Thermal treatment investigation of natural lizardite at the atmospheric pressure, based on XRD and DTA/TG analysis methods

R. Dabiri¹, B. Karimi Shahraki², H. Mollaei³*, M. Ghaffari³

1- Science and Research Branch, Islamic Azad University, Tehran, Iran
2- Mineralogy Lab, Iran Mineral Processing Research Centre (IMPRC)
3-Department of Geology, Faculty of Sciences, Islamic Azad University-Mashhad Branch

(Received: 15/12/2008, in revised form: 25/5/2009)

Abstract: Determination of stability limits, mineralogical changes and thermal reaction of serpentine minerals are very important for the investigation of magmatism, mechanism and depth of plates of subduction. During the subduction process, serpentine (Lizardite) minerals will release their water due to thermal reactions. This dehydration can play an important role in volcanism processes related to the subduction. In this study, serpentine minerals (Lizardite) collected from the Neyriz Ophiolite Complex (NOC) were dehydrated under the constant atmospheric pressure. These mineralogical changes were determined by X-Ray diffraction and DTA-TG analyses methods. This study shows natural lizardites that heated for about one hour is stable up to 550°C. Dehydration reactions on lizardite started at approximately between 100 to 150°C and dehydroxilation reactions started at approximately 550-690°C. As a result of thermal reaction, the decomposition of lizardite will take place and then changes in to olivine (forsterite). Crystallization of olivine (forsterite) will start at 600°C. This mineral is stable up to 700°C and then crystallization of enstatite will start at 700°C. During this dehydration and crystallization reaction, amorphous processes will start at 600°C and some amount water and silica will release.

Keywords: Lizardite, serpentine, thermal reaction, XRD, DTA-TG

* Corresponding author, Tel.: +98 (0511) 8408008, Fax:+98 (0511) 8446361, E-mail: hamollai@yahoo.com
بررسی رفتار گرمایی لیزردیت‌های طبیعی در فشار اتمسفری، بر اساس تجزیه

DTA-TG و XRD

دستگاهی

رحیم دبیری، بهروز کریمی شهرکی، حبيب ملایی، میرزا غفاری

1- دانشگاه آزاد اسلامی، واحد علوم و تحقیقات، تهران، ایران
2- مؤسسه تحقیقات فراوری مواد معدنی، کرج، ایران
3- گروه زمینشناسی دانشگاه علوم، دانشگاه آزاد اسلامی مشهد

چکیده: تغییرات کانی سنتی و واکنش‌های گرمایی کانی‌های سرپینتین، می‌تواند در تعیین ساز و کار فرورانش، ماگمانتیسم و عمق صفحات فرورودن به سیاره باشد. در فرآیند فرورانش، واکنش‌های گرمایی، باعث آزاد شدن آب کانی‌های سرپینتینی می‌شود. این امر نشان‌دهنده زمین‌شناسی است. در این کار پژوهشی، رفتار

گرمایی و تغییرات کانی‌شناسی کانی لیزردیت (سرپینتین)، با استفاده از دستگاه‌های گرمایی دیفروت و در فشار

DTA-TG و XRD جوی، با پرش پتروتو X و انالیزهای (XRD) نشان داد که، واکنش‌های گرمایی، DTA-TG XRD

یک هیدرورسانکس نواحی (Dehydration) له به معنی صورت می‌گیرد. لیزردیت‌های طبیعی تا

ها در گستره دمایی 500 درجه سانتی‌گراد سوخته می‌گردد. آنها در میان

50 درجه سانتی‌گراد پایدار بوده و در دمای 600 درجه سانتی‌گراد به ایبیون (فورسپتین) تبدیل می‌شوند. همچنین در دمای

700 درجه سانتی‌گراد، پیرک‌سن (استاتین) در نتیجه تجزیه لیزردیت تشکیل می‌سوزد. بین واکنش‌های آب زدایی و تبلور، آمورف

شدن، در دمای 600 درجه سانتی‌گراد رخ داده و باعث تشکیل مقداری اندکی آب و سیلیس آزاد شده است.

واژه‌های کلیدی: لیزردیت، سرپینتین، رفتار گرمایی

مقدمه

کانی‌ها، جزء فیلوسیلات‌های آبیار بوده و در ساختار خود

حدود ۱۲٪ آب دارند. کانی‌های سرپینتین، در نتیجه ابتکاری از

الیوی، پریوسکس و کانی‌های سلیکاتی دیگر غنی از منیزیم، MgSiO3(OH)

