Mineralogy, geochemistry and genesis of carbonate – silica serpentines (listwaenite) in north of Nain ophiolite (west of central Iran)

M. Saidi¹*, S. Falahati¹, M. Noghreyan¹, M. Khalili¹, M. Ghahraipour²

¹- Department of Geology, University of Isfahan
²- Geological Survey of Iran

(Received: 20/11/2008, in revised form: 5/5/2009)

Abstract: The mantle sequence serpentinized peridotites of north of Nain have been converted to carbonate- silica assemblage known as listwaenite at various temperature and pH in response to CO₂ and SiO₂ bearing fluids. On the basis of carbonate and silica minerals content, three types of listwaenite have been recognized: carbonate, carbonate- silica and silica listwaenites. Generally carbonate minerals are magnesite, dolomite, ferrite-dolomite and ankerite. Calcite and other carbonate minerals are rare. Silica minerals (including quartz, chalcedony and chert) accompanied by accessory Cr-spinel, chlorite, sulfide minerals also occur in listwaenites. Silica matrix in silica listwaenite containing high amounts of Hg, Ag and As elements and shows that these elements have transported by SiO₂ bearing hydrothermal fluids as arsenide complexes.

KeyWords: peridotites, Listwaenite, Nain ophiolite, mercury

*Corresponding author, Tel.: +98 (0311) 3247709, E-mail: scisaidi@yahoo.com
کانی شناسی، زمین شیمی و چگونگی تشکیل سریانتینیت‌های کربناتی – سیلیسی (لیستونیت) شمال نایین (باخته ایران مرکزی)

معصومه سعیدی ۱، اسمیه فلاحتی ۲، موسی نقره‌پور ۳، محمود خلیلی ۴، مهرداد فرخزدی‌پور ۵

(دریافت مقاله: ۸۸/۸/۲۰، پذیرش نهایی: ۸۸/۱۲/۱۶)

چکیده: پرپیدونیت‌های سریانتینی‌بند دنلاغه‌گوشه‌ای فیولیت شمال نایین (باخته ایران مرکزی) تحت تأثیر ایگون‌های حاوی دی اکسید کربن (CO2) و دی اکسید سیلیز (SiO2) در شرایط دما و pH منتفاوت با مجموعه کربناتی – سیلیسی تحت عنوان لیستونیت تبدیل شده‌اند. بر اساس قرارگاه کانی‌های کربناتی (دولومیت، منیزیت، آنکریت، کلسیت) و سیلیسی سه نوع لیستونیت کربناتی، کربناتی – سیلیسی و سیلیسی حاصل شده‌اند. به طور کلی کانی‌های غالب در لیستونیت‌ها، منیزیت، دولومیت، دیوار اتربیوم و آنکریت و کربناتی به دیگر مقادیر کمتر حضور دارند. فازهای سیلیسی (شامل کوارتز، کلسیت و جرت) همراه با مقادیر نادر کروم اسپینل، کربنات، همایش، گوتیت، اکتینولیت و پیریت نیز در لیستونیت‌ها حضور دارند. زمینه سیلیسی در لیستونیت سیلیسی حاولی مقادیر بالای جیوه، نقره و آرسنیک است که نشان می‌دهد که این عنصر به صورت مجموعه‌های آرسنیکی در گرماهای حاوی SiO2 حمل شده‌اند.

واژه‌های کلیدی: پرپیدونیت، لیستونیت، افیولیت، نایین، جیوه.

مقدمه

واژه لیستونیت را اولین بار زر [1] برای توصیف سکه‌های اترامافیک و مافیک دبیر سطح کربناتی - سیرسوت - پرپیدونیت که در اثر فرایند دسیریزی کوارتز-کربناتی، شکل گرفته‌اند، به کار برده، در اروپا و آمریکای شمالی برای توصیف چنین سکه‌هایی از دسیریزی سیلیکا-کربناتی استفاده می‌شود.

