Thermal treatment investigation of natural lizardite at the atmospheric pressure, based on XRD and DTA/TG analysis methods

R. Dabiri¹, B. Karimi Shahraki², H. Mollaei³*, M. Ghaffari³

¹- Science and Research Branch, Islamic Azad University, Tehran, Iran
²- Mineralogy Lab, Iran Mineral Processing Research Centre (IMPRC)
³- Department of Geology, Faculty of Sciences, Islamic Azad University-Mashhad Branch

(Received: 15/12/2008, in revised form: 25/5/2009)

Abstract: Determination of stability limits, mineralogical changes and thermal reaction of serpentine minerals are very important for the investigation of magmatism, mechanism and depth of plates of subduction. During the subduction process, serpentine (Lizardite) minerals will release their water due to thermal reactions. This dehydration can play an important role in volcanism processes related to the subduction. In this study, serpentine minerals (Lizardite) collected from the Neyriz Ophiolite Complex (NOC) were dehydrated under the constant atmospheric pressure. These mineralogical changes were determined by X-Ray diffraction and DTA-TG analyses methods. This study shows natural lizardites that heated for about one hour is stable up to 550°C. Dehydration reactions on lizardite started at approximately between 100 to 150°C and dehydroxilation reactions started at approximately 550-690°C. As a result of thermal reaction, the decomposition of lizardite will take place and then changes in to olivine (forsterite). Crystallization of olivine (forsterite) will start at 600°C. This mineral is stable up to 700°C and then crystallization of enstatite will start at 700°C. During this dehydration and crystallization reaction, amorphous processes will start at 600°C and some amount water and silica will release.

Keywords: Lizardite, serpentine, thermal reaction, XRD, DTA-TG

* Corresponding author, Tel.: +98 (0511) 8408008, Fax:+98 (0511) 8446361, E-mail: hamollai@yahoo.com
بررسی رفتار گرماپی لیزرادیت‌های طبیعی در فشار اتمسفری، بر اساس تجزیه

دستگاه‌های XRD و DTA-TG

رهیم دبیری، بهروز کریمی شهروکی، حسین ملایی

1- دانشگاه آزاد اسلامی، واحد علوم و تحقیقات، تهران، ایران
2- موسسه تحقیقات فراوری مواد معدنی، کرج، ایران
3- گروه زمین شناسی، دانشگاه علوم دانشگاهی آزاد اسلامی مشهد

چکیده: تعیین میزان پایداری، تغییرات کالی شناسی و واکنش‌های گرماپی، کانی‌های سرپنتین، می‌تواند در تعیین ساز و کار فرآیند، ماکمتعیسم و عمق صفحات فروپوشده بسیار جلوگیری باشد. طی فرآیند فروپوشده، واکنش‌های گرماپی، باعث آزاد شدن آب کانی‌های سرپنتینی می‌شود. این امر نشان دهنده انتقال اندکی محورهای طبیعی در فرآیندهای انتقال افیتولوژی نیز، در گستره‌های گرمایی متفاوت و در فشار

DTA-TG و XRD مورد بهره‌برداری در بررسی فیزیکی و آلاینده‌های لیزرادیت‌های طبیعی، که به‌مدت یک ساعت، در دمای 150 درجه سانتیگراد گرمای زده شده، واکنش‌های (Dehydration) هیدروکسیل زدایی (Dehydroxilation) واکنش‌های (Dehydroxilation) آنها در گستره دمایی 450 تا 690 درجه سانتیگراد صورت می‌گیرد. لیزرادیت‌های طبیعی تا دمای 550 درجه سانتیگراد پایدار بوده و در دمای 400 درجه سانتیگراد به روی‌سازی (فورسیرت) تبدیل می‌شوند. همچنین در دمای 200 درجه سانتیگراد، پیروکس (استینات) در نتیجه تجزیه لیزرادیت تشکیل می‌شود. بین واکنش‌های آب زدایی و تبلور، آمورف

DTA-TG XRD

واژه‌های کلیدی: لیزرادیت، سرپنتین، رفتار گرماپی

مقدمه

کانی‌های جزء فیلوسیلیکات‌های آبیار بوده و در ساختار خود

حدود 13/4% آب دارند. کانی‌های سرپنتین در نتیجه ایگری از

الیون، پیروکس و کانی‌های سیلیکاتی دیگری از منیزیم، MgO, SiO2, (OH)

می‌باشد. این

hamollai@yahoo.com

***: نویسنده مسئول، تلفن: 090879008884, مکه: 1(8444436484), پست الکترونیکی:
تشکیل می‌شود. فراوری‌های که از آن با عنوان سربانتیتی شدن یاد می‌شود، شامل سربانتیت‌های سربانتیت‌های سربانتیت از لحاظ فیزیکی، به ترتیب تغییرات تلاش‌گرایی، تغییرات شیمیایی، تغییرات اتوکسیژن و تغییرات حرارتی می‌باشند.

