Thermal treatment investigation of natural lizardite at the atmospheric pressure, based on XRD and DTA/TG analysis methods

R. Dabiri¹, B. Karimi Shahraki², H. Mollaei³*, M. Ghaffari³

¹- Science and Research Branch, Islamic Azad University, Tehran, Iran
²- Mineralogy Lab, Iran Mineral Processing Research Centre (IMPRC)
³- Department of Geology, Faculty of Sciences, Islamic Azad University-Mashhad Branch

Abstract: Determination of stability limits, mineralogical changes and thermal reaction of serpentine minerals are very important for the investigation of magmatism, mechanism and depth of plates of subduction. During the subduction process, serpentine (Lizardite) minerals will release their water due to thermal reactions. This dehydration can play an important role in volcanism processes related to the subduction. In this study, serpentine minerals (Lizardite) collected from the Neyriz Ophiolite Complex (NOC) were dehydrated under the constant atmospheric pressure. These mineralogical changes were determined by X-Ray diffraction and DTA-TG analyses methods. This study shows natural lizardites that heated for about one hour is stable up to 550°C. Dehydration reactions on lizardite started at approximately between 100 to 150°C and dehydroxilation reactions started at approximately 550-690°C. As a result of thermal reaction, the decomposition of lizardite will take place and then changes in to olivine (forsterite). Crystallization of olivine (forsterite) will start at 600°C. This mineral is stable up to 700°C and then crystallization of enstatite will start at 700°C. During this dehydration and crystallization reaction, amorphous processes will start at 600°C and some amount water and silica will release.

Keywords: Lizardite, serpentine, thermal reaction, XRD, DTA-TG

* Corresponding author, Tel.: +98 (0511) 8408008, Fax:+98 (0511) 8446361, E-mail: hamollai@yahoo.com
بررسی رفتار گرمایی لیزرداری‌های طبیعی در فشار اتمسفری. بر اساس تجزیه DTA-TG و XRD
دستگاهی
رحیم دبیری ۱، بهروز کرمی شهربکی ۲، حیب ملایی ۳، میترا غفاری ۴

چکیده: تعیین میزان پایداری، تغییرات کلی شناسی و واکنش‌های گرمایی کانی‌های سرپانتنی، می‌تواند در تعیین ساز و کار فرورانش، ماهانه‌ساز و ورق صفحات فرورانش بسیار حیاتی باشد. طی فرآیند فرورانش، واکنش‌های گرمایی، باعث آزاد شدن آب کانی‌های سرپانتنی می‌شود. این امر نقش سازنده تغییرات اشعه اشظاهاری و باعث به فرورانش ایفای می‌کند. در این کار پژوهشی، رفتار گرمایی و تغییرات کلی شناسی کانی لیزرداری (سرپانتنی)، باعث منطقه ایفولوژی نیزی در گستره‌های گرمایی متغیر و در فشار دیگر مورد بحث و بررسی قرار می‌گیرد. بررسی‌های آزمایشگاهی XRD، DTA-TG و انتالپی‌های لیزرداری‌های طبیعی، که به مدت ۵ دقیقه در دمای ۲۰۰ تا ۱۵۰ درجه سانتی‌گراد گرمایش داده شدند، واکنش‌های Dehydration و Dehydroxilation است. هیدروکسیل زدایی (Dehydration) که به مدت ۷ دقیقه در دمای ۹۰ تا ۶۰ درجه سانتی‌گراد صورت می‌گیرد. لیزرداری‌های طبیعی تا دمای ۵۵ درجه سانتی‌گراد پایدار بوده و در دمای ۶۰ درجه سانتی‌گراد به‌طور قطعی تبدیل می‌شوند. همچنین در دما دستگاهی XRD، DTA-TG و انتالپی‌های لیزرداری در دمای ۶۰۰ درجه سانتی‌گراد تغییرات بی‌تکراری در واکنش‌های بیابانی، بین واکنش‌های آب‌زدایی و تبلور، آمرف ثبت شده است.

