Thermal treatment investigation of natural lizardite at the atmospheric pressure, based on XRD and DTA/TG analysis methods

R. Dabiri¹, B. Karimi Shahraki², H. Mollaei³*, M. Ghaffari³

¹- Science and Research Branch, Islamic Azad University, Tehran, Iran
²- Mineralogy Lab, Iran Mineral Processing Research Centre (IMPRC)
³- Department of Geology, Faculty of Sciences, Islamic Azad University-Mashhad Branch

(Received: 15/12/2008, in revised form: 25/5/2009)

Abstract: Determination of stability limits, mineralogical changes and thermal reaction of serpentine minerals are very important for the investigation of magmatism, mechanism and depth of plates of subduction. During the subduction process, serpentine (Lizardite) minerals will release their water due to thermal reactions. This dehydration can play an important role in volcanism processes related to the subduction. In this study, serpentine minerals (Lizardite) collected from the Neyriz Ophiolite Complex (NOC) were dehydrated under the constant atmospheric pressure. These mineralogical changes were determined by X-Ray diffraction and DTA-TG analyses methods. This study shows natural lizardites that heated for about one hour is stable up to 550°C. Dehydration reactions on lizardite started at approximately between 100 to 150°C and dehydroxilation reactions started at approximately 550-690°C. As a result of thermal reaction, the decomposition of lizardite will take place and then changes in to olivine (forsterite). Crystallization of olivine (forsterite) will start at 600°C. This mineral is stable up to 700°C and then crystallization of enstatite will start at 700°C. During this dehydration and crystallization reaction, amorphous processes will start at 600°C and some amount water and silica will release.

Keywords: Lizardite, serpentine, thermal reaction, XRD, DTA-TG

* Corresponding author, Tel.: +98 (0511) 8408008, Fax:+98 (0511) 8446361, E-mail: hamollai@yahoo.com
بررسی رفتار گرمایی لیزرادیت‌های طبیعی در فشار اتومسفری، بر اساس تجزیه XRD و DTA-GТ

رحمه دبیری، بهروز کریمی شهروکی، حجیب ملایی

(دریافت مقاله: 87/9/25, نسخه نهایی: 88/2/16)