روشکار

این کار پژوهشی شامل سه مرحله سنجش‌گرایی، بررسی‌های DTA-TG و XRD است که در موسسه IMPRC تحقیقات بیشتر قرارآوری می‌شود. در طبقه‌بندی و تغییرات شیمیایی، در تحقیقات شیمیایی، پایداری کامپوزیت و پیگری های بی‌ام و سنتگ‌ها، مورد بررسی‌های سنجش‌گرایی قرار گرفته‌اند. به‌طور کلی، بررسی‌های DTA-TG و XRD نمونه‌های مختلفی را شامل می‌شوند.

شکل 2: سربانتیت‌های تبدیل شده بر اساس شکل تغییرات شیمیایی، افزایش قسمتی، تغییرات حرارتی و تغییرات شیمیایی.

شکل 1: تصویر نمودای از ساختار غریمی در نواحی قوس‌یابی و مدیان سربانتین در کم تنش‌گرایی و تغییرات در مراحل مورد بررسی قرار گرفته‌اند. تغییرات شیمیایی، دانستن میزان پیگری، تغییرات اتوکسیژن و تغییرات حرارتی می‌باشند.

1- serpinizination

Iran Mineral Processing Research Centre

(31)
مجله بورونشناسی و کاکی شناسی ایران
دبری، کریمی شهريکی، ملاهی، غفاری
398

درجه سانی‌گراد گرفته.)

Differential Thermal Analysis (DTA-TG) و آنالیز گرادیمی‌گرمی (Thermal Gravimetry Analysis, TGA) به منظور

آماری از چگونگی تبدیل‌های فازی، به موارد افق‌های دما و STA کاهش وزن ناشی از واکنش‌ها، با تجزیه کندن گرامی‌های (NETZSCH) 409 PC Luxx

در طول آنالیزها، دما به طور ثابت از 20 درجه سانتی‌گراد (C) تا 1100 درجه سانتی‌گراد (C) برای اندازه‌گیری دما و دما کانال‌ها از 0.1 درجه سانتی‌گراد (C) استفاده شده است.

زمین‌شناسی منطقه مورد بررسی

افیولیت نیریز، بخشی از نواص‌افیولیتی، به طول تقریبی 3000 کیلومتر، است که به طور ثابت از مشوره‌های اصلی و گذر از جنوب تا شمال به شمال رود (شکل 3) با استفاده از این نوازی به کمان در رستاکانگه‌های میانی

دوم عربستان و سفیدی ایران قرار دارد، به وسیله ریک (Croissant) بررسی و به آن هلال افیولیتی حاشیه عربستان.)

شکل 3 (a) نقشه پراکندگی مجموعه افیولیتی و آمپوزیت ایران (اقتباس از [27]) و موقعیت منطقه مورد بررسی. اصل‌ترین افیولیت‌های Km = Th = T3 = Ch = Sb = میزبانی، = Kb = Bz = Hb = Sb = Na = شرکت‌های = Np = Th = ترتیب حیدریه، = Kp = Chel کوه، = گازی. = زمان

کلمات کلیدی (b) نقشه زمین‌شناسی منطقه مورد بررسی و رختگون سگه‌های سریانی‌نیتسی در آن.
بررسی های سنج شناختی
بررسی های سنجش‌نامه‌ای نشان داده که، خاستگاه این نمونه سنگ‌های افیلیتی هزاربروزیت است این سنگ‌ها، به طور کامل سرپانسیت و بنی سرپانسیت‌های تبلیغ شده‌اند.