DTA-TG XRD

واژه‌های کلیدی: لیزرداری، سرپانتنی، رفتار گرمایی

مقدمه
کانی‌ها، جزء فیلولوژیک‌های آب‌زدای دارد و در ساختار خود
حدود ۱۲/۳/ آب دارند. کانی‌های سرپانتنی، در نتیجه اگری از
البون، پپروکسن و کانی‌های سیلیکاتی دیگری از منیزین,

Mg₃Si₅O₉(OH)₃

۱۱۳۸/۴۳۶۸۸۶۷۸ (۸۹) نیزار، ۸۹۸، پست الکترونیکی
hamollai@yahoo.com

آدرس استخراج: hamollai@yahoo.com

نوبتمند: مسول: تلفن: ۰۲۱۸۸۸۶۷۸۹۹، ایمیل: hamollai@yahoo.com

تاریخ دریافت: ۰۸/۰۴/۰۸، تاریخ پذیرش: ۰۸/۰۴/۰۸

سام هدفمن، شماره ۳۸۸، صفحه ۳۹۵ تا ۴۰۴
روش کار
این کار پژوهشی شامل سه مرحله، سنگشناسی، بررسی DTA-TG و XRD است. کلیه آزمایش‌ها در موسسه IMPRC ایران (نیویورک) در دارای گواهینامه مداربستگی کیفیت ISO17025 انجام می‌شود. برای تعیین پارامترهای ویژگی‌های سنگ‌ها، در بررسی‌های سنگشناسی قرار گرفتند. سپس به منظور بررسی فشردگی، نمونه‌های DTA از گاز ترکیبات کربناتی و بیتومینه سه‌گزایی که در دسترس دارای گواهینامه مداربستگی کیفیت ISO17025 انجام می‌شود. بررسی قرار گرفتند. این کار در کسره ۸۰ - ۴ = ۷۶ و با استفاده از نرم‌افزار XPERT مدل Philips XRD دستگاه تحت شرایط کنترل شده، پودرها با آب مقطع مخلوط شده و به تعلیق در اتمسفر بسته شده و بعد از آن به مدت یک ساعت در فشار جامدات در دمای ۴۰۰، ۴۲۰ و ۴۵۰ درجه سانتی‌گراد شده و مقبالس‌های آهکی-قوی‌ساز شده و در قطب قوی مبتنی [۳] با دانست Mori یازده روش کار، نمونه‌های DTA از تهیه ساز و قار و تهیه‌شده تاریخی که برای تهیه میزان دمای قرار گرفتند، همراه با طورکلی هدف از این کار پژوهشی، بررسی متقابلی گرمایی طبیعی دی. DTA، XRD، فشار جوی، بررسی رشته‌های سنگشناسی است. به‌دین منظور، نمونه‌های سنگ‌سنگ‌های منطقه TG انتخابی نهایی انتخاب شده و تغییرات آنها مورد بررسی قرار گرفتند.

شکل ۲ گستره‌های پایداری تعیین شده برای کانی‌های گروه سرپانجی (۲-۹۶) برگرفته از کارهای تجربی [۴].

با توجه به نتایج بدست‌آورده، شکل ۷ سه‌گزایی که در قطب قوی مبتنی [۳] با دانست Mori یازده روش کار، نمونه‌های DTA از تهیه ساز و قار و تهیه‌شده تاریخی که برای تهیه میزان دمای قرار گرفتند، همراه با طورکلی هدف از این کار پژوهشی، بررسی متقابلی گرمایی طبیعی دی. DTA، XRD، فشار جوی، بررسی رشته‌های سنگشناسی است. به‌دین منظور، نمونه‌های سنگ‌سنگ‌های منطقه TG انتخابی نهایی انتخاب شده و تغییرات آنها مورد بررسی قرار گرفتند.

شکل ۷ تصویر نمادی از ساختار گرما در نواحی دیواره و میدان پایداری سرپانجی در کمان انششی. تصویر افتتاحی از [۳۱].
اشعاع پرایت نروژی (Outer Axial Ophiolitic Belt) محدود بود. بررسی (Differential Thermal Analysis) و (Thermal Gravimetry Analysis) انجام شد. این آزمایشات می‌تواند به منظور کسب اطلاعاتی از چگونگی تبادل‌های فازی در مواد اولیه دما و STA کاهش وزن ناشی از واکنش‌ها با جزئیت کننده گرمایی (NETZSCH) 409 PC Luxx صورت گرفت. در طول آنالیز، دما به طور بیشترین افزایش از 20 درجه سالاری که با طور بیشتری از 20 درجه سالاری تا 110 درجه سالاری گزارش داده شد و نرخ افزایش دما به 10 در دقیقه بود. از این میلی گرم نمونه برای آنالیز استفاده شده است.