جریان شاره‌های حاوی CO2 و Mg2+ Ca2+ شکستگی‌های اسکانی‌بند پاکت تشکیل لیستونیت می‌شود. دگرگونی‌های پرپیدونیت‌های سریانتینی‌بند شده فیولیت در طول ملاز شمال‌های پس از جایگیری آن به نظر مشخص لیستونیت ایجاد می‌کند: لیستونیت‌های کربناتی، لیستونیت‌های کربناتی-سیلیسی و لیستونیت‌های سیلیسی پاکتی. Mg2+ Ca2+ به طور کاملاً حاصل از تشکیل لیستونیت‌های کربناتی از CO2 و SiO2 می‌باشد.

scisaidi@yahoo.com

نویسنده مسئول، تلفن: ۸۹ (۳۱۱) ۲۲۴۷۷۱۴۰۹، پست الکترونیکی: scisaidi@yahoo.com
روش کار

به دنبال چندین پی-چوپی صحرازی منطقه، مشاهده
رخم‌های لیستونیت و نمونه برداری هدف‌دار، تعمین
فازه‌های مختلف لیستونیتی شدند در صحرا را در پی
داشت. بررسی‌های میکروسکوپی و سنجش‌شناختی؛ نهمه
مقطع نازک و نازک صیقلی از نمونه‌های پریدونیتی
(بیشر هارپزومیت)، سری‌بانیتیت و لیستونیتی، سپس
بررسی آن‌ها کام بعده این کار پژوهشی بوده است.
فازه‌ای کامی ایجاد شده در جرین لیستونیتی شدن به
روش پراش پروتو ایکس (XRD) در دانشگاه اصفهان و
استفاده از میکروسکوپی الکترونی (SEM - EDX) مدل
لیستونیتی‌ها در برخی مناطق جنوب سیرآب به دلیل
بی‌هم ریختگی زمین‌ساختی واحدها در مجاورت سنگ‌آهک-۲
های کرتاسه فوقانی قرار گرفته‌اند.

سنج‌سازی شدید. شاخه ترکیب شیمی لیستونیت‌ها و
(XRF) سنگ‌سازی آن‌ها به روش فلورورسان پرتو ایکس (XRF)
کاین شناسی لیستوئید‌ها

لیستوئید‌های شمال نانی به احاطه کاین شناسی و با بر تقيسیماتی [17] در سه گروه ۱ (کروبیتی)، ۲ (سپیلیتی) و ۳ (سپیلیسی) قرار می‌گیرند. بر اساس فراوانی نوین کاین کروبیتی، لیستوئید‌های کربنیتی در شمال نانی به‌طور گروه‌های مینیزیت و دوولیتی تقسیم می‌شوند. این گروه از لیستوئید‌ها در نمونه‌دستی دارای سطح شکست سفید تا نخودی زنگ‌برود و سطح خشک را تشکیل می‌دهند. رنگ‌ها

لیستوئید به دلیل انحلال مواد کروبیتی توبوگرافی‌های هوازی و پهناوری کوه‌های کربنیتی کلرک (شکل ۲۸) است. به همراه منیزیت و دوولیتی، انواع دیگر کاین‌های کربنیتی کلرک (شکل ۲۸) نشانه‌های داده شده‌اند.

SEM- EDX و XRD های رشد کاین‌های کربنیتی به‌طور همزمان از گاز‌های شیمیایی کربن‌h_2 و استحکام‌های ترکیبی سالنیک‌های سلبیسی و کربن‌واژها.

۱- Open Space Filling
۲- pull - apart
۳- Interstitial
مقدار CaCO3، مقدار MgCO3 و مقدار FeCO3 را می‌توانند به‌طور مشابه با سایر مواد معدنی در هر نوع سنگ رسوبی وجود داشته باشد. در نتیجه، در هر نوع سنگ رسوبی ممکن است کلسیم به‌طور بسیار اکسیده گردد و همچنین دیسیسیه گردد. در نمونه‌هایی که در جلدره و ناحیه‌های ذخیره‌سازی گلپه‌آبی وجود دارد، اکسیده‌گردد کلسیم مشاهده می‌شود. در این موارد، CaCO3 و MgCO3 به‌طور اکسیده‌گردد کلسیم مشاهده می‌شود. در این موارد، CaCO3 و MgCO3 به‌طور اکسیده‌گردد کلسیم مشاهده می‌شود.
جدول ۱ تجزیه EDX - SEM از سیلیس و زمینه سیلیسی در لیستونیت شمال نایین