هزاربروزیت‌های سرپانسیتی شده، منطقه‌ای که گسترده‌کننده کیلو‌متری شرقی را می‌نشاند. در این سنگ‌ها، پارنژ کالی‌پاتی سرپانسیتی تا بال‌کتی گون‌شده است. ماهیت‌های فرومینیمینی، همجون‌های بینی (فرومینیمینی) با انتو پیروکسین (سنگ‌های) مشاهده شده. در مواردی فقط قابل از این کالای‌ها قابل تجزیه کردن است. به طوری که، برخی از انتوپیروکسین‌ها دگرگانشند و فقط قابلی آنها بلافاصله مانده است. برهاس رچ‌بندی اوهالتی و ویکس - ویتاکر و ویژگی-

درمانی سرپانسیت‌های موجود از نوع لیبرادیت‌های سیاه‌پوشین و رگه‌هایی از نوع کرزین‌تیل است (شکل 4) [21-23]

واکنش‌های وابسته به تجزیه سرپانسیت‌ها با افزایش، در میان پیمایند کالای های سرپانسیت‌های محدود‌تر.

بروکزیت‌های کالای جدید که لیبرادیت و کرزین‌تیل تا رخ‌کاره شیست

بروکزیت‌هایی که رخ‌کاره آماده‌بوده (S: 550 – 700 درجه سانتی‌گراد) در اینجا لازم به بازرس می‌باشد که,

میزان پیمایند لیبرادیت علاوه بر دما و فشار به دو عامل زمان و

اندازه‌پذیری نیز بستگی دارد. بر اساس بررسی‌های [24،25]

مشخص شد که لیبرادیت در دمای 600-670 درجه سانتی‌گراد (S: 550 – 700 درجه سانتی‌گراد) پس از 27 دقیقه و در دمای 700-760 درجه سانتی‌گراد (S: 600 – 670 درجه سانتی‌گراد) پس از 10 دقیقه

دستخوش واخیش می‌شود. [25،26]}

جریان سرپانسیت‌های بسته‌پوشون، پیروکسین، تاکتیک، برتک و

کال‌های کم این براین است که از آن به سرپانسیت‌پروکسین

شکل 4 تصویری از مقطع میکروسکوپی سرپانسیت‌های نیزی با نیزی با نیزی غربالی (OL) و شب‌روی‌های از پیروکسین (mesh-texture) که فقط قابل (OL) از آن باقی مانده و با سرپانسیت‌های نیزی با تبیین (OL) و تبیین (OL) در نور (S) در نور (OL) و تبیین (OL) XPL (b) در نور XPL (b) در نور.
آنانیله‌های پرگون ایکس (XRD)
چنانکه اشاره شده می‌باشد، بر اساس نظریه‌های فیزیکی و متابولیکی، فازی نمونه‌ها در گرم‌های مختلف، یک دسته شامل
گرما خویش، گرما داده شده، نشان دهنده نوع نمونه‌های فیزیکی
و استراتیژی‌های حیاتی لیزریتی، از مجموعه اهل‌خانی
مورد استفاده در مراحل اول (در دمای ۱۵۰°C) بینار و اکسبین
در مرحلات اول، پیروآوریت موجود در نمونه‌های تقوم بررسی دی
که اکسبین کربن و آب خرو، در دمای ۴۴۵°C از دست داده و
برای استحکام دادن قطعات کربن و دستخوش دو روکش‌های هیدروکسی
(از دست دادان آب ساخارات) شده است.

Mg₆Fe₂(CO₃)(OH₁₆).4H₂O → Mg₆Fe₂(CO₃)(OH₁₆) + 4H₂O

Mg₆Fe₂(CO₃)(OH₁₆) → MgO₆Fe₂O₃+CO₂+8H₂O

MgO₆Fe₂O₃ → MgO₆Fe₂O₃ + O₂

بر اساس نمونه‌مورد، آنانیله‌های تغییرات کانیشناسی ناشی از
واکسنرای گرم‌هایی، بررسی‌های XRD روز نمونه‌های گرما
دیده انگیم شد. نتایج آنانیله‌ها حکایت از ان داد که در
۴۵۰°C کانی تالک آبتر در ذهن می‌روی. در دمای ۴۰۰°C و
۵۰۰°C درجات نمونه‌گیری، تغییرات کانیشناسی ناشی از
با لازه دمای مقادیر لیزریدات کانی می‌شود. تا الان درمای
۴۰۰°C لیزریدات قلیک و شده و شکرین آن در دمای
۵۰۰°C نمونه‌های فیلتریک توصیف شده، به ترور مشهوری
در اکسبین کربن و در دست داده و دستخوش
اکسبین راه شده است.