از میان شناسی منطقه مورد بررسی (Croissant Ophiolite Pernara بخشی از نور افیولیتی، به طول تقریبی 300 کیلومتر، است که به طور ناپیوسته از سریه شروع و پایان از گذر از جنوب ترکیه و راکس به عنوان می‌رود. (شکل 3) این نوار، که به صورت یک کمان در راستای رانگ‌های معیان قرار دارد. به وسیله ریکو بررسی و به این هلال افیولیتی حاشیه عربستان (a) نقشه پراکندگی مجموعه افیولیتی و آتش‌زی آبی ایران (اقتباس از [23]) و (b) موقعیت منطقه مورد بررسی. اصلی ترین افیولیت‌های Km = Th = Bz = شیشه‌ های سوزنی و Tk = خوراکی و Shb = شیشه‌های سوزنی و دیگر عناصر نیز = Na و دیگر. (کرمانشاد)
بررسی های سنگ شناختی
بررسی های سنگ شناختی نشان داد که، خاستگاه این نوع سنگ‌های افروپتی، هزارپروسیزی است. این سنگ‌ها، به طور کامل سرپانتانیت تبدیل شده‌اند. هزارپروسیزی، سنگ‌های سرپانتانیتی شده، محلول‌های گسترده‌ای کیلومتری را هدایت می‌کنند. در این سنگ‌ها، پارانژ کانالی سرپانتانیت‌های کتالیک می‌باشند. سنگ‌های فرومینیت، همچون پیوند (فورسرتی) با انتوپروسیز (سنگ‌های فرومینیت)، شاهدند. در مواردی، فقط قاپی از این کانال‌ها قابل شناسایی است. به طوری که برجی از انتوپروسیز‌ها در مدل‌های واقعیت و فقط قاپی از آنها به مانند است. بر اساس رده‌بندی اولانی و پیکس – وینتگر و ویژنی (2009)، سرپانتانیهای موجود از نوع لیزاردیت، انتگیوزیل و رگه‌هایی از نوع کریزوپتیل است (شکل 4).

واکنش‌های وابسته به تجزیه سرپانتانیت
با افزایش دما، میدان پایدار کفاسی سرپانتانیت محدودتر می‌شود. به طوری که لیزاردیت و کریزوپتیل تا رخساختی شیست سبی بالایی (550 درجه سانتی‌گراد) و انتگیوزیل تا رخساختی آمفیولیت می‌باشد (میزان بالایی (70 درجه سانتی‌گراد دارد). در اینجا دو انتگیوزیل است. میزان پایداری لیزاردیت علاوه بر دما و فشار به دو عامل زمان و اندازه دربراپنگ است. بر اساس بررسی‌های (2012)، مشخص شد که لیزاردیت در دمای 600 درجه سانتی‌گراد، پس از 27 دقیقه در دمای 700 درجه سانتی‌گراد، پس از 10 دقیقه دستخوش واپاشی می‌شود. هر چه سرپانتانیهای به‌پرونده می‌باشند، کلریت و کانی‌های گیم آب، فرابنده است که آن به سرپانتانیژاسیون

شکل 4 تصویری از مقطع میکروسکوپی سرپانتانیهای نریز با پیش‌گذاری (mesh-texture) و شبیه ریخته‌هایی از الیوین (OL) که فقط قاپی (S) دگرگان شده‌اند. (تصویر (a) در نور XPL و تصویر (b) در نور PPL).
آتانیزهای پرتو بروی ایکس (XRD)
چنانکه آرش اشارهشد، به منظور بررسی رفتار گرما‌یابی و نمک‌سازی فازی، نمونه‌ها در گرما‌یابی متفاوت در یک ساعت در گرما داده شدند. نخست روز نمونه‌ها طبیعی واسطه به سری‌پایش حاصل بود. از مجموعه آزمایشی تجزیه و تحلیل گرما (DTA) بررسی شد. این نمونه‌ها نسبت قلیایی XRD صورت گرفت. این نمونه‌ها دارای نسبت قلیایی از 0.01 تا 0.99 بودند. سپس نمونه‌ها در گرما‌یابی مختلط دیگری گرما داده شدند.

Mg̅Fe₂O₅(OH)₆.4H₂O \rightarrow Mg̅Fe₂O₃(OH)₆ + 4H₂O

در مرحله دوم، پیروآوری موجود در نمونه‌های مورد بررسی در اکسید کردن باید خود را در دمای 245°C از سمت دچار و بنابر اکسیژن باید یافته است. در پیروآوری اکسیژن خود را نیز از دست داده و دستخوش اکسیژن داده شده است.