<table>
<thead>
<tr>
<th>عناصر</th>
<th>سیلیس</th>
<th>کربناته</th>
<th>سیلیس</th>
<th>کربناته</th>
<th>سیلیس</th>
<th>کربناته</th>
<th>سیلیس</th>
<th>کربناته</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO₂</td>
<td>87.55</td>
<td>96.22</td>
<td>95.2</td>
<td>80.44</td>
<td>77.44</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TiO₂</td>
<td>0.53</td>
<td>0.22</td>
<td>0.19</td>
<td>0.04</td>
<td>0.04</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>3.76</td>
<td>2.24</td>
<td>2.19</td>
<td>2.24</td>
<td>3.59</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fe₂O₃</td>
<td>0.8</td>
<td>b.d.</td>
<td>0.25</td>
<td>b.d.</td>
<td>0.19</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K₂O</td>
<td>1.89</td>
<td>6.51</td>
<td>0.16</td>
<td>0.12</td>
<td>0.16</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MnO</td>
<td>0.79</td>
<td>0.05</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MgO</td>
<td>1.28</td>
<td>0.99</td>
<td>0.91</td>
<td>0.72</td>
<td>0.65</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CaO</td>
<td>4.47</td>
<td>8.48</td>
<td>0.44</td>
<td>0.44</td>
<td>4.47</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Na₂O</td>
<td>b.d.</td>
<td>b.d.</td>
<td>b.d.</td>
<td>b.d.</td>
<td>6.28</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K₂O</td>
<td>1.05</td>
<td>0.14</td>
<td>0.15</td>
<td>0.14</td>
<td>1.05</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MnO</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MgO</td>
<td>0.99</td>
<td>0.43</td>
<td>0.43</td>
<td>0.43</td>
<td>0.99</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CaO</td>
<td>0.57</td>
<td>0.51</td>
<td>0.51</td>
<td>0.51</td>
<td>0.57</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K₂O</td>
<td>0.15</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.15</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO₂</td>
<td>3.35</td>
<td>4.47</td>
<td>4.47</td>
<td>4.47</td>
<td>3.35</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>total</td>
<td>100</td>
<td>99.86</td>
<td>99.86</td>
<td>99.86</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

جدول ۲ ترکیب شیمیایی هارزپورزیت، سربانیت و انواع لیستونیت در شمال نایین به روش NAA و XRF

<table>
<thead>
<tr>
<th>عناصر</th>
<th>سیلیس</th>
<th>کربناته</th>
<th>سیلیس</th>
<th>کربناته</th>
<th>سیلیس</th>
<th>کربناته</th>
<th>سیلیس</th>
<th>کربناته</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO₂</td>
<td>43.65</td>
<td>78.34</td>
<td>78.34</td>
<td>43.65</td>
<td>49.75</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TiO₂</td>
<td>b.d.</td>
<td>b.d.</td>
<td>b.d.</td>
<td>b.d.</td>
<td>0.8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>0.32</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.32</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fe₂O₃</td>
<td>18.47</td>
<td>17.1</td>
<td>17.1</td>
<td>17.1</td>
<td>18.47</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K₂O</td>
<td>0.18</td>
<td>0.33</td>
<td>0.33</td>
<td>0.33</td>
<td>0.18</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MnO</td>
<td>0.33</td>
<td>0.44</td>
<td>0.44</td>
<td>0.44</td>
<td>0.33</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MgO</td>
<td>22.11</td>
<td>3.85</td>
<td>3.85</td>
<td>3.85</td>
<td>22.11</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CaO</td>
<td>4.23</td>
<td>5.16</td>
<td>5.16</td>
<td>5.16</td>
<td>4.23</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K₂O</td>
<td>0.15</td>
<td>0.24</td>
<td>0.24</td>
<td>0.24</td>
<td>0.15</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO₂</td>
<td>4.75</td>
<td>4.75</td>
<td>4.75</td>
<td>4.75</td>
<td>4.75</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>total</td>
<td>100</td>
<td>99.86</td>
<td>99.86</td>
<td>99.86</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

نتیجه‌ی [۱۸] برای مقایسه‌ی دردشته است. (اعداد داخل پرانتز تعداد نمونه‌ها در هر گروه را نشان می‌دهند.)
نمودار سه ناحیه SiO$_2$-Fe$_2$O$_3$-CaO + MgO بر حسب مقدار درصد SiO$_2$, Fe$_2$O$_3$, CaO + MgO تیمیر داد.

