The effect of temperature and annealing on the structural properties of CdS: Mn semiconductor nanocrystals

S. Salimian*, S. Farjami Shayesteh

Nanostructure Laboratory, Department of Physics, University of Guilan, Rasht

(Received: 20/1/2009, in revised form: 5/7/2009)

Abstract: CdS: Mn nanocrystals were obtained by nucleation and growth in colloidal solution. Their mean size range between 3.96 nm and 4.90 nm. The structural properties were studied by the use of X-ray diffraction (XRD). Phase transition between the hexagonal structure and cubic structure was evidenced to be a function of synthesis temperature. The mechanism of the phase transition also was revealed by two-step annealing for 2h.

Keywords: CdS: Mn, semiconductor nanocrystal, annealing, phase transition

*Corresponding author, Tel.: +98 (0131) 3223132, Fax: +98 (0131) 3220066, E-mail: saber@guilan.ac.ir
انر دما و بازیابیت بر خواص ساختاری نانو بلورهای نیمرسانای Cds:Mn

صدیقه سلیمانی*، صابر فرجاحی شایسته

آزمایشگاه نانو ساختار، گروه فیزیک، دانشکده علوم پایه دانشگاه گیلان، رشت

(دریافت مقاله: 27/11/15، نسخه نهایی: 8/8/16)

چکیده: نانو بلورهای Cds:Mn طی فرآیندهای رشد و جوانه زنی در محلول کلوئیدی ساختاره شدند. انددازه این نانوزه تهیه شده Cds:Mn در گستره 35-99nm تا 49nm قرار دارند. خواص ساختاری نانو ذرات با استفاده از آنالیز برای پرتو ایکس مورد بررسی قرار گرفت. گذار فاز بین ساختار شگوشی و مکعبی به صورت تابعی از دمای سنتز رخ داد. سازوکار گذار فاز بلوری در اثر فرآیند بازیابیت دو سامانه و دو مرحلهای نیز مشاهده شد.

واژه های کلیدی: نانوبلورهای نیمرسانای، بازیابیت، گذار فاز، Cds:Mn

مقدمه

نانوبلورهای نیمرسانای به واسطه اثر محدودیت کوانتومی و افزایش سطح به حجم، خواص فیزیکی محوره به فردی مانند پهن شدگی گاف نواری، اثر انتیک خطر [2,11] و افزایش بار نواری از خود نشان می دهد. اغلب سرشتهای نانو ذرات به آندازه آنها و است [40] نیاز به رابین تولید نانو ذرات به توزیع اندازه یکسان از مهم ویژگی برخوردار است. نانوبلورهای نیمرسانایی به ویژه نیمرساناهای گروه II-IV به دلیل ویژگی های فیزیکی منحصر به فرد و کاربرد آنها در ایوناتلونیک، در دهه اخیر بسیار مورد بررسی قرار گرفته‌اند.

البته خواص این نانولورها که می‌توان با کنترل اندازه درات با توزیع اندازه تقیبی کسان، و با آلیش با یون‌های نیترات Cds و ZnS مورد بررسی قرار گرفته‌اند. نانوبلورها، نواری، نواری گسل پهن و بازیابی و پایداری فوتوشیمیایی بهتری در قیاس با نانولورها آن‌ی از دید.

نوبه‌نامه مسئول، تلفن: 02137314367، تاریخ: 1398/09/30، نویسنده: 02137314367

saber@guilan.ac.ir
طول سنتز در چیدمان و اکتشش از بافت‌های استفاده کرده، برای بررسی تغییرات اندازه‌گیری ذرات با گذشت زمان، خط سنتز، طیف جذبی نمونه‌های تولیدی شده به هر ساعت یک بار تا پایان سنتز سنتز نمونه‌های تولیدی شده با آب‌البهشی و درجه احتمال Cds/Mn²⁺ در نسبت 3d بازترکیب غیر ثابتی را کاهش می‌دهد و در نتیجه گسیل افزایش می‌یابد. سپس از پژوهش‌های اخیر در راسته به بهره برداری این افراد و با ترکیب اکتشش سنتز مواد با خواص بافت‌های مناسب ساختار بلوری اندازه میانگین ذرات و توزیع اندازه ذرات از اهمیت ویژگی برخوردار است. دستیابی به اکتشش می‌تواند در موارد مربوط به خواص فیزیکی خوشه‌ها مانند، فشار، ریختگی و سطح نانوذرات قابل توجه است. به بدل افزایش نسبت سطح به حجم نانوذرات در مرحله جولانزی و رشد نهایی دارند، یکی می‌تواند به عنوان یک طریق بهبود و افزایش نانوذرات مطرح گردد. با این نگاهی همچنین می‌تواند به عنوان بدلی اکتشش میانگین ذرات و سنتز گرد و توزیع ذرات به همراه با تغییرات اندوزات از موارد مربوط به خواص شیمیایی و فیزیکی ماده نیز مورد مطالعه و اکتشش شیمیایی می‌تواند به عنوان یک طریق بهبود و افزایش نانوذرات مطرح گردد.

روش کار
نمونه‌های Cds منبع تغییرات بافت‌های ذرات را در پی نمود و در ساختار بلوری اندازه‌گیری ذرات با گذشت زمان، طیف جذبی نمونه‌های تولیدی شده به هر ساعت یک بار تا پایان سنتز نمونه‌های تولیدی شده با آب‌البهشی، نانوذرات Cds/Mn²⁺ در نسبت 3d بازترکیب غیر ثابتی را کاهش می‌دهد و در نتیجه گسیل افزایش می‌یابد. سپس از پژوهش‌های اخیر در راسته به بهره برداری این افراد و با ترکیب اکتشش سنتز مواد با خواص بافت‌های مناسب ساختار بلوری انجام گردد.

روش کار

cds نانوذرات

روش کار

روش کار
شکل 1. طیف جذبی نانوذرات Cds:Mn با آنالوگی 3% تهیه شده در دمای A. انتقال (Eg) برابر با:

\[E_{g} = 2.77 \text{ ev} \quad R = 4.904 \text{ nm} \]

\[E_{g} = 2.83 \text{ ev} \quad R = 4.51 \text{ nm} \]

\[E_{g} = 2.952 \text{ ev} \quad R = 3.961 \text{ nm} \]

شکل 2. طیف جذبی نانوذرات Cds:Mn در دمای بالاتر از دمای انتقال C. انتقال (Eg) برابر با:

\[E_{g} = 2.77 \text{ ev} \quad R = 4.904 \text{ nm} \]

\[E_{g} = 2.83 \text{ ev} \quad R = 4.51 \text{ nm} \]

\[E_{g} = 2.952 \text{ ev} \quad R = 3.961 \text{ nm} \]

که در آن GAF انرژی نانوذرات E_{g(np)} و شمع نانوذرات R که Cds شیخواره، انرژی Cds برای Cds جرم مولی جهش (Cds) 19 m_{e}, (میلیمول) مولی جرم کاهش حفره (Cds) 80 m_{e}, (میلیمول) جرم مولی حفره (Cds) 19 m_{e}, (میلیمول)
شکل ۳ طیف جذبی ساعت به ساعت نمونه C با گذر زمان سنتر.

شکل ۴ تغییرات گراف نواری و اندازه ذرات نمونه B به وسیله شده در دما ۴۴ °C با گذر زمان سنتر.

شکل ۵ تغییرات گراف نواری و اندازه ذرات نمونه C به وسیله شده در دما ۴۶ °C با گذر زمان سنتر.
در این رابطه d شعاع بلوری‌ها، λ طول موج پرتو X نابینی، به‌نام نیم برش ه و θ زاویه پراکندگی است. تغییر FWHM(2θ) از این زاویه تا زاویه 180 درجه 1 از شده است. با توجه به اینکه شعاع نانوذرات از اندازه 2 نانومتر بیشتر است، FWHM نانوذرات تقریباً پایدار بوده است. برابر است FWHM(2θ) با توجه به شکل 2 نشان می‌دهد که بررسی فراوری بازیخت با فاز بلوری FWHM(2θ) با شکل 2 نشان می‌دهد که بررسی فراوری بازیخت ه. بازیخت نمونه A موجب پدیدای فاز مکعبی شده است. در بازیخت نمونه‌ها B و A، اغلب بر گذار فاز بلوری افزایش...
جدول 1 تغییر اندازه و فاز بلوری با توجه به تغییر دمای سنتز

<table>
<thead>
<tr>
<th>فاز بلوری غالب</th>
<th>اندازه ی بلورک (nm)</th>
<th>دمای سنتز (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>138</td>
<td>27</td>
</tr>
<tr>
<td>B</td>
<td>2.43</td>
<td>54</td>
</tr>
<tr>
<td>C</td>
<td>3.1</td>
<td>76</td>
</tr>
</tbody>
</table>

شکل 7 الگوی پراش نمونه‌های A و B پیش و پس از بازیخت نمونه‌ها.

Downloaded from ijcm.ir at 3:20 +0430 on Tuesday August 6th 2019
<table>
<thead>
<tr>
<th></th>
<th>Name of the Nanophotoluminescent (nm)</th>
<th>% Co</th>
<th>% Zn</th>
<th>Co:Zn Ratio</th>
<th>% C</th>
<th>% O</th>
<th>% H</th>
<th>% N</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>250</td>
<td>15</td>
<td>85</td>
<td>1:5</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>B</td>
<td>300</td>
<td>10</td>
<td>90</td>
<td>1:9</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
</tr>
<tr>
<td>C</td>
<td>350</td>
<td>5</td>
<td>95</td>
<td>1:19</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
</tr>
</tbody>
</table>

