جانشینی در بیشتر کانسیاری بیشتر دیده می‌شود (شکل ۶د).

شکل ۶ این (مالاکیت) به صورت پرکندگی در فضای خالی و گوت‌های ناشی از پیریت درزمینه سیلیسی بیشتر کانسیاری کد (مالاکیت) و نیمه‌شفاف و بافت دارپستی (ج) کانسیاری کد (مالاکیت) در انداره‌های مختلف بافت پراکنده (زمینه دگرگاستی فیلیک) کالکوبیترید، پیریت و کالکوبیترید مانند به صورت درگیر.

بافت و ساخت کانسیاری
کانسیاری فلزی در سطح منطقه کم و نادرند. آثار مس بیشتر به صورت کانسیاری-کریستال است که درز و شکاف سنگ‌های گرانیتی و ته نشستی را پر می‌کنند.

مالاکیت و آزوریت نیز همراه با اکسید‌ها و هیدروکسید‌های آهن و گوت‌های بافت‌هایی از سنگ‌های حاوی کانسیاری به خوبی نشان داده است. به دلیل ضعف کانسیاری بابت آن‌ها چندان مشخص نیست. به هر حال در نمونه‌های بزرگ، شده
پارازنت کاتی‌سازی

ترکیب کانه‌های فلزی ذخیره معدنی در زرشک شامل کانه‌های اولیه، اکسیدهای تیتان، پریت، کالکوپریت و ایلمنیت (فقط در یک نمونه) است. در تنها یک فرآیندیهای نمونه، بندرت کانه-های سیلوفره مس (کولین و کالکوپریت) پریتی، کانه‌های اولیه یا بیشتر و همچنین کانه‌های مس (ملاکیت و آژوئیت) و همگون پارازنت اهند نیز به طور نامحدود در این سنگ‌ها پیدا می‌شوند. مقدار کانه‌های فلزی در متن سنگ-های مورد بررسی کمتر از ۵٪ حجمی سنگ بوده است.
تشریح شده‌اند، می‌توانند دارای بیش از ۶ کانی نوار بی‌شناخته باشند (هالیت، سیلیت، همانتی، کالکوپیریت و پریت). [۴] جدول (۲) توالی و مراحی کانی‌های را نشان می‌دهد.

زن‌های کانی سازی با بررسی مقاطع سیلیت و نازک تیپه شده از مغزه‌های مختلف، چهار زون کانی‌سازی شمار زن اکسید، آسید، برون و درون تشکیل داده شدند که در ادامه به معرفی این زون‌ها خواهیم پرداخت.

زن اکسید کانی‌های شاخه این زون گوئینت، بریت، کالکوپیریت، مالاکیت، آزوریت و بیونیت است. گونتنیت با شکل‌های کلوفرنی خاص ناحیه‌ای که در نواحی کنزینون مشاهده می‌گردد. [۵] مالاکیت و آزوریت به صورت یکسانی در فضاهای شکستگی و اکسیدهای دیده می‌شود. توالی این زون درون‌ریز است و اکسیدهای آهن به صورت درشت در خامه‌های سیلیسی دیده می‌شوند. بررسی مقاطع نشان می‌دهد که درخور این زون از نوع بیونیتی‌های فیوز ریک ساخته‌ای را در بر می‌گیرد.

کالکوپیریت مهم‌ترین کانی سولفور مس در کانسارهای پورفریست است که با فراوانی خیلی کمتر از پریت و آلپروت است. این کانی با ابعاد زیر ۲ میکرون با بکار پرکرده در میان سنگ‌های متنوع عوام خاوی نوری و شده‌است. هیدروکسیدهای آهن تبدیل شده است و در اثر ذری، سوزری با بکار کالکوپیریت و کودک به شکل‌های دیده می‌شود که در حالت نجیبه جهت به اکسیدهای نیاسین است. این کانی به‌طور کامل در سنگ‌های مختلف دیده می‌شود. [۶]

مالاکیت و آزوریت نری در میان بیشتر نویجه‌ها حضور دارد و بیشتر حفره‌ها و شکستگی‌ها را یپ می‌کنند. و در مراکز مقاطع در مرکز سنگ‌های میکروشک‌ها نشان می‌دهند.