Mg₆O₆Fe₂O₃ → MgO₆Fe₂O₃ + O₂

بر اساس نمونه‌مورد، تغییرات کانیشناسی ناشی از
واکسنرای گرم‌هایی، بررسی‌های XRD روز نمونه‌های گرما
دیده انگیم شد. نتایج آنانیله‌ها حکایت از ان داد که در
۴۵۰°C کانی تالک آبتر در ذهن می‌روی. در دمای ۴۰۰°C و
۵۰۰°C درجات نمونه‌گیری، تغییرات کانیشناسی ناشی از
با لازه دمای مقادیر لیزریدات کانی می‌شود. تا الان درمای
۴۰۰°C لیزریدات قلیک و شده و شکرین آن در دمای
۵۰۰°C نمونه‌های فیلتریک توصیف شده، به ترور مشهوری
در اکسبین کربن و در دست داده و دستخوش
اکسبین راه شده است.

Mg₆O₆Fe₂O₃ → MgO₆Fe₂O₃ + O₂

بر اساس نمونه‌مورد، تغییرات کانیشناسی ناشی از
واکسنرای گرم‌هایی، بررسی‌های XRD روز نمونه‌های گرما
دیده انگیم شد. نتایج آنانیله‌ها حکایت از ان داد که در
۴۵۰°C کانی تالک آبتر در ذهن می‌روی. در دمای ۴۰۰°C و
۵۰۰°C درجات نمونه‌گیری، تغییرات کانیشناسی ناشی از
با لازه دمای مقادیر لیزریدات کانی می‌شود. تا الان درمای
۴۰۰°C لیزریدات قلیک و شده و شکرین آن در دمای
۵۰۰°C نمونه‌های فیلتریک توصیف شده، به ترور مشهوری
در اکسبین کربن و در دست داده و دستخوش
اکسبین راه شده است.

Mg₆O₆Fe₂O₃ → MgO₆Fe₂O₃ + O₂

بر اساس نمونه‌مورد، تغییرات کانیشناسی ناشی از
واکسنرای گرم‌هایی، بررسی‌های XRD روز نمونه‌های گرما
دیده انگیم شد. نتایج آنانیله‌ها حکایت از ان داد که در
۴۵۰°C کانی تالک آبتر در ذهن می‌روی. در دمای ۴۰۰°C و
۵۰۰°C درجات نمونه‌گیری، تغییرات کانیشناسی ناشی از
با لازه دمای مقادیر لیزریدات کانی می‌شود. تا الان درمای
۴۰۰°C لیزریدات قلیک و شده و شکرین آن در دمای
۵۰۰°C نمونه‌های فیلتریک توصیف شده، به ترور مشهوری
در اکسبین کربن و در دست داده و دستخوش
اکسبین راه شده است.

Mg₆O₆Fe₂O₃ → MgO₆Fe₂O₃ + O₂

بر اساس نمونه‌مورد، تغییرات کانیشناسی ناشی از
واکسنرای گرم‌هایی، بررسی‌های XRD روز نمونه‌های گرما
دیده انگیم شد. نتایج آنانیله‌ها حکایت از ان داد که در
۴۵۰°C کانی تالک آبتر در ذهن می‌روی. در دمای ۴۰۰°C و
۵۰۰°C درجات نمونه‌گیری، تغییرات کانیشناسی ناشی از
با لازه دمای مقادیر لیزریدات کانی می‌شود. تا الان درمای
۴۰۰°C لیزریدات قلیک و شده و شکرین آن در دمای
۵۰۰°C نمونه‌های فیلتریک توصیف شده، به ترور مشهوری
در اکسبین کربن و در دست داده و دستخوش
اکسبین راه شده است.

Mg₆O₆Fe₂O₃ → MgO₆Fe₂O₃ + O₂

بر اساس نمونه‌مورد، تغییرات کانیشناسی ناشی از
واکسنرای گرم‌هایی، بررسی‌های XRD روز نمونه‌های گرما
دیده انگیم شد. نتایج آنانیله‌ها حکایت از ان داد که در
۴۵۰°C کانی تالک آبتر در ذهن می‌روی. در دمای ۴۰۰°C و
۵۰۰°C درجات نمونه‌گیری، تغییرات کانیشناسی ناشی از
با لازه دمای مقادیر لیزریدات کانی می‌شود. تا الان درمای
۴۰۰°C لیزریدات قلیک و شده و شکرین آن در دمای
۵۰۰°C نمونه‌های فیلتریک توصیف شده، به ترور مشهوری
در اکسبین کربن و در دست داده و دستخوش
اکسبین راه شده است.

