Dolomitization and evaporate mineralization of Sachun Formation at type locality (SE Shiraz)

R. Shabafrooz, A. Mahboubi*, R. Moussavi-Harami

Department of Geology, Faculty of Sciences, Ferdowsi University of Mashhad, Iran

Abstract: The Sachun Formation (Paleocene-Lower Eocene) is mainly composed of carbonates and evaporates that were deposited in shallow-marine evaporitic mudflat environments. The Sachun Formation in the study area has been divided into three units including: lower evaporate; middle bioclastic limestone and upper evaporate. It is mainly composed of diagenetic gypsum, which originated from dehydration of anhydrite precursor. This gypsum in the Sachun Formation generally displays alabastrine and porphyroblastic textures with corroded anhydrite relics. Petrological studies reveal that the most important diagenetic processes affected the middle Part of the Sachun Formation are dolomitization and evaporate mineralization. Four types of dolomite, ranging from early to burial diagenetic environments, were identified. These are including very fine-to-fine crystalline (D1), neomorphic dolomite (D2), fine-to-medium crystalline euhedral to subhedral dolomite (D3) and pore- and fracture-filling dolomite (D4).

Keywords: gypsum, anhydrite, alabastrine, porphyroblastic, dolomite, Sachun Formation.

*Corresponding author, Tel.: +98 (0511) 8797275, Fax: +98 (0511) 8797275, E-mail: amahboobi2001@yahoo.com
دولومیتی شدن و کانی‌زایی تبخیری‌های سازند ساسچون در پرش اگو (جنوب شرق شیراز)

روغ الله شهبازی افروز، اسادالله محبوبی *
رضا موسوی حرمی

گروه زمین شناسی، دانشکده علوم، دانشگاه قروسوری مشهد

دریافت مقاله: ۱۳۸۸/۱۱/۰۷، رسخه نهایی: ۱۳۸۸/۰۷/۰۷

چکیده: سازند ساسچون (یا لوسون- آلوسون پایینی) مشکل از گرین‌های تبخیری‌هایی است که در شرایط دریایی کم عمق و ساحلی سیخ نشته‌شده است. سازند ساسچون در ناحیه مورد بررسی از سه بخش تبخیری‌های سازند شناسی، سازند اکه‌پیکولاسی مبادل تبخیری بالایی تشکیل شده است. یک بخش از تبخیری‌های بالایی و بالایی بیشتر از زیر سازند سازند شناسی حاصل از نیل‌زدایی انرژی تپه‌ای است. به‌طوری‌که بیشتر دارای الیاف‌های فیتوکرهولوگنیک به همراه دیگر فیتوکере...
کلیه از دولومیت مقطع نازک با محلول آلیازن به روش دیکسون [4] رنگ امیزی شده، پس از بررسی سنجش‌نامی اولیه تعداد 19 نمونه محصور تعبیه عناصر اهم، منگنز، سدیم، استراتسانس و منیزیم، دولومیتهای نوع یک (D1) و دو (D2) در آزمایشگاه شیمی دانشگاه تربیت مدرس با طیف سنج جذب انیاتی شدند. 50 نمونه از مقطع نازک نیز با میکروسکوب کاهن‌دیسمنیاس پررسی شدند. میکروسکوب Technosyn Cold مورد استفاده در این کار پژوهشی از نوع مدل 8200 بود که در شرایط خلاة 15 Torr (Torr) ولتاژ 13 کیلوولت و شدت جریان 180 نا 195 میلی آمپر مورد استفاده قرار گرفت.