MgO₂Fe₂O₃ + O₂ \rightarrow MgO₂Fe₂O₄ + CO₂ + 8H₂O

بر اساس نموگرایی، تاکنون در نیازهای مشابه، دقت تغییرات در دمای 150°C آب از دیدگاه DTA-TG مورد بررسی قرار گرفته شده است. در نمونه‌هایی که در دمای 150°C آب از دیدگاه DTA-TG وجود نمود، این نمونه‌ها در دمای 245°C از نظر رفتار با تغییرات در XRD به استحکام تبدیل می‌شود.

D TA-TG نمونه‌هایی در دمای 245°C می‌تواند در دستایندها شود.

انیژس گرداشت، به منظور بررسی رفتار گرما‌یابی و نمک‌سازی فازی، نمونه‌ها در گرما‌یابی متفاوت در یک ساعت در گرما داده شدند. نخست روز نمونه‌ها طبیعی واسطه به سری‌پایش حاصل بود. از مجموعه آزمایشی تجزیه و تحلیل گرما (D TA) بررسی شد. این نمونه‌ها نسبت قلیایی XRD صورت گرفت. این نمونه‌ها دارای نسبت قلیایی از 0.01 تا 0.99 بودند. سپس نمونه‌ها در گرما‌یابی مختلط دیگری گرما داده شدند.

Mg̅Fe₂O₅(OH)₆.4H₂O \rightarrow Mg̅Fe₂O₃(OH)₆ + 4H₂O

در مرحله دوم، پیروآوری موجود در نمونه‌های مورد بررسی در اکسید کردن باید خود را در دمای 245°C از سمت دچار و بنابر اکسیژن باید یافته است. در پیروآوری اکسیژن خود را نیز از دست داده و دستخوش اکسیژن داده شده است.

MgO₂Fe₂O₃ + O₂ \rightarrow MgO₂Fe₂O₄ + CO₂ + 8H₂O

بر اساس نموگرایی، تاکنون در نیازهای مشابه، دقت تغییرات در دمای 150°C آب از دیدگاه DTA-TG مورد بررسی قرار گرفته شده است. در نمونه‌هایی که در دمای 150°C آب از دیدگاه DTA-TG وجود نمود، این نمونه‌ها در دمای 245°C از نظر رفتار با تغییرات در XRD به استحکام تبدیل می‌شود.
نتیجه‌گیری گفت که لیزرادیت‌هایی که به صورت یک ساعت گرام دیده‌اند، تا دمای 550 °C حناز پایداری داشته و از آن پس دستخوش تجزیه شده و نخست فورستریت و سپس استاتیت تشکیل می‌شود. در زیر واکنش مربوط به هیدروکسیل زدایی لیزرادیت ارائه شده است:

برداشت

براساس نتایج XRD انجام شده در این بررسی معلوم شد که با افزایش دما به مرور از شدت قله‌ها در نمودارهای XRD کاسته می‌شود. به طوری که در دمای بیش از 750 °C مرقوم به کامی لیزرادیت دیگر مشاهده نمی‌شود. لذا می‌توان

کتابت XRD (SP-2) نمودارهایی داشته و از آن پس

شکل ۵ تصویر بلور دیگرگرای XRD یک نمونه از لیزرادیت (نمونه ۲) در دماهای ۵۰، ۲۵۰، ۵۵۰، ۲۵۰، ۵۵۰، ۵۵۰، ۵۵۰، ۵۵۰ درجه سانتی‌گراد و نتایج آن‌الیزهای آنها در دماهای یاد شده (طی مراحل مختلفی ا星یتیت).
دمایی 600 درجه در موجب تشکیل مقادیر اندکی آب و سیلیس آزاد شده است. کانالهای سرپینتیت را می‌توان بکی از کانالی تأثیر گذار در مگاماتین ترشیروی ایران دانست. زیرا گمان می‌روی، با فرآیندهای فیزیکی و شیمیایی در این دما، در بیشتر ایران مرکزی، کانالهای سرپینتیت، استخوان هیدروکسیدی ویژه‌ای بوجود می‌آید که در دما و فشار بیشتری از 400 درجه حاصل می‌شود.

نتایج حاصل از بررسی‌های XRD نشان می‌دهد که دتاخ الگوهای XRD همکناری دارد. الگوهای XRD و اکتشافات هیدروکسیدی و سیلیسیستیک دایاپتیک واقعی شده است که یک مدل اکتشافات به ویژه در این دما تولید کانالهای فورسرتیت و استاتیت از ویژه‌ای بخصوص دردست دارد که این مدل دارای یک ساختار دیبر-سیستمی قبیحی است.

[16] Shahabpour J., "Tectonic evolution of the orogenic belt in the region located between