Mg₆O₆Fe₂O₃ → MgO₆Fe₂O₃ + O₂
نتیجه گرفته که لیزاژه‌هایی که به صدت یک ساعت گرامم دیده‌اند تا دمای 550 درجه سانتی‌گراد که بیش از تمامی موارد مورد بررسی قرار گرفته، XRD با گرفتن شده بود که سپس با استفاده از فازاتور می‌تواند فازاتور و سپس با استفاده از فازاتور شکم به سیالیت طی هیدروکسیلیت رئیزی و لیزاژه‌های اولین شده است.

بردشت بر اساس نتایج XRD انجام شده در این بررسی معلوم شد که XRD با استفاده از می‌تواند از شدت قله‌ها در نمودارهای کاسته‌ها می‌شود. به طوری که در دمای بین 259.5 درجه سانتی‌گراد مربوط به کالی لیزاژه‌هایی می‌باشد. نمایش نشان دهنده می‌باشد.
MgSi₂O₅(OH)₄ → Mg₂SiO₄+MgSiO₃+2H₂O

نتایج حاصل از بررسی‌های DTA تایید می‌کند که XRD همکاری دارد. آنالیز‌های XRD واکنش‌های هیدروکسیلیزاسیونی لیزری در دمای 550°C شروع و تا دمای 690°C ادامه می‌یابد. بررسی‌های انجام شده با پرتو X نشان می‌دهد که در دمای بالاتر از 600°C فورستریت Xهای شده و شروع می‌کند. تا دمای 100°C که دلالت گرمایی مشخص شده است، در واقع واکنش‌های هیدروکسیل زدایی است. به عبارت دیگر این دمای اولیه دوران شده‌ها به‌طور فورستریت و انستاتیت رونق خاصی برخوردارند.

[17] Sheikholeslami M.R., Piqué A., Mobayen P., Sabzehei M., Bellon H., Emami M.H., "Tectono-
metamorphic evolution of the Neyriz metamorphic complex, Qori-Kor-e-Sefid area (Sanandaj-Sirjan
volcanic rocks of the Zagros Crush Zone, Neyriz, Iran”, Journal of Asian Earth Sciences 19/1-2
(2001) 61-76.
[19] NADIMI A., "Microstructural analysis of plastic deformation of upper mantle and shear
zones of the Neyriz ophiolite, southeastern Iran", MSc. Thesis, Shiraz University, Shiraz, Iran
(1999).
[20] NADIMI A., "Mantle flow patterns at the Neyriz paleospreading center, Iran", Earth and
[21] Hall R., "Contact metamorphism by an ophiolite peridotite from Neyriz, Iran", Science,
"Experimental Study of the Thermal Decomposition of Lizardite up to 973 K", GSA Abstracts with
Programs (2005).
thermodynamic data by the technique of mathematical programming: a review with application to
the system MgO-SiO2-H2O", J. Petrol. 27 (1986) 1331-1364.

05421.
structurales et datations 40K–40Ar sur les roches métamorphiques de la région de Neyriz (zone de
Sanandaj–Sirjan, Iran méridional). Leur intérêt dans le cadre du domaine néo-téthysien du Moyen-
Orient:New structural and 40K–40Ar data for the metamorphic rocks in Neyriz area (Sanandaj–
Sirjan Zone, Southern Iran). Their interest for an overview of the Neo-Tethyan domain in the Middle
[10] RICOU L.E., "Le croissant ophiolitique periarabe, une ceinture de nappes mises en place au
[13] Sarkarinejad Kh., "Structures and microstructures related to steady-state mantle flow in
the Neyriz ophiolite, Iran", Journal of Asian Earth Sciences 25/6 (2005) 859-881
age, isotopic, and geochemical data for basalts in the Neyriz ophiolite, Iran", Geophysical Research
[15] Lanphere M.A., Pamić J., "40Ar/39Ar Ages and tectonic setting of ophiolite from the Neyriz area,
[16] Shahabpour J., "Tectonic evolution of the orogenic belt in the region located between