نمودار سه ناحیه SiO$_2$-CaO-MgO بر حسب مقدار فلزات MgO و SiO$_2$ نزدیک خط MgO-SiO$_2$-

نمودار سه ناحیه SiO$_2$-Fe$_2$O$_3$-CaO + MgO بر حسب مقدار درصد SiO$_2$, Fe$_2$O$_3$, CaO + MgO تیمیر داد.

نمودار سه ناحیه SiO$_2$-CaO-MgO بر حسب مقدار فلزات MgO و SiO$_2$ نزدیک خط MgO-SiO$_2$-

نمودار سه ناحیه SiO$_2$-Fe$_2$O$_3$-CaO + MgO بر حسب مقدار درصد SiO$_2$, Fe$_2$O$_3$, CaO + MgO تیمیر داد.

نمودار سه ناحیه SiO$_2$-CaO-MgO بر حسب مقدار فلزات MgO و SiO$_2$ نزدیک خط MgO-SiO$_2$-

نمودار سه ناحیه SiO$_2$-Fe$_2$O$_3$-CaO + MgO بر حسب مقدار درصد SiO$_2$, Fe$_2$O$_3$, CaO + MgO تیمیر داد.

نمودار سه ناحیه SiO$_2$-CaO-MgO بر حسب مقدار فلزات MgO و SiO$_2$ نزدیک خط MgO-SiO$_2$-

نمودار سه ناحیه SiO$_2$-Fe$_2$O$_3$-CaO + MgO بر حسب مقدار درصد SiO$_2$, Fe$_2$O$_3$, CaO + MgO تیمیر داد.

نمودار سه ناحیه SiO$_2$-CaO-MgO بر حسب مقدار فلزات MgO و SiO$_2$ نزدیک خط MgO-SiO$_2$-

نمودار سه ناحیه SiO$_2$-Fe$_2$O$_3$-CaO + MgO بر حسب مقدار درصد SiO$_2$, Fe$_2$O$_3$, CaO + MgO تیمیر داد.

نمودار سه ناحیه SiO$_2$-CaO-MgO بر حسب مقدار فلزات MgO و SiO$_2$ نزدیک خط MgO-SiO$_2$-
نمودارهای افراشی - کاهشی

بیانیه‌های هزاروزیت برای تشکیل لیستینت‌ها کانی-شناختی و مفاهیم مختلفی برای تغییرات اکسیدهای اصلی و عناصر کمیاب در سنگ اضافه شده می‌باشد. برای کاهش عناصر به طرف زیر عمل کردیم (۲۱).

در صورت کاهش بی‌افراشی - درصد ساخته در هزاروزیت سالم/ارد须۱ همان ساخته در سنگ

درصد سازانده در هزاروزیت سالم (آب واقعی در هزاروزیت سالم)

تشخیص شیمیایی هزاروزیت سالم و سنگ‌های دگرسان افراشی شمال ناینبند جدول ۲ اند. از عده حاصل، بدین در نظر گرفت اعداد درکیت افزایش و سپس با مقایسه درصد سازانده در سند نا‌درسان

جدول ۳: میانگین ترتیب‌های شیمیایی لیستینت و سنگ مشابه آنها در افراشی شمال ناینبند (اعداد داخل پرانتز نتایج اندکی ممکن است)

<table>
<thead>
<tr>
<th>اکید</th>
<th>هزاروزیت تقریبا سالم (1)</th>
<th>سنگ</th>
<th>میانگین</th>
<th>میانگین لیستینت Eb کربناته (2)</th>
<th>میانگین لیستینت Eb کربناته (3)</th>
<th>میانگین</th>
<th>میانگین لیستینت Eb کربناته (2)</th>
<th>میانگین</th>
<th>میانگین لیستینت Eb کربناته (3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO₂</td>
<td>۴۹۵۲</td>
<td>۴۰۲۷</td>
<td>۴۲۷۳</td>
<td>۴۵۷۵</td>
<td></td>
<td></td>
<td></td>
<td>۴۰۲۷</td>
<td></td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>۶۴۱۳</td>
<td>۶۳۲</td>
<td>۶۳۲</td>
<td>۶۳۲</td>
<td></td>
<td></td>
<td></td>
<td>۶۳۲</td>
<td></td>
</tr>
<tr>
<td>Fe₂O₃</td>
<td>۴۰۲۷</td>
<td>۴۰۲۷</td>
<td>۴۰۲۷</td>
<td>۴۰۲۷</td>
<td></td>
<td></td>
<td></td>
<td>۴۰۲۷</td>
<td></td>
</tr>
<tr>
<td>MgO</td>
<td>۴۲۷۳</td>
<td>۴۲۷۳</td>
<td>۴۲۷۳</td>
<td>۴۲۷۳</td>
<td></td>
<td></td>
<td></td>
<td>۴۲۷۳</td>
<td></td>
</tr>
<tr>
<td>CaO</td>
<td>۴۰۲۷</td>
<td>۴۰۲۷</td>
<td>۴۰۲۷</td>
<td>۴۰۲۷</td>
<td></td>
<td></td>
<td></td>
<td>۴۰۲۷</td>
<td></td>
</tr>
<tr>
<td>K₂O</td>
<td>۴۰۲۷</td>
<td>۴۰۲۷</td>
<td>۴۰۲۷</td>
<td>۴۰۲۷</td>
<td></td>
<td></td>
<td></td>
<td>۴۰۲۷</td>
<td></td>
</tr>
<tr>
<td>LOI</td>
<td>۴۰۲۷</td>
<td>۴۰۲۷</td>
<td>۴۰۲۷</td>
<td>۴۰۲۷</td>
<td></td>
<td></td>
<td></td>
<td>۴۰۲۷</td>
<td></td>
</tr>
<tr>
<td>Cr(ppm)</td>
<td>۴۰۲۷</td>
<td>۴۰۲۷</td>
<td>۴۰۲۷</td>
<td>۴۰۲۷</td>
<td></td>
<td></td>
<td></td>
<td>۴۰۲۷</td>
<td></td>
</tr>
<tr>
<td>Ni</td>
<td>۴۰۲۷</td>
<td>۴۰۲۷</td>
<td>۴۰۲۷</td>
<td>۴۰۲۷</td>
<td></td>
<td></td>
<td></td>
<td>۴۰۲۷</td>
<td></td>
</tr>
</tbody>
</table>

جدول ۴: نتایج افزایش - کاهش عناصر اصلی، کروم و تیتانیوم در هزاروزیت سرپینیتی و سنگ مشابه آنها در افراشی شمال ناینبند (ک. جدول ۳)

<table>
<thead>
<tr>
<th>افراشی</th>
<th>میانگین لیستینت Eb کربناته (2)</th>
<th>میانگین</th>
<th>میانگین لیستینت Eb کربناته (3)</th>
<th>میانگین</th>
<th>میانگین لیستینت Eb کربناته (2)</th>
<th>میانگین</th>
<th>میانگین لیستینت Eb کربناته (3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO₂</td>
<td>۰.۶۴</td>
<td>۰.۶۴</td>
<td>۰.۶۴</td>
<td>۰.۶۴</td>
<td>۰.۶۴</td>
<td>۰.۶۴</td>
<td>۰.۶۴</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>۰.۷۹</td>
<td>۰.۷۹</td>
<td>۰.۷۹</td>
<td>۰.۷۹</td>
<td>۰.۷۹</td>
<td>۰.۷۹</td>
<td>۰.۷۹</td>
</tr>
<tr>
<td>Fe₂O₃</td>
<td>۰.۴۱</td>
<td>۰.۴۱</td>
<td>۰.۴۱</td>
<td>۰.۴۱</td>
<td>۰.۴۱</td>
<td>۰.۴۱</td>
<td>۰.۴۱</td>
</tr>
<tr>
<td>MgO</td>
<td>۰.۷۹</td>
<td>۰.۷۹</td>
<td>۰.۷۹</td>
<td>۰.۷۹</td>
<td>۰.۷۹</td>
<td>۰.۷۹</td>
<td>۰.۷۹</td>
</tr>
<tr>
<td>CaO</td>
<td>۰.۷۹</td>
<td>۰.۷۹</td>
<td>۰.۷۹</td>
<td>۰.۷۹</td>
<td>۰.۷۹</td>
<td>۰.۷۹</td>
<td>۰.۷۹</td>
</tr>
<tr>
<td>K₂O</td>
<td>۰.۷۹</td>
<td>۰.۷۹</td>
<td>۰.۷۹</td>
<td>۰.۷۹</td>
<td>۰.۷۹</td>
<td>۰.۷۹</td>
<td>۰.۷۹</td>
</tr>
<tr>
<td>LOI</td>
<td>۰.۷۹</td>
<td>۰.۷۹</td>
<td>۰.۷۹</td>
<td>۰.۷۹</td>
<td>۰.۷۹</td>
<td>۰.۷۹</td>
<td>۰.۷۹</td>
</tr>
<tr>
<td>Cr</td>
<td>۰.۷۹</td>
<td>۰.۷۹</td>
<td>۰.۷۹</td>
<td>۰.۷۹</td>
<td>۰.۷۹</td>
<td>۰.۷۹</td>
<td>۰.۷۹</td>
</tr>
<tr>
<td>Ni</td>
<td>۰.۷۹</td>
<td>۰.۷۹</td>
<td>۰.۷۹</td>
<td>۰.۷۹</td>
<td>۰.۷۹</td>
<td>۰.۷۹</td>
<td>۰.۷۹</td>
</tr>
</tbody>
</table>