سنگ‌شناسی دولومیت‌ها

دولومیت می‌تواند در بیشتر مرحل میانی، برای نقل‌بری از تشخیص تا دفن عمیق، از آب‌های با ترکیب شیمیایی

شکل 1 (A) سنن چین‌نشانی خلاصه شده (آمیری خجبار و همکاران، 1385)، (B) نقشه موقعیت جغرافیایی سازند ساجون در برخ مورد بررسی، (C) و (D) تصاویری از مرز زیرین سازند ساجون به صورت نوری به سازند نازک با حضور آفی از کلاین (فلاح مشکی)، به گسترش فرآیند اتصال در زیر این افی توجه شود (پیکان سفید).
دولومیت‌های نوع اول (D) این نوع دولومیت به صورت مورفولوژی‌هایی که اندازه (تک‌مدی) به صورت بلور‌های خیلی ریز تا رنزند و براساس رده‌بندی گرگ و سببیلی (آ) از نوع صفحه‌ای (Planar) و دمای پالین هستند. اندازه بلورها کمتر از 50 میکروم است و بسیار متراکم خاکستری، حاصل درشت ریز کوارتز در اندازه‌سیلت و قافقد

شکل ۲ تصاویر دولومیت نوع یک (C)

دولومیت‌های خیلی ریز تا رنز بلور یک اندازه هرنا با دانه‌های پراکندگی از کوارتز در اندازه‌سیلت (B) (تصویر اینتراکلاست (فلش)) دولومیت‌های در دولومیت نوع یک (C) (XPL) (د) رخساز دولستنی با بافت نردهای (D) (XPL) تصویری از اشکال دروغین زیپس (فلش) در دولومیت نوع یک (E) (پراکندگی ندول‌های زیپس با بافت آلاباسترا (فلش) در دولومیت نوع یک (F) (XPL)).
شکل ۳ تناول میکروسکوپی از فراکن دومولیمی شدن در ساندن ساجون (نماه متقاطع با مخلوط آلیزیز رنگ آمیزی شده).

A-B. تصویر دومولیمی نامرئیک (نوع دوم) نیمه شکل دار (D2) و دومولیمی نوع یک (D1) در کانال ها (XPL, C). C. تناول دومولیمی کاملاً نامرئیک (نوع دوم) نیمه شکل دار (D2) در کانال ها (XPL, D). D. نیمه شکل دار (D2) و دومولیمی نوع یک (D1) بلوهای رز دومولیمی (نوع سوم) که هنوز می‌خسته و در مکزیک در بین بلوهای دومولیمی دیده می‌شود (XPL, E). E. نیمه شکل دار دومولیمی نوع چهارم (نوع دومولیمی) که در داخل شکستگی تشكل شده. F. بلوهای دومولیمی در مجاورت حفره پر شده با سیمان کلسیتی توجه شود (فقره).
دولومیت‌های نوع سوم (D)

این نوع دولومیت به صورت لوزی رخ‌های شکل‌دار و مسطح [010] در اندازه زیر ناحیه مستطیل (میانه 100 تا 200 میکرون) در برخی از نمونه‌های بلورهای خارجی می‌باشد. این دولومیت با ذره‌ی نازک شکل‌دار توسط سیمی‌های کوچک دانیل‌های dest. و برخی دیگر نازک درون سیمی‌های کوچک است. سپسی‌ها دفعه، (D&C) این نوع دولومیت در سرنوشت‌های کل سیمی در سطح رخ‌های دولومیت کل آلکن ساخته شده است.

دولومیت‌های نوع چهارم (D)

این نوع دولومیت به دلیل ناحیه لوزی‌های رخ‌هایی در شیب می‌باشد و ریز رخ‌هایی از طرفی بررسی‌های رنگ‌نامه‌ای می‌باشد. اندازه بلورهای بین 300 تا 500 میکرون است. دولومیت‌های نوع چهارم از بلورهای شفاف و اغلب شکل‌دار افقی مسطح تشکیل شده و صورت سیمی برکنده روزنها (Planar) و گاه به- و صورت جزئی گانه‌ای. بعضی از شکل‌های اسکلتی شده

جدول ۱ نتایج آنالیز عنصری دولومیت‌های سرنوشت‌های در برش‌گو (D1)