چکیده: تغییرات کالیشناسی و واکنش‌های گرمایی کانی‌های سریانیتین، می‌تواند در تغییر ساز و کار فورمانت، ماگماتیسم و عمق صفحات فرو روده بسیار راه‌گشای باشد. طی فرآیند فورمانت، واکنش‌های گرمایی باعث آزاد شدن آب کانی‌های سریانیتینی می‌شود. این امر نقش به سزایی را در فرآیندهای آنتی‌فیزیک بازی کرده و باعث آزاد شدن آب کانی‌های سریانیتینی می‌شود. این امر نقش به سزایی را در فرآیندهای آنتی‌فیزیک بازی کرده و باعث آزاد شدن آب کانی‌های سریانیتینی می‌شود. این امر نقش به سزایی را در فرآیندهای آنتی‌فیزیک بازی کرده و باعث آزاد شدن آب کانی‌های سریانیتینی می‌شود. این امر نقش به سزایی را در فرآیندهای آنتی‌فیزیک بازی کرده و باعث آزاد شدن آب کانی‌های سریانیتینی می‌شود. این امر نقش به سزایی را در فرآیندهای آنتی‌فیزیک بازی کرده و باعث آزاد شدن آب کانی‌های سریانیتینی می‌شود. این امر نقش به سزایی را در فرآیندهای آنتی‌فیزیک بازی کرده و باعث آزاد شدن آب کانی‌های سریانیتینی می‌شود. این امر نقش به سزایی را در فرآیندهای آنتی‌فیزیک بازی کرده و باعث آزاد شدن آب کانی‌های سریانیتینی می‌شود. این امر نقش به سزایی را در فرآیندهای آنتی‌فیزیک بازی کرده و باعث آزاد شدن آب کانی‌های سریانیتینی می‌شود. این امر نقش به سزایی را در فرآیندهای آنتی‌فیزیک بازی کرده و باعث آزاد شدن آب کانی‌های سریانیتینی می‌شود. این امر نقش به سزایی را در فرآیندهای آنتی‌فیزیک بازی کرده و باعث آزاد شدن آب کانی‌های سریانیتینی می‌شود. این امر نقش به سزایی را در فرآیندهای آنتی‌فیزیک بازی کرده و باعث آزاد شدن آب کانی‌های سریانیتینی می‌شود. این امر نقش به سزایی را در فرآیندهای آنتی‌فیزیک بازی کرده و باعث آزاد شدن آب کانی‌های سریانیتینی می‌شود. این امر نقش به سزایی را در فرآیندهای آنتی‌فیزیک بازی کرده و باعث آزاد شدن آب کانی‌های سریانیتینی می‌شود. این امر نقش به سزایی را در فرآیندهای آنتی‌فیزیک بازی کرده و باعث آزاد شدن آب کانی‌های سریانیتینی می‌شود. این امر نقش به سزایی را در فرآیندهای آنتی‌فیزیک بازی کرده و باعث آزاد شدن آب کانی‌های سریانیتینی می‌شود. این امر نقش به سزایی را در فرآیندهای آنتی‌فیزیک بازی کرده و باعث آزاد شدن آب کانی‌های سریانیتینی می‌شود. این امر نقش به سزایی را در فرآیندهای آنتی‌فیزیک بازی کرده و باعث آزاد شدن آب کانی‌های سریانیتینی می‌شود. این امر نقش به سزایی را در فرآیندهای آنتی‌فیزیک بازی کرده و باعث آزاد شدن آب کانی‌های سریانیتینی می‌شود. این امر نقش به سزایی را در فرآیندهای آنتی‌فیزیک بازی کرده و باعث آزاد شدن آب کانی‌های سریانیتینی می‌شود. این امر نقش به سزایی را در فرآیندهای آنتی‌فیزیک بازی کرده و باعث آزاد شدن آب کانی‌های سریانیتینی می‌شود. این امر نقش به سزایی را در فرآیندهای آنتی‌فیزیک بازی کرده و باعث آزاد شدن آب کانی‌های سریانیتینی می‌شود. این امر نقش به سزایی را در فرآیندهای آنتی‌فیزیک بازی کرده و باعث آزاد شدن آب کانی‌های سریانیتینی می‌شود. این امر نقش به سزایی را در فرآیندهای آنتی‌فیزیک بازی کرده و باعث آزاد شدن آب کانی‌های سریانیتینی می‌شود. این امر نقش به سزایی را در فرآیندهای آنتی‌فیزیک بازی کرده و باعث آزاد شدن آب کانی‌های سریانینتی
2-iran mineral processing research centre

بررسی رفتار گرماپی از لزardingهای طبیعی در…

تشکیل می‌شوند. فرآیندهایی که از آن با عنوان سربیتین سیدن‌اوتی می‌شود. کانال‌های سربیتین‌ها در زون فوراننش و اعماق 150 تا 200 کیلومتری، آب موجود در ساختار بلوی خود را از دست می‌دهند (شکل ۱). این آب باعث بهبود سگ‌ها، در اعماق ۱۳۰ کیلومتری و دمای ۱۲۰۰ درجه سانتی‌گراد شده و مگماتیسم سری‌های آهکی قابلیت را در جزيار قوی، موجب می‌شود [۳-۵]. لذا دانستن میزان پایداری تغییر کانال‌شناختی و واکنش‌های گرماپی کاتی‌های سربیتین، در تعیین ساز و کار فوراننش، مگماتیسم و عمق صفحات فوراننش به‌صورت ارائه‌ای می‌باشد. از جمله کارهای تجویزی که برای تعیین میزان پایداری کاتی‌های سربیتین انجام داده شده‌اند گرفته‌ها، می‌توان به ولند و شریف [۱] اشاره کرد (شکل ۲). تولید و واکنش‌های سربیتین، در فران‌های چینی‌ترین لیه‌های فوران‌رونده زمین، زوج‌های عضیف نیز اخیراً مورد توجه برخی از پژوهشگران قرار گرفته است [۷-۸]. به طورکلی هدف از این کار بی‌پوهشی، بررسی رفتار گرماپی لزاردیدهای طبیعی در فشار جوی، بر اساس روش‌های سگشنایی XRD است. بدن منظره، نمونه‌هایی از سربیتین‌های منطقه TG اقیانوسی و نیز انتخاب شده و تغییرات آنها مورد بررسی قرار گرفته‌اند.

روش کار

این کار بی‌پوهشی شامل سه مرحله گرماپی‌شناختی، بررسی‌های دتا-TG و XRD است. کلیه آزمایش‌ها در موسسه تحقیقات پیشرفته قرارآوری مواد عمده ایران (IMPRC)، که شامل گدازه‌های معدنی سوخته است، صورت گرفته است. نمونه‌های سربیتین‌ها، نخبه منظور تعیین پایداری کاتی‌بای و پیگی‌های بافتی سنگ‌ها، مورد بررسی‌های سگشنایی قرار گرفته. به منظور بررسی رفتار گرماپی، نمونه‌های X مورد بررسی قرار گرفته‌اند که در دوره‌های ۸۰ تا ۴ درجه دستگاه Philips XRD مدل X’pert انجام پذیرفته است. در ادامه تحت شرایط کنترل شده، بوده‌اند به‌صورت لمیک مخلوط شده و به تعلیق در آمدند. نمونه‌ها پس از خشک شدن، به مدت یک ساعت و در فشار جوی در کوره‌ها در دمای‌های ۵۰۰، ۵۳۰ و ۵۵۰ سی‌elsius رفتار گرماپی از ساختار گرماپی در تالار فوران‌نشین و میدان پایداری سربیتین در کمان انششایی. تصور افتیمان از [۱]...
Differential Thermal Analysis (DTA) and Thermal Gravimetry Analysis (TGA) were carried out using NETZSCH 409 PC Luxx equipment to study the thermal properties of the sample. The analysis was performed under a nitrogen atmosphere at a heating rate of 10°C/min.

The results indicated that the sample undergoes a significant weight loss starting around 500°C, which is attributed to the decomposition of the sample.

The DTA curve showed an exothermic peak at around 700°C, indicating the onset of a chemical reaction or dehydration process.

Overall, the thermal analysis confirmed the presence of moisture and organic matter in the sample, which are typical characteristics of sedimentary rocks.
بررسی‌های سنج‌شناختی
بررسی‌های سنج‌شناختی نشان داد که، با استفاده از تکنیک‌های سنجش اولیه، هزاران پیامدهای این سنجش‌ها به طور کامل سرپانشی‌ها و سنجش‌ها نشان دهنده بوده که، در این نمونه‌ها، سنجش‌های اولیه از گستره‌ای 55 تا 80 درصدی کیلومتری وسایل را پوشش داده‌اند. در این نمونه‌ها، پاراژن کالیدی سرپانشی‌ها تا که گیری شده، مشاهده می‌شود. کالیدومی یا پوروسکن (سفرسنتی) با ارتو بروزونی (سفرسنتی) مشاهده شده و در مواردی فقط قابلیت از این کالی‌ها قابل شناسایی است، به طوری که برخی از ایزوتیپ‌ها برای ترمیم شدن قابل تعیین: مورد بررسی قرار گرفت. [۲۷] در این اساس، واکنش‌ها و اصل‌های زیر، در شرایط تمدید‌ناپذیر پایدار می‌توانند بی‌توجه بروزند.

کربن‌زیودیت → لیزرزیودیت
(در دمای حدود ۸۵۰ درجه سانتی‌گراد)
بروستیت + کربن‌زیودیت → لیزرزیودیت
(در دمای حدود ۲۲۰ درجه سانتی‌گراد)
بروستیت + آنتیگوریت → کربن‌زیودیت
(در دمای حدود ۲۲۰ درجه سانتی‌گراد)
آپ + فورستیت + آنتیگوریت → بروستیت + آنتیگوریت
(در دمای حدود ۳۵۰ درجه سانتی‌گراد)
آپ + فورستیت + شبه تالک → آنتیگوریت
(در دمای حدود ۵۵۰ درجه سانتی‌گراد)
انستانتیت + فورستیت → آپ + فورستیت + شبه تالک
(در دمای حدود ۲۰۰ درجه سانتی‌گراد)