Downloaded from ijcim.ir at 19:07 +0430 on Saturday March 28th 2020
شکل 6 لگاریتم افزایش - کاهش عناصر اصلی، LOI، Ni و Cr، SiO₂، MgO، Al₂O₃، Fe₂O₃، CaO، K₂O، MgO، Ni، Cr و LOI.

افزایش مطلوب عناصر اصلی در لیستوئیت ۶۲۹ درصد وزنی برای گونه کربناتی مسکونی، ۳۰ درصد وزنی برای گونه کربناتی دولومیتی، و ۹۱۸ درصد وزنی به ترتیب برای لیستوئیت‌های کربناتی سیلیسی و سیلیسی است. کاهش عناصر در سرپرانتیت، لیستوئیت کربناتی، لیستوئیت کربناتی-سیلیسی و لیستوئیت سیلیسی.
غلظت‌های هنگام شده به کندрит و بوسته‌های قراری فوکلی در شکل 7 و 8 آمده‌اند. الگوی کریت‌های آب‌های تونسیی [18] برای مقایسه آورده شده است. جانکه ماننده‌ای ساخته‌اند. عناصر نادر خاکی در لیستویت‌ها غلظت‌های بایین دارد. نهایی شدید انری بی‌دنی ساخته‌است و در اکثر پلاک‌های فوکلی گرتفند ولی نتیجه به کندرتی نیز کمی‌تهی. شدید شنای میده که به دلیل درجه بالای ذوب بخشی سنج خاسیت آن شده است.

جدول ۵ میانگین قاره در انواع لیستویت شماره‌ای [7] و کربنات‌های تونسیی [18]

<table>
<thead>
<tr>
<th>نوع سنک</th>
<th>لیستویت کربناتی نوع سیلیسی</th>
<th>لیستویت کربناته نوع دو‌میتری</th>
<th>کربناته سیلیسی</th>
<th>کربناته رسوبی</th>
</tr>
</thead>
<tbody>
<tr>
<td>La</td>
<td>0.71</td>
<td>0.44</td>
<td>0.19</td>
<td>0.37</td>
</tr>
<tr>
<td>Ce</td>
<td>0.15</td>
<td>0.73</td>
<td>0.23</td>
<td>0.77</td>
</tr>
<tr>
<td>Nd</td>
<td>0.28</td>
<td>0.36</td>
<td>0.24</td>
<td>0.42</td>
</tr>
<tr>
<td>Sm</td>
<td>0.32</td>
<td>0.12</td>
<td>0.20</td>
<td>0.35</td>
</tr>
<tr>
<td>Eu</td>
<td>0.80</td>
<td>0.13</td>
<td>0.23</td>
<td>0.48</td>
</tr>
<tr>
<td>Gd</td>
<td>0.15</td>
<td>0.12</td>
<td>0.15</td>
<td>0.27</td>
</tr>
<tr>
<td>Tb</td>
<td>0.64</td>
<td>0.22</td>
<td>0.25</td>
<td>0.38</td>
</tr>
<tr>
<td>Dy</td>
<td>0.46</td>
<td>0.28</td>
<td>0.24</td>
<td>0.42</td>
</tr>
<tr>
<td>Er</td>
<td>0.38</td>
<td>0.20</td>
<td>0.13</td>
<td>0.28</td>
</tr>
<tr>
<td>Yb</td>
<td>0.15</td>
<td>0.13</td>
<td>0.07</td>
<td>0.23</td>
</tr>
<tr>
<td>Lu</td>
<td>0.71</td>
<td>0.19</td>
<td>0.07</td>
<td>0.23</td>
</tr>
<tr>
<td>Ce/Yb</td>
<td>0.98</td>
<td>0.66</td>
<td>0.30</td>
<td>0.65</td>
</tr>
</tbody>
</table>