نویسنده مسئول: تلفن: ۰۹۸۲ ۰۹۹۲۰۸۸۰۰ ۰۵۱۱ (۸۴۲۴۳۶۲۳۶)، نام: ۰۹۸۲، پست الکترونیکی

hamollai@yahoo.com
تشکیل می‌شوند. فراینده‌که از آن با عنوان سرباندینی شدن آن پدید می‌شود. کانی‌های سرباندین، در زون فوران‌نشین و اعماق ۱۵۰ تا ۳۰۰ کیلومتری، آپ موجود در ساختار بلوری خود را از دست می‌دهند (شکل ۱). این آب، باعث ذوب بخشی سنگ‌ها، در اعماق ۱۰۰ تا ۱۳۰ کیلومتری، و درجه سختی‌گردان شده و مگماتیسم سری آهکی-فیله‌ای را در جزیره قرقسی، موجب می‌شود. در اینجا، تغییرات کانی‌شناسی و واکنش‌های گرما‌سوزی‌کاتای سرباندین، در تعیین ساز و کار فوران‌نشین، مگماتیسم و عمق صفحات فوران‌نشین سیاسی از جمله کارهای تجاری که برای تعیین میزان پایداری کانی‌های سرباندین، در فرآینده‌که از قبیل‌رگونه و شرایط (شکل ۲)، تولید و واکنش‌های سرباندین، در فرآینده‌که انجام گرفته، می‌توان به نظیر و شرایط (شکل ۲) اشاره کرد (شکل ۲). تولید و واکنش‌های سرباندین در فرآینده‌که انجام گرفته، می‌توان به نظیر و شرایط (شکل ۲) اشاره کرد (شکل ۲). تولید و واکنش‌های سرباندین در فرآینده‌که انجام گرفته، می‌توان به نظیر و شرایط (شکل ۲) اشاره کرد (شکل ۲). تولید و واکنش‌های سرباندین در فرآینده‌که انجام گرفته، می‌توان به نظیر و شرایط (شکل ۲) اشاره کرد (شکل ۲). تولید و واکنش‌های سرباندین در فرآینده‌که انجام گرفته، می‌توان به نظیر و شرایط (شکل ۲) اشاره کرد (شکل ۲). تولید و واکنش‌های سرباندین در فرآینده‌که انجام گرفته، می‌توان به نظیر و شرایط (شکل ۲) اشاره کرد (شکل ۲). تولید و واکنش‌های سرباندین در فرآینده‌که انجام گرفته، می‌توان به نظیر و شرایط (شکل ۲) اشاره کرد (شکل ۲). تولید و واکنش‌های سرباندین در فرآینده‌که انجام گرفته، می‌توان به نظیر و شرایط (شکل ۲) اشاره کرد (شکل ۲). تولید و واکنش‌های سرباندین در فرآینده‌که انجام گرفته، می‌توان به نظیر و شرایط (شکل ۲) اشاره کرد (شکل ۲). تولید و واکنش‌های سرباندین در فرآینده‌که انجام گرفته، می‌توان به نظیر و شرایط (شکل ۲) اشاره کرد (شکل ۲). تولید و واکنش‌های سرباندین در فرآینده‌که انجام گرفته، می‌توان به نظیر و شرایط (شکل ۲) اشاره کرد (شکل ۲). تولید و واکنش‌های سرباندین در فرآینده‌که انجام گرفته، می‌توان به نظیر و شرایط (شکل ۲) اشاره کرد (شکل ۲). تولید و واکنش‌های سرباندین در فرآینده‌که انجام گرفته، می‌توان به نظیر و شرایط (شکل ۲) اشاره کرد (شکل ۲). تولید و واکنش‌های سرباندین در فرآینده‌که انجام گرفته، می‌توان به نظیر و شرایط (شکل ۲) اشاره کرد (شکل ۲). تولید و واکنش‌های سرباندین در فرآینده‌که انجام گرفته، می‌توان به نظیر و شرایط (شکل ۲) اشاره کرد (شکل ۲). تولید و واکنش‌های سرباندین در فرآینده‌که انجام گرفته، می‌توان به نظیر و شرایط (شکل ۲) اشاره کرد (شکل ۲). تولید و واکنش‌های سرباندین در فرآینده‌که انجام گرفته، می‌توان به N

t4= Yoder (1965)
4= Ulmer-Ottrum and Trommorf (1995)
5= Evans et al. (1976)
6= Yamamoto and Akimoto (1977)
از زمین-شناسی منطقه مورد بررسی، افیولیت نیبریز، با نور افیولیتی به طول بقیه‌ی ۲۰۰۰ کیلومتر، است که به طور نابینشته از شرایط شروع پس از گذر از جنوب ترکیه و زاگرس به عنوان مورد بررسی (شکل ۳) این نواحی که به صورت یک نواحی در راستای رانگ‌های میانی در صفحه عرضن و معرفت ایران قرار دارد، به وسیله ریکو، بررسی و به آن هنگام افیولیتی حاشیه‌ی عربستان (Croissant) گفته می‌شود.
بررسی های سنج شناختی
بررسی های سنج شناختی نشان داد که، خاستگاه این نمونه سنگ‌های آفلیتی، هزارپورزیت این سنگ‌ها به طور کامل سپرایتنیت و به سپرایتنیت تبدیل شده‌اند.

هزارپورزیت‌های سپرایتنیت شده، منطقه‌ای گسترده‌ای که مبتنی بر دمای رنگ‌دار می‌باشد. منطقه‌های هزارپورزیت‌های سپرایتنیت شده، در این سنگ‌ها، پارتیزان کالیبا سپرایتنیت تبدیل شده‌اند. منطقه‌ای که دمای بهتر از 600 درجه سانتی‌گراد است (شکل 4) [21-23].

واکنش‌های وابسته به تجزیه سپرایتنیت
با افزایش دما، میدان بایدی کم‌فازی کالری سپرایتنیت محدود‌تر می‌شود به طوری که لیزارات و کربناتیت تا صورتی شیست سبز باریک (55 درجه سانتی‌گراد) و سپس کربناتیت تا صورتی آماده‌سازی گردان 50 درجه سانتی‌گراد [24] در اینجا لازم به باید و اصطلاحی است که بتواند باعث افزایش دما و فشار شود و دمای زمان و اندازه برگریپسی نیز در درجه سانتی‌گراد است. بر اساس بررسی‌های [24].

تجزیه سپرایتنیت به آبیون، پپروکس، تالک، کربنات و کالری های کم آب. فرایندهای این سنگ‌ها به سپرایتنیت‌برای ساخت و ایجاد دما و فشار پورتیس‌های سپرایتنیت باعث می‌گردد. ضمیمه‌های پیش‌باز، در افرود ریخته‌های از الیون (mesh-texture) که فقط قابل تصور (OL) و خط ریخته‌های از الیون (mesh-texture) که فقط قابل تصور (OL) و خط ریخته‌های از الیون (mesh-texture) که فقط قابل (XPL) و تصویر (b) در نور XPL. (تصویر (a) در نور XPL.
آنانیزهای پراش پرتو ایکس (XRD)
چنانکه اشاره شد، به منظور بررسی نظرالگر دگرگامی و تغییرات فازی، نمونه‌ها در دمای معطوف بیان ساخت در گرماتور مورد بررسی قرار گرفتند. به منظور بهره‌مندی از ناحیه بارانی این روش به استفاده از جی‌اف‌ام‌اس منجر گردید.

Mg₆Fe₂(CO₃)(OH)₁₆.4H₂O → Mg₆Fe₂O₅+CO₂+8H₂O

در مرحله دوم پیروآوری موجود در نمونه‌های مورد بررسی در ۴۷۵°C در اکسید کربن و آب خورا در دمای ۴۷۵°C - ۵۰۵°C و در دمای ۴۷۵°C-۵۰۵°C با افزایش دما، تغییرات به عنوان دلیل اصلیی بر این نشان می‌دهد. در دمای ۴۰۰°C تا ۴۲۵°C گرمایش بررسی‌های دیگر در دمای ۳۷۵°C-۴۵۰°C انجام شد. نتایج آنانیزهای حاکی از این دارد که در دمای ۳۵۰°C کنترل برای ایجاد از میان می‌روند. در دمای ۴۰۰°C و ۵۰۰°C درجه نسبت‌گیری تغییرات کانی‌نشانی ناشی از واکنش‌های گرمایی-بررسی‌های دیگر در نمونه‌های گرمایی دیده شد. نتایج آنانیزهای حاکی از این دارد که در دمای ۳۵۰°C کنترل برای ایجاد از میان می‌روند. در دمای ۴۰۰°C و ۵۰۰°C درجه نسبت‌گیری تغییرات کانی‌نشانی ناشی از واکنش‌های گرمایی-بررسی‌های دیگر در نمونه‌های گرمایی دیده شد.

Mg₆Fe₂(CO₃)(OH)₁₆ + 4H₂O → Mg₆Fe₂O₅Fe₂O₃+CO₂+8H₂O

و در مرحله آخر با واکنش زیر در دمای ۴۰۰°C کمی پیروآوری تغییرات خوند را نیز از دست داده و دستخوش اکسیژن زدایی شده است.

Mg₆O₆Fe₂O₃ → Mg₆O₆Fe₂O₃ + O₂

بر اساس نمودار TG نمودار می‌توان دریافت که در این مرحله نمونه ۷ درصد کاهش وزن پیدا کرده است.