<table>
<thead>
<tr>
<th>Sample No</th>
<th>Dolomite</th>
<th>Fe(ppm)</th>
<th>Mn(ppm)</th>
<th>Sr(ppm)</th>
<th>Na(ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>s-100</td>
<td>D1</td>
<td>80</td>
<td>17</td>
<td>240</td>
<td>1575</td>
</tr>
<tr>
<td>s-198</td>
<td>D1</td>
<td>140</td>
<td>25</td>
<td>320</td>
<td>1420</td>
</tr>
<tr>
<td>s-215</td>
<td>D1</td>
<td>37</td>
<td>14</td>
<td>110</td>
<td>285</td>
</tr>
<tr>
<td>s-214</td>
<td>D1</td>
<td>60</td>
<td>22</td>
<td>240</td>
<td>725</td>
</tr>
<tr>
<td>s-189</td>
<td>D1</td>
<td>72</td>
<td>34</td>
<td>370</td>
<td>820</td>
</tr>
<tr>
<td>s-202</td>
<td>D1</td>
<td>42</td>
<td>14</td>
<td>110</td>
<td>180</td>
</tr>
<tr>
<td>s-211</td>
<td>D1</td>
<td>30</td>
<td>3</td>
<td>850</td>
<td>530</td>
</tr>
<tr>
<td>s-188</td>
<td>D1</td>
<td>115</td>
<td>12</td>
<td>330</td>
<td>330</td>
</tr>
<tr>
<td>s-107</td>
<td>D1</td>
<td>130</td>
<td>59</td>
<td>140</td>
<td>617</td>
</tr>
<tr>
<td>s-102</td>
<td>D1</td>
<td>80</td>
<td>20</td>
<td>150</td>
<td>120</td>
</tr>
<tr>
<td>s-199</td>
<td>D1</td>
<td>110</td>
<td>7</td>
<td>30</td>
<td>210</td>
</tr>
<tr>
<td>s-181</td>
<td>D1</td>
<td>110</td>
<td>57</td>
<td>100</td>
<td>650</td>
</tr>
<tr>
<td>s-106</td>
<td>D1</td>
<td>61</td>
<td>89</td>
<td>50</td>
<td>310</td>
</tr>
<tr>
<td>s-220</td>
<td>D1</td>
<td>75</td>
<td>12</td>
<td>310</td>
<td>410</td>
</tr>
<tr>
<td>s-100</td>
<td>D1</td>
<td>90</td>
<td>19</td>
<td>240</td>
<td>824</td>
</tr>
<tr>
<td>s-122</td>
<td>D2</td>
<td>18</td>
<td>90</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>s-154</td>
<td>D2</td>
<td>130</td>
<td>22</td>
<td>100</td>
<td>370</td>
</tr>
<tr>
<td>s-163</td>
<td>D2</td>
<td>170</td>
<td>130</td>
<td>310</td>
<td>310</td>
</tr>
<tr>
<td>s-137</td>
<td>D2</td>
<td>140</td>
<td>56</td>
<td>20</td>
<td>20</td>
</tr>
</tbody>
</table>
نتایج
مقدار سدیم در دولومیتهای سازند ساجنی بین ۲۵۰ تا ۸۵۰ بی‌پی ام (میانگین ۴۴۸ بی‌پی ام) و مقدار استاترین بین ۹۰ تا ۲۹۰ بی‌پی ام در تغییر اسد است. میانگین استاترین در دولومیتهای نوع اول (۳۸۰ بی‌پی ام) بیشتر از دولومیتهای نوع دوم (۱۱۵ بی‌پی ام) است. دانه تغییرات آهن و منگنز در این دولومیتهای سازند ساجنی بین ۲۵۰ تا ۸۵۰ بی‌پی ام است.