الگوی کریت‌های تونسیی [18] برای مقایسه بایر شده است.
کنترل‌های ساختاری به درون سنگ در برگیرنده گسترش می‌باشد. یک تاثیر عامل درای افزایش ساختارهای درجه زمین‌گرمای، گرم شدن اهمیت‌های سطحی و نیروی در نتیجه افزایش قابلیت حل‌درآوری آن‌ها شده است. لذا نقش مادگی‌ام مانند در تشکیل لیستونیت به عنوان موثر گرم‌گرمای بسیار دارید.

ماهیت ایگون‌های لیستونیت-ساز: ایگون‌های سازای

لیستونیت، درای ی بالا هستند. مدل‌گرایی که شد، فعالیت مادگی‌ای انسن در ایران مرکزی باعث افزایش درجه زمین‌گرما شده است. خاصیت احتمالی را می‌توان کریب مادگی‌ای حل شده در شرایط ناشی از فعالیت آذرین شده در ایران می‌توان کریب مادگی‌ای حل شده در شرایط‌های بالا و تحت تاثیر CO2 افزایش درجه زمین‌گرمای زیادی در این سطح می‌تواند داشته باشد. خصوصیات، بایستیم با کلیسم، منیزیم و فلزات کم‌آل

نیز این انواع می‌تواند از طریق امکانات مختلفی و

شکستن‌ها با خود به سطح کم فشار محل کرده است.

توجه به این که این شکستن‌ها سیستم‌های

سرپرستی‌ها حجم گسترش یافته‌ها از سنگ‌های در این فعالیت.

شکل 8. اکو-ود REE اضافه‌ی کریب میزان کم می‌باشد.

RE

گروهی از آن، خلیلهای کریب میزان

تولید می‌کند. با فناوری REE

این دسته از لیستونیت‌ها، ویژه این

الگوی REE در این مدل می‌باشد.

در مقابل در می‌باشد. از سوی میزان ناهنجاری Eu

که CO2

در ناهنجاری دیگر میزان H2S هستند. در حالی که در لیستونیت‌های Eu

سیلیسی که دارای پایین‌ترین میزان H2S هستند.

کاهش می‌باشد.

بحث

عوامل موثر در تشکیل لیستونیت شما نایین بدمی شرایط

است:

زمین ساخت طوال جایگزینی سنگ‌های اتمسفری کافی

آب و در در بین گسل خورددی در راستای تغیرات

تعداد ایزوترومبیا (هم‌فشاری)، شرایط ساختاری مناسب

برای نفوذ ایگون‌های لیستونیت ساز، در فرآیند کرده است.

علوی بر این حال کشش ترشحی که پس از جایگزینی

افولومیت در ایران مرکزی رخ داد، سپس ایجاد شکستگی-

های این پس از جایگزینی لیستونیت ساز و فراهم کرده است.

برای تعامل در خرابی سیستم‌های عناوین مجازی

است که در کنترل شکستگی به عنوان مجازی

افولومیت در ایگون‌های لیستونیت ساز و فراهم کرده است.

بکار اولیه و لازم برای تشکیل لیستونیت به شمار می-

روند. منابع از طریق ایگون‌های لیستونیت از چندین سانی‌مان تا دیگر خارج از

نافذ لیستونیتی نسخه گرگانی یک می‌باشد.
با کاشش دما و فشار جزیی CO₂ قابلیت حل شوندگی کلسیم افزایش می‌یابد. در این شرایط کرانه‌های کربنات‌های قابل حل می‌شوند و سیلیسی به صورت کوارتز و کلسیدونی جانشین آن‌ها می‌شود. بدین ترتیب باقی جزئی‌های کربنات‌های کرانه‌های شکستگی‌های موجود در سندگ را پر می‌کند. شکل نموداری فراوانی لیستونیت‌شندن [20] در شکل ۹ آمده است.

برداشت
سرپاپینیت‌های شمال نابین در برخی بخش‌ها تحت تأثیر آب‌های تراژیلی قابل حل شوندگی CO₂ و سیلیسی. CaCO₃ و SiO₂ به لیستونیت تبدیل می‌شوند. به‌طور کلی همگی لیستونیت‌ها شامل مقادیر کمی از عناصر نادر خاکی مشتند و الگوی به‌هنجار شده این عناصر نسبت به کندرات تقریباً مسطح است. تهی شدگی لیستونیت‌ها از

نتشان دهنده پروتوئیت پریدوئینی با درجه ذوب REE بخش‌های بالاتر زمین‌ساختی فعال و کنترل‌های ساختاری مناسب برای انتقال آب‌های لیستونیت‌ساز، افزایش دما ناشی از مکانیزم اتوس در باکتری‌های آقا می‌توان از عوامل موثر در تشکیل لیستونیت در نظر داشت. خاسیت‌های CO₂، لازم برای واکنش‌های لیستونیت‌شندن را می‌توان آب‌های مکانیزم‌های متفاوتی دانست.

تقدیرانی
از تحقیقات تکمیلی دانشگاه اصفهان برای مساعدت در تدوین این مقاله تشكر و تقدیراتی می‌شود.

منابع

[16] [16] علی‌اکبر سیاسان و رضا شریفی، "بیشتری از زمین‌شناسی شمال نابین", سازمان زمین‌شناسی و اکتشافات معدنی- 1383 (کتیور)

[21] زینب کورم، گل، مهربانی س، فراهانی، گل، کاکی- زمین شناسی، موضوعیت، ساختار و آتشفشانی مدل‌های تکمیلکی برای لیستوئنیت‌های خاوری، مجله پژوهش‌های کاکی- زمین‌شناسی ایران، سال سیزدهم، شماره 2 (1384) 277-278.

[22] [22] تولینسون، د. ر. کاربرد داده‌های زنوشیمی‌پیایی ارژی، نمایش تفکیک، ترجمه و بررسی درک زمین‌شناسی، 1381. صفحه 1281 1287 557 558. 1381. صفحه 1281

[23] [23] [23] جبرای ع., زمین‌شناسی و پتروژن اوبیولیت‌های شمال نابین، پایان نامه کارشناسی ارشد، دانشگاه اصفهان, (1376). صفحه 122

[24] [24] مولیمینی، "پتروژن و پتروژن اوبیولیت‌های شمال نابین", پایان نامه کارشناسی ارشد، دانشگاه شهید بهشتی تهران, (1376). صفحه 190

[26] [26] [26] رحمانی، ف.، "پتروژن و پتروژن اوبیولیت نابین (ایران مرکزی)", پایان نامه کارشناسی ارشد، دانشگاه اصفهان, (1383).

[27] [27] رضایی، ز. "مطالعه پتروژن بلژیک‌رگن‌ها و سنگ‌های وایست در اوبیولیت‌های نابین (ایران مرکزی)", پایان نامه کارشناسی ارشد، دانشگاه اصفهان, (1385). صفحه 139

[28] [28] [28] پرینا نابینی، "پتروژن اوبیولیت‌های کوسته اوبیولیت نابین (ایران/استان اصفهان)", پایان نامه کارشناسی ارشد، دانشگاه اصفهان, (1384). صفحه 91

[29] [29] شریعت زاده، د. "پتروژن سنگ‌های دگرگونی اوبیولیت نابین (استان اصفهان)", پایان نامه کارشناسی ارشد، دانشگاه اصفهان, (1384). صفحه 126