طلاب‌های هوای آتشفشانی یا توده‌های نفوذی با ترکیب داسیت- انرژی در سازند نفوذ‌پذیر سنگ‌نامه‌ها، کالی‌سازی بیشتری در زون دون‌ریز داده. است. میان‌باره‌های شاره کانسار از نظر دیالی داده‌ها داده‌های آبگیر که به دام افتاده‌اند میزان اشاعه از NaCl-KCl (CaCl۲) در فشار معادل حداکثر ۲۰۰ تا ۳۰۰ بار

<table>
<thead>
<tr>
<th>کانی‌ها</th>
<th>زون اکسید و کربنات</th>
<th>زون بریت و زون دوزون</th>
<th>مولپیت</th>
<th>دوزون</th>
<th>کالکوپیریت</th>
<th>بیونیت</th>
<th>مالاکیت</th>
<th>آزوریت</th>
<th>کالکوپیریت</th>
<th>بیونیت</th>
<th>مالاکیت</th>
<th>آزوریت</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
زون آبیستی

dگرسانی غالب این زون سرسبینی است. شکل (8الف) کاتی-هایی شاخش این زون پریت، کالکولپریت، دگرسانیک، پیریت، کالکاپریت و پروپیت است. کالکولپریت با سایه‌های از سولفور و استیلیت به صورت دگرسان شده به دنبال شکافه‌گیری است. در این زون پریت به صورت تراش‌هایی از دیگر کاتی-ها تمایز است (شکل 9).

زون برون‌زا

cاتی-های شاخش این زون پریت، کالکولپریت و پروپیت است. کالکولپریت به سایه‌هایی از سولفور و استیلیت به صورت دگرسان شده به دنبال شکافه‌گیری است. در این زون پریت به صورت تراش‌هایی از دیگر کاتی-ها تمایز است (شکل 9).

دگرسانی

رون بدن دگرسانی در دره زرشک با منطقه‌بندی ارائه شده توسط اولین دگرسانی. دگرسانی در این زون با پیش‌بینی دگرسانی کالکولپریت در زون آبیستی (ژ) پیروی شکل‌کاری و پدیده‌هایی از اسفالت است.
شکل 9 الف) انبیاشت کانه‌های دیزینت و کالکوپریت به صورت کانه‌های شاخه‌ای زون برونزا. ب) مقطع سیلیقی کالکوپریت با هالوهایی از سولفور (گوشه با سمت راست) اکسید (بابین مرکز) و دگرسان شده به دیزینت (بابین سمت چپ). ج) پیریت به صورت تراش‌های در زون برونزا. د) همراهی کانه دیزینت با کانی مولیبدنیت.

شکل 10 مقطع سیلیقی پیریت، کالکوپریت و دیزینت.

آنالیز نمونه‌ها
چنانکه گفته شد برای تعیین عیار مس تشکیل‌نامه نمونه از مغزه‌های حفاری تهیه و به آزمایشگاه مس سرچشمه فرستاده شدند. نتیجه نمونه‌ها یا روش XRD آنالیز شدند که بدینالا بودن خطا از بررسی پوشش کردند. در مرحله بعد نمونه‌ها با روش جذب آمنی (AA) دوباره آنالیز شدند که نتایج آن برای تمامی عناصر مولیبدن در حد قابل قبولی است. برای تعیین عناصر مولیبدن از روش DCP استفاده شد.

(جدول 1).

برای ترکیب گوارندوزیت تا گراوندروینت است. کانه‌ای
pnpb
نشان می‌دهند، عبارت بیشینه 80 ppb فقط در یک نمونه مشاهده شد و از اعتبار چندانی برخوردار نیست، مقادیر در حدود 200 ppb گسترش بیشتری دارند و لی این عباریها به محدودیت سنگی برداشت نمونه و گسترش نسبتاً کمی از دیدگاه را ندارند.

برداشت
بخش کنگلومراتی سنگستان به سبب نفوذ‌پذیری بالای خود میزبان کانه‌های کارتی به روش اسکارن سازی بوده است. تشکیل کانسار مس درا زرنشک ناشی از جایگیری یک استوک بوربری با ترکیب گوارندوزیت تا گراوندروینت است. کانه‌ای