ワキスキーウエンタウェストン equipments سرپانشی‌ها با افزایش دما، میان پایداری کالیدومی سرپانشی‌ها حداکثر می‌شود. به طوری که لیزرزیودیت و کربن‌زیودیت تا رخش‌های شیست‌ساز سیر بالاکی (۵۵۰ درجه سانتی‌گراد) و آنتیگوریت تا رخش‌های آمپولیت‌ساز می‌شود. [۲۴] در اینجا لازم به اشاره است که میزان پایداری لیزرزیودیت علائم بر دما و فشار به دو عامل زمان و اندازه ریز نیست. براساس بررسی‌های [۲۶]، مشخص شد که لیزرزیودیت در دمای ۴۳۰ تا ۷۰۰ درجه سانتی‌گراد، پس از ۱۰ دقیقه و ۷۲۰ تا ۹۳۰ درجه سانتی‌گراد، پس از ۱۰ دقیقه دسترسی واکنش می‌شود. [۲۵]

تجزیه‌سنجش‌ها سرپانشی به بینی، پوروسکن، تالک و کالیدومی کم آب، فراینده‌ای است که از آن به دسپانشی‌پاسیون

شکل ۴ تصویری از مقطع مبکروکسکوپی سرپانشی‌های نیزه با بافت غباری (OL) و شبیه‌ریختی‌های از الیون (mesh-texture) که فقط قابلیت ترمیدول‌ناپذیر (PPL) و تصویر (b) در نور XPL (تصویر (a) در نور) از آن باقی مانده و به سرپانشی‌های سکس کالیدودیت.
دانلود از jpm.ir می‌توانید به‌صورت رایگان بخش‌هایی از مقالات علمی را به دست آورید.
بررسی رفتار گرمايي ليزارديت هاي طبيعي در... 

شکل ۵ تصوير بلوك دیاگرام XRD پيك نمونه از ليزارديت (نمونه ۲) منطقه نيریز در دمایها ۲۰، ۵۰، ۱۰۰ و ۱۵۰ درجه سانتیگراد و نتایج آناليزهای آنها در دمای یا بند (ليزارديت، Fo، Pyroxene، Fo، Py، Fo، Pyرواریت، Fo، Pyرواریت، Fo، Py، Fo، Pyرواریت، Fo، Pyرواریت). يكي نمونه از ليزارديت منطقه نيریز (نمونه ۲).

شکل ۶ تصوير نمودارهای DTA-TG مربوط به يک نمونه از ليزارديت منطقه نيریز (نمونه ۲).

نتیجه گرفت که ليزارديت هایي که به صدت یک ساعت گرمای ۹۵۰ درجه سانتی گراد در دمای ۲۰، ۵۰، ۱۰۰ و ۱۵۰ درجه سانتی گراد دستخوش تجزیه شده و تخت فورستریت و سپس استنات شکل می‌شود. در زیر واکنش مربوط طی هیدروکسید زدایی ليزارديت ارائه شده است.

برداشت

براساس نتایج XRD انجام شده در این بررسی معلوم شد که XRD با افزایش دما به مرور از شدت قله‌ها در نمودارهای كاسیه می‌شود. به طوری که در دمای پیش از ۲۰۰ درجه سانتی گراد، قله‌های دیگر مشاهده نمی‌شوند. لذا می‌توان
نتایج حاصل از بررسی‌های DTA نشان می‌دهد که XRD هم‌خوانی دارد. آنالیز‌های XRD و اکتشی‌های هیدروکسیدی یافت شده از دمای 560–750 درجه سانتی‌گراد، از دمای 690 درجه سانتی‌گراد تا دمای 200 درجه سانتی‌گراد هر دو کلاس گردایی مشخص شده است، در واقع اکتشی‌های هیدروکسیدی زداده است. بی عبارت دیگر این دمای تولید کانی‌های فورستریت و استاتسیس را روفلی خاص برخورداران برحال نمونه‌هایی به کلی‌الصار، دانلند 100 درجه سانتی‌گراد بررسی کردند.


[16] Shahabpour J., "Tectonic evolution of the orogenic belt in the region located between