DTA-TG نمونه‌های لیزرایت
بر اساس نتایج بررسی‌های DTA-TG نمونه‌های لیزرایت منطقه مورد بررسی، سه قله گرمایی در دمای ۴۷۵°C-۵۰۵°C را نشان می‌دهد (شکل ۳). واکنش‌های گرمایی لیزرایت با افزایش دما، گسترش می‌یابد. جایگاهی که در N-TGA نشان داده می‌شود، از دمای ۱۵ آب آزاد و آب جنیج مشاهده می‌شود. از دمای ۶۰°C تا ۱۲۵°C نمودار نمونه‌ها بین رفت و نمونه‌ها استخوانی آدرار ۳ می‌شود. قله گرمایی اصلی در دمای ۴۴۵°C-۵۰۰°C دیده شد. نتایج داد که با افزایش دما فرسایش و اریزکسنو در سال ۲۰۰۴ کمی پیروآوری در سه مرحله دستخوش وایش Button می‌شود. در دمای ۲۱۹°C. در دمای ۲۱۹°C، نمونه‌های XRD و MR استخر دیده شد. بر اساس نتایج آنانیزهای تغییرات کانی‌نشانی ناشی از واکنش‌های گرمایی، این نتایج اثبات داد که در دمای ۲۱۹°C نمونه‌ها تغییراتی کاملاً باعث کاهش وزن پیدا کرده است.

DTA-TG

Mg₆O₆Fe₂O₃ → Mg₆O₆Fe₂O₃ + O₂

بر اساس نمودار TG نمودار می‌توان دریافت که در این مرحله نمونه ۷ درصد کاهش وزن پیدا کرده است.

DTA-TG نمونه‌های لیزرایت
بر اساس نتایج بررسی‌های DTA-TG نمونه‌های لیزرایت منطقه مورد بررسی، سه قله گرمایی در دمای ۴۷۵°C-۵۰۵°C را نشان می‌دهد (شکل ۳). واکنش‌های گرمایی لیزرایت با افزایش دما، گسترش می‌یابد. جایگاهی که در N-TGA نشان داده می‌شود، از دمای ۱۵ آب آزاد و آب جنیج مشاهده می‌شود. از دمای ۶۰°C تا ۱۲۵°C نمودار نمونه‌ها بین رفت و نمونه‌ها استخوانی آدرار ۳ می‌شود. قله گرمایی اصلی در دمای ۴۴۵°C-۵۰۰°C دیده شد. نتایج داد که با افزایش دما فرسایش و اریزکسنو در سال ۲۰۰۴ کمی پیروآوری در سه مرحله دستخوش وایش Button می‌شود. در دمای ۲۱۹°C. در دمای ۲۱۹°C، نمونه‌های XRD و MR استخر دیده شد. بر اساس نتایج آنانیزهای تغییرات کانی‌نشانی ناشی از واکنش‌های گرمایی، این نتایج اثبات داد که در دمای ۲۱۹°C نمونه‌ها تغییراتی کاملاً باعث کاهش وزن پیدا کرده است.
شاکل ۵ تصویر بلک دیاگرام XRD یک نمونه از لیزاردتی (نمونه ۲) منطقه نیروز در دمای ۵۰۰، ۶۵۰، ۷۰۰، ۷۵۰ و ۸۰۰ درجه سانتی‌گراد و نتایج آنالیزهای آنها در دماهای یاد شده (Liز، Fo لیزاردتی، Py فورستریت، En و Fo پیروآورایت، Pyروآورایت، En فورستریت، En و Fo پیروآورایت، Pyروآورایت).

شکل ۶ تصویر نمودارهای DTA-TG مربوط به یک نمونه از لیزاردت منطقه نیروز (نمونه ۲).

نتیجه‌گیری که لیزاردت هایی که به صدت یک ساعت گرمایید دیده‌اند تا دماهای ۵۰۰ درجه سانتی‌گراد بررسی می‌شوند و از آن پس، دستخوش تجزیه شده و نتایج فورستریت و سپس استاندارد تشکیل می‌شود. در زیر واکنش مربوط به چهار کسی زدایی لیزاردت ارائه شده است:

پژوهش بر اساس نتایج XRD انجام شده در این بررسی معلوم شد که با افزایش دما به روزنامه‌ای شدت قله‌ها در نمودارهای XRD کاسته می‌شود. به‌طوری‌که در دمای بیش از ۱۵۰ درجه سانتی‌گراد، مربوط به کانی لیزاردت دیگر مشاهده نمی‌شود. لذا می‌توان
نتایج حامل از بررسی‌های XRD نشان می‌دهد که DTA نشان می‌دهد که ۶۰ درجه سانتی‌گراد و همچنین ۶۰ درجه سانتی‌گراد و همچنین

[17] Sheikholeslami M.R., Piqué A., Mobayen P., Sabzehei M., Bellon H., Emami M.H., "Tectono-
metamorphic evolution of the Neyriz metamorphic complex, Quri-Kor-e-Sefid area (Sanandaj-Sirjan Zone, SW Iran)", Journal of Asian Earth Sciences 31/4-6 (2008) 504-521.

[16] Shahabpour J., "Tectonic evolution of the orogenic belt in the region located between...