نتایج تفسیر
مقدار سدیم در دولومیتهای عهد حاضر (خلیج فارس) بین ۲۵۰ تا ۸۵۰ بی‌پی ام در نوسان است. یکی با گذشته زمان و کمیت دولومیتهای میادین همانند استاترین کم می‌شود. [۱۰۰] مقدار سدیم در دولومیتهای سازند ساجنی بین ۲۵۰ تا ۸۵۰ بی‌پی ام (میانگین ۴۴۸ بی‌پی ام) در تغییر اسد است. مقدار، از مقدار میانگین سدیم در دولومیتهای سیاهی خلیج فارس و خلیج فارس بیان می‌کند. مقدار سدیم در دولومیتهای سازند ساجنی بین ۲۵۰ تا ۸۵۰ بی‌پی ام بسیار بالاتر است. [۱۱۱]

تعدادی اصلی و فرعی در دولومیتهای سازند ساجنی به ترکیب عنصری می‌باشد. ترکیب عنصری کلی به دلیل هوا در دولومیتهای سازند ساجنی بین ۲۵۰ تا ۸۵۰ بی‌پی ام در نوسان است. یکی با گذشته زمان و کمیت دولومیتهای میادین همانند استاترین کم می‌شود. [۱۰۰] مقدار سدیم در دولومیتهای سازند ساجنی بین ۲۵۰ تا ۸۵۰ بی‌پی ام (میانگین ۴۴۸ بی‌پی ام) در تغییر اسد است. مقدار، از مقدار میانگین سدیم در دولومیتهای سیاهی خلیج فارس و خلیج فارس بیان می‌کند. مقدار سدیم در دولومیتهای سازند ساجنی بین ۲۵۰ تا ۸۵۰ بی‌پی ام بسیار بالاتر است. [۱۱۱]

در محدوده میادین سازند ساجنی، در صورتی که دلایل خاصی باشد، دانه تغییرات آهن و منگنز در این دولومیتهای سازند ساجنی بین ۲۵۰ تا ۸۵۰ بی‌پی ام است. [۱۰۰] مقدار سدیم در دولومیتهای سازند ساجنی بین ۲۵۰ تا ۸۵۰ بی‌پی ام (میانگین ۴۴۸ بی‌پی ام) در تغییر اسد است. مقدار، از مقدار میانگین سدیم در دولومیتهای سیاهی خلیج فارس و خلیج فارس بیان می‌کند. مقدار سدیم در دولومیتهای سازند ساجنی بین ۲۵۰ تا ۸۵۰ بی‌پی ام بسیار بالاتر است. [۱۱۱]

در محدوده میادین سازند ساجنی، در صورتی که دلایل خاصی باشد، دانه تغییرات آهن و منگنز در این دولومیتهای سازند ساجنی بین ۲۵۰ تا ۸۵۰ بی‌پی ام است. [۱۰۰] مقدار سدیم در دولومیتهای سازند ساجنی بین ۲۵۰ تا ۸۵۰ بی‌پی ام (میانگین ۴۴۸ بی‌پی ام) در تغییر اسد است. مقدار، از مقدار میانگین سدیم در دولومیتهای سیاهی خلیج فارس و خلیج فارس بیان می‌کند. مقدار سدیم در دولومیتهای سازند ساجنی بین ۲۵۰ تا ۸۵۰ بی‌پی ام بسیار بالاتر است. [۱۱۱]

در محدوده میادین سازند ساجنی، در صورتی که دلایل خاصی باشد، دانه تغییرات آهن و منگنز در این دولومیتهای سازند ساجنی بین ۲۵۰ تا ۸۵۰ بی‌پی ام است. [۱۰۰] مقدار سدیم در دولومیتهای سازند ساجنی بین ۲۵۰ تا ۸۵۰ بی‌پی ام (میانگین ۴۴۸ بی‌پی ام) در تغییر اسد است. مقدار، از مقدار میانگین سدیم در دولومیتهای سیاهی خلیج فارس و خلیج فارس بیان می‌کند. مقدار سدیم در دولومیتهای سازند ساجنی بین ۲۵۰ تا ۸۵۰ بی‌پی ام بسیار بالاتر است. [۱۱۱]
کاهشی داشتند، در صورتی که آهن و بی‌خصوص منکر روند افزایشی دارد. 

شیمیایی آهن مقداری دارند [14]. با تبدیل دومولیت‌ها و فراهم شدن شرایط احیای آهن ممکن است بتواند بر اثر شدن به شکل دومولیت از دست نهاشیم مجدداً در شرایط تنش سطح زمین و محیط‌های اکستری بسیار به‌مقدار خیلی کم‌تری می‌تواند وارد شکل دومولیت شود. تمرکز آهن در نمونه‌های مورد مطالعه (دومولیت نوع یک) احتمالاً به‌دلیل حاکمیت شرایط احیایی بسیار است. 

بررسی عناصر شیمیایی در این دومولیت‌ها نشان می‌دهد که به‌طور مشابه دومولیت‌های سنگ و تیتان مقداری از Sr و Na روند کاهشی را تجربه کرده، در صورتی که آهن و بی‌خصوص منکر روند تکراری افزایشی دارد، البته نتایج غیرمنتظره نیست. به‌دلیل مبهمی دندان مقدار منگنز در این نمونه‌ها (به‌طور متوسط 5ppm) بررسی مقاطع نازک این نمونه‌ها با میکروسکوپ کاندولوپیلی راتی خشکی نشان داده است. 

بنا به توجه به نتایج سنجش‌های متعدد شیمیایی مدل‌های سنگ‌سنگ اکستری و زئولیت‌های پایه‌گیر حاکم بودن شرایط محیط سیاحی و شوراهاهایی از این محیط است که احتمالاً بی‌پوشش دیاژنیک منجر به تحلول بیشتر از نمونه‌های شده است. 

با توجه به نتایج سنجش‌های متعدد شیمیایی مدل‌های سنگ‌سنگ اکستری و زئولیت‌های پایه‌گیر حاکم بودن شرایط محیط سیاحی و شوراهاهایی از این محیط است که احتمالاً بی‌پوشش دیاژنیک منجر به تحلول بیشتر از نمونه‌های شده است.

کاهشی داشتند، در صورتی که آهن و بی‌خصوص منکر روند افزایشی دارد. 

شیمیایی آهن مقداری دارند [14]. با تبدیل دومولیت‌ها و فراهم شدن شرایط احیای آهن ممکن است بتواند بر اثر شدن به شکل دومولیت از دست نهاشیم مجدداً در شرایط تنش سطح زمین و محیط‌های اکستری بسیار به‌مقدار خیلی کم‌تری می‌تواند وارد شکل دومولیت شود. تمرکز آهن در نمونه‌های مورد مطالعه (دومولیت نوع یک) احتمالاً به‌دلیل حاکمیت شرایط احیایی بسیار است. 

بررسی عناصر شیمیایی در این دومولیت‌ها نشان می‌دهد که به‌طور مشابه دومولیت‌های سنگ و تیتان مقداری از Sr و Na روند کاهشی را تجربه کرده، در صورتی که آهن و بی‌خصوص منکر روند تکراری افزایشی دارد، البته نتایج غیرمنتظره نیست. به‌دلیل مبهمی دندان مقدار منگنز در این نمونه‌ها (به‌طور متوسط 5ppm) بررسی مقاطع نازک این نمونه‌ها با میکروسکوپ کاندولوپیلی راتی خشکی نشان داده است. 

بنا به توجه به نتایج سنجش‌های متعدد شیمیایی مدل‌های سنگ‌سنگ اکستری و زئولیت‌های پایه‌گیر حاکم بودن شرایط محیط سیاحی و شوراهاهایی از این محیط است که احتمالاً بی‌پوشش دیاژنیک منجر به تحلول بیشتر از نمونه‌های شده است.

با توجه به نتایج سنجش‌های متعدد شیمیایی مدل‌های سنگ‌سنگ اکستری و زئولیت‌های پایه‌گیر حاکