Investigation of special thermodynamic properties of Bi-2212 as a function of temperature and oxygen pressure using XRD

M. Babaeipour*, M. Hesarkhani, M. Tavakoli

Department of Physics, University of Buali Sina, Hamedan

(Received: 6/4/2009, in revised form: 18/7/2009)

Abstract: In this article, the thermodynamic properties of Bi2212, as a function of oxygen pressure and temperature variations, have been studied. The results showed that variation of lattice parameters are directly a function of temperature and conversely function of oxygen content. The experiments were set up at room temperature to 820°C and different oxygen pressure from 5, 10, 50, 100 and 500 mb. It was found that the crystal structure of the Bi-2212 is stable from room temperature up to 815 and oxygen pressure of 10 mb but at 820°C, it committed decomposition and its crystal structure completely ruined. It was found that as a result of decomposition of some of the elements of the compound does interact with quartz and put it in a fragile position.

Keywords: BSCCO, Bi-2212, oxygen content, lattice parameters, stoichiometry

*Corresponding author, Telefax.: +98 (0811) 8280440, E-mail: babaei@basu.ac.ir
بررسی خواص ویژه ترمودینامیکی Bi-2212 به صورت تابعی از ظرفیت اکسیژن و دما با استفاده از XRD

منوچهر بابایی پور*، مصطفی حصارخانی، مهدی حسین تولکی
گروه فیزیک دانشگاه بوعلی سینا، همدان
(دریافت مقاله: 18/8/1188، نسخه نهایی: 88/4/128)

چکیده: در این کار پژوهشی خواص ترمودینامیکی Bi-2212 به صورت تابعی از تغییرات دما و فشار اکسیژن مورد بررسی قرار گرفت. نتایج بدست آمده نشان داد که روند تغییرات پارامترهای شبکه با دما نسبت مستقیم و با ظرفیت اکسیژن نسبت عکس دارد. در این بررسی از دمای آتیق تا 80 درجه سانتی‌گراد و در فشارهای 0.5، 1، 2، 3، 4، 5 و 6000 میلی‌بار اکسیژن انجام شد. معلوم شد که نموده با دمای 815 درجه سانتی‌گراد و فشارهای 100 میلی‌بار کمالی، از دمای 820 درجه سانتی‌گراد و فشار اکسیژن 10 میلی‌بار ساختار بلوری خود را از دست می‌دهد و شبکه با پلوری و پرات می‌شود. در عین حال واکنش برخی از اننای تشکیل دهندن نموده با کوارتز باعث تشکیل سیلیکات پیجمود می‌شود و لوله آزمایش کوارتز شکنده می‌شود. 

واژه‌های کلیدی: Bi-2212, BSCCO, ظرفیت اکسیژن، پارامترهای شبکه

مقدمه

سال 1988 مقدمه که ترکیب است از بیسموت، استراتانسوم، کلسیم و اکسیژن با دمای گذار در حدود 90 درجه کلوین، توسط ماداک کشف شد. این ماده از ترکیب CuO و CaCO₃ و SrCO₃ و Bi₂O₃ به عنوان خالص و بر حسب بعضی گزارش‌ها با ترکیب 1:1:1 تشکیل می‌شود [1].

Ba₂Sr₂Ca₃Cu₄O₁₂ است که در این درجه 2201 با دمای N = 0 باشد فاز O₂N+δ ابزارسایت 20 درجه کلوین و در حالات N = 1, فاز 2212 (فاز مورید بررسی در این مقاله) با دمای بحرانی در حدود 90 درجه کلوین و در حالات N = 2 فاز 2223 تشکیل می‌شود [2].

*نویسندگان مسئول، تلفن-نمبر: 0811(8728440)، بابایی پور

babaei@basu.ac.ir
بررسی‌ها
نمونه‌های تک فاز بود که از شرکت PI-KEM تأمین شدند. کاهش درام شکست در درمان در طول ۲۰۰ درجه سانتی‌گراد (از مدار X-Ray موجود در آزمایشگاه فیزیک دانشگاه پزشکی شیراز) بود. P<0.05 نشان دهنده تأثیر قابل توجهی بر تاریک سیمی از آزمایش تک فاز و سیس در محلول آزمایش جنس کوارتز فاز مغناطیسی می‌باشد. این دستگاه به قدری با فیزیک دانشگاه پزشکی ساخته شده بود که مناسب بود. در آزمایش‌ها به دو درجه سانتی‌گراد از دامنه حساسیت شناسایی نشان داد. در این آزمایش، دو درجه سانتی‌گراد و حداقل انتظار مرتب شار درون محلول افزایش یافته که نشان‌گر خروج پایین از آزمایش‌ها بود. سپس با خروج اکسیژن اضافی شمار نمونه را از ۵ میلی وار به تعادل رسانید. این گروه دو درجه سانتی‌گراد در دامنه ۳۱۵ درجه سانتی‌گراد با نشان دهنده حساسیتی و درون محلول نسبت به سیستم‌های دیگر افزایش یافته. 
در روش نتایج نمایش داد که درون دامنه ۳۵۰ و ۳۱۰ درجه سانتی‌گراد به دست آمده که آزمایش‌ها در دامنه ۳۱۵ درجه سانتی‌گراد با نشان دهنده حساسیتی و درون محلول نسبت به سیستم‌های دیگر افزایش یافته. 

در روش نتایج نمایش داد که درون دامنه ۳۵۰ و ۳۱۰ درجه سانتی‌گراد به دست آمده که آزمایش‌ها در دامنه ۳۱۵ درجه سانتی‌گراد با نشان دهنده حساسیتی و درون محلول نسبت به سیستم‌های دیگر افزایش یافته. 

بررسی گره با پروپت و X برای دیواره‌های XRD توسط ترم افزار Bi2۲۲۱۲-Be...
بحث و بررسی
الگوهای حاصل از پرتو پترو ایکس در دماهای مختلف با نرم Materi Analysis Using Diffraction (MAUD) افزار که بر مبنای روش محاسباتی ریترولد عمل می‌کند، مورد بررسی و تحلیل قرار گرفت. نمونه‌ای از نتیجه این بررسی‌ها در

ساختار ۱ و الگوهای پرتو ایکس در شکل‌های ۲ تا ۵ نشان داده شده‌اند. لازم به یادآوری است نتایج هم‌اکنون بررسی‌های الگوهای موجود در الگوهای پرتو با رشته‌های کربنات و هم‌اکنون آنها با الگوهای مربوط به ترکیب Bi-2212 کاملاً سازگارند و

شناختی شده‌اند (۵).

![نمودار ۱](image1)

۲ الگوهای پرتو X از نمونه ۲۲۱۲ Bi در دماهای انتهای پس از گرمادگر در فشار ۵ میلی‌بار.

![نمودار ۲](image2)

۳ الگوهای پرتو X از نمونه ۲۲۱۲ Bi در دماهای انتهای پس از گرمادگر در فشار ۵ میلی‌بار.

![نمودار ۳](image3)

۴ الگوهای پرتو X از نمونه ۲۲۱۲ Bi در دماهای انتهای پس از گرمادگر در فشار ۵ میلی‌بار.
لازم است که چون در این ترکیب به علت وجود اکسیژن‌های آتشی در صفحه BiO به صورت مخلوط shده دیده می‌شود در نتیجه برکت آن قلیله‌ها اکسیژن‌های نیز دیده می‌شود که در برخی ریزوئدر به جهت نیم- خورند. نمونه‌ای از این قلیله‌ها در حدود زوال‌ای 30 و 32 درجه دیده می‌شود (شکل 1). از اینجا که موضوع این مقاله بررسی ساختار مدوله شده نیست لذا در مورد این قلیله‌های اضافی در بررسی آینده بحث خواهد شد.

با استفاده از نتایج به دست آمده از برکت ریزوئدر جکوگامی تغییرات پارامترهای شبکه Bi2212 به‌صورت مبنا دارد. بررسی مورد بررسی قرار گرفت. پایه به پایه آزمایش‌های که در سه مرحله انجام گرفته بود تغییرات نیز برای هر مرحله به صورت جداول‌آرایه شده.

نتایج مرحله اول برای فشارهای اکسیژن 5 و 5 میلی‌بار و در دماهای مختلف (0-1800 درجه سانتی‌گراد) در جدول‌های 1 و 2 نیز شکل‌های 6 و 7 دیده می‌شود. نتایج که در جدول‌های 1 و 2 و نیز شکل‌های 6 و 7 قابل توجه است وجود روند افزایشی در پارامترهای شبکه a و b به صورت تابعی از دماست با یک دید اجمالی من نیز کننده دیگر نادرست مورد بررسی قرار گیرد.
جدول ۲ اطلاعات مرحله اول آزمایش در فشار ۵ میلی بار.

<table>
<thead>
<tr>
<th>دما (°C)</th>
<th>a(Å)</th>
<th>b(Å)</th>
<th>c(Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>۵۰۰</td>
<td>۵.۳۸۸</td>
<td>۵.۳۸۹</td>
<td>۱.۹۷۸</td>
</tr>
<tr>
<td>۶۰۰</td>
<td>۵.۴۰۸</td>
<td>۵.۴۱۵</td>
<td>۱.۹۳۲</td>
</tr>
<tr>
<td>۶۵۰</td>
<td>۵.۴۰۰</td>
<td>۵.۴۰۹</td>
<td>۱.۸۸۳</td>
</tr>
<tr>
<td>۷۰۰</td>
<td>۵.۴۰۴</td>
<td>۵.۴۰۸</td>
<td>۱.۷۱۶</td>
</tr>
<tr>
<td>۷۵۰</td>
<td>۵.۴۱۸</td>
<td>۵.۴۲۲</td>
<td>۱.۷۵۰</td>
</tr>
</tbody>
</table>

شکل ۶ نمودار تغییرات پارامتر a با دما در فشار ۵ میلی بار (مرحله اول).

شکل ۷ نمودار تغییرات پارامتر b با دما در فشار ۵ میلی بار (مرحله اول).
نتایج مرحله دوم
چنانچه گفته شد مرحله دوم بررسی‌های نمونه در دماهای 780 تا 810 درجه سانتی‌گراد و در فشار 5 میلی دی‌بی گرفته.
نتایج حاصل از تحلیل ریتوی این مرحله در جدول ۳ آمده‌اند.
در جدول نشان می‌دهد که علاوه بر وجود نظم در افزایش پارامترهای c برای a و b پارامترهای c نیز از این روند افزایشی به خوبی پیروی می‌کند (شکل‌های 8 و 9). دلیل آن شاید این باشد...

جدول ۲ اطلاعات مرحله دوم از آغاز فشار ۵ میلی بار.

<table>
<thead>
<tr>
<th>دما (°C)</th>
<th>c(Å)</th>
<th>b(Å)</th>
<th>a(Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>780</td>
<td>5.204</td>
<td>5.104</td>
<td>3.079</td>
</tr>
<tr>
<td>800</td>
<td>5.211</td>
<td>5.111</td>
<td>3.083</td>
</tr>
<tr>
<td>810</td>
<td>5.217</td>
<td>5.117</td>
<td>3.087</td>
</tr>
</tbody>
</table>

شکل ۸ نمودار تغییرات پارامتر a با دما در فشار ۵ میلی بار (مرحله دوم).

شکل ۹ نمودار تغییرات پارامتر b با دما در فشار ۵ میلی بار (مرحله دوم).

که در دماهای بالا جانبه شدت دفع اکسیژن بیشتر افت در
عين حال افزایش فشار اکسیژن نیز امکان جذب بیشتر اکسیژن
را فراهم می‌آورد. لذا جذب (دفع) اکسیژن در کانالین جایگاه‌های در
راستای محور c نیز محتمل تر است. لذا با ایجاد تبیه دافعه
بین آنها (اکسیژن‌های اضافی) افزایش (کاهش) پارامتر c محور
ریتود می‌شود.
برود بیشتر می‌شود. نتایج این آزمایش مرز دما در مرحله 815 درجه سانتی‌گراد و فشار 10 میلی بار را پایداری ساختار نشان می‌دهد.

علاوه بر نتایج بالا با استفاده از اطلاعات به دست آمده یکی دیگر از پارامترهای اساسی را که می‌توان با استفاده از روش ریتولد مورد بررسی قرار داد تغییرات نرخی اکسیژن این ترکیب است. نمودارهای مربوط به تغییرات نرخی اکسیژن نمونه با دما با استفاده از نتایج برآورد ریتولد برای مراحل اول و دوم در شکل‌های 11 و 12 آمده‌اند. جانکه از شکل‌ها بدست اکسیژن با دما کاهش می‌یابد که با نتایج کارهای قبلی سازگار است [5].

نتایج مرحله سوم
در مرحله نهایی بررسی‌ها در فشار 10 میلی بار و دماهای 815 و 820 درجه سانتی‌گراد انجام گرفت. در دمای 815 درجه بیان‌گر شکل 12 نشان می‌دهد ساختار بلوری همچنان حفظ شده است. اما با توجه این شکل، در دمای 820 درجه سانتی‌گراد و فشار اکسیژن 10 میلی بار نمونه کاملاً تغییر ساختار داده است. که در این مورد از ادامه توضیحات کامل تری ارائه می‌شود. در هر صورت نتایج این مرحله از آزمایش نشان می‌دهد که ساختار بلوری نامی‌سازی می‌گردد که در دمای 815 درجه سانتی‌گراد و در فشار 10 میلی بار همچنان پایدار است. لذا می‌توان گفت بر حسب اطلاعات به دست آمده مرحله هچ‌چند اکسیژن بیشتری از نمونه خارج شود این امکان که ساختار بلوری از بین
برهم کنش میان 2212 و کوارتز و نیایداری ساختار Bi-2212، بلوری در پایان مرحله سوم هگونگ خروج نمونه از کوره مشاهده شد که نمونه تقریباً به حالت ایگون در آمده است و جانبه‌ای، الگوی پراش آن نیز نشان می داد ساختار بلوری از این رفتنه بود. گزارش‌های قبلی نشان می‌داد که دمای ذوب این ترکیب در فشار استاندارد 890 درجه سانتی‌گراد است[4] اما به نظر می‌رسد، فشار درون محیطه نه تنها باعث ویرای ساختار بلوری شده است بلکه دمای ذوب را نیز تغییر داده است که در واقع قابل پیش‌بینی بود.

یکی دیگر از نتایجی که در دمای 820 درجه مشاهده شد، برهم کنش میان ماده ایگون با لوله آزمایش کوارتز بود که نمونه در آن قرار داشت، به نحوی که لوله کوارتز با اندک ضربه، از می‌شود.

در توضیح آن می‌توان گفت که در حالت ایگون پیوندهای میان انجاها در ساختار Bi-Si-O-S ساخته می‌شود و این‌ها بیسموت آزاد می‌شوند، ولی به علت اکسایش سریع در محیط برهم کنش میان Bi-Si-O-S و زیر لاکهی نیز می‌داید[1] که در دمای بالای 600 درجه سانتی‌گراد برهم کنش این مواد موجب شکل سیلیکات بیسموت می‌شود. در دمای 750 درجه سانتی‌گراد بی‌کنش Bi-Si-O-S نشان می‌دهد[7] در آزمایش مشابه تغییرات فاز اکسید بیسموت[8] و برهم کنش آن با زیر
برداشت
نتایج تحلیل‌های انجام شده بیانگر تغییرات ساختاری منظمی در فاز Bi-2212 از فاز Bi-2223 و آزمایش بیانگر نشان می‌دهد هم‌اکنونین منظوره به‌طور منظم وجود دارد. افزایش نسبت‌های پارامترهای a و b در مرحله اول با دما از نمودارهای مربوطه مشخص است. همچنین روند کاهش (افزایش) ظرفیت اکسیژن نسبت به دما و فشار اکسیژن نشان از خالی پر شدن بخشی از جایگاه‌های اکسیژن در ماده مورد آزمایش دارد بنابراین نتیجه‌گیری کاملاً محسوس‌تر است. افتاقی که در دما 20 درجه دمای دو بند در فرآیند 10 میلی‌بار پیدا شده است. با توجه به نتایج فرآیند Bi-2212 پایدار ساختاری خود را از دست داده و دیور شود و نشان می‌دهد که این ترکیب دما 815 درجه سانتی‌گرادو فشار 10 میلی‌بار پایداری است.

نتایج حاصل از تحلیل‌ها نشان از بروز اکسید بیسیموم با کوارتز و تشکیل سیلیکات بیسیموم داشته باشد و مشاهده بروز کیفیت میانی و کوارتز مهم‌ترین نتیجه‌گیری که حاصل می‌شود توصیه استفاده از لوله کوارتز در آزمایش‌های مشابه است.

محصول تولید شده در این بروز اکسید از نظر خواص اپتیکی، جابه‌جا و پدپایی دارد، ولی روش مستقیم تولید آن

شکل 13: الگوی پراش پروپزک نمونه پس از گرم‌سازی‌های تا دمای 820℃ و مقایسه آن با الگوهای پراش SiO2 و Bi2O3

بستگی به لایه‌ها و پایین‌ترین لایه‌ها و پایین‌ترین منشاء

[4] منچچه بابای بور، بابک زرده، و هم‌محقق، دوآکاهی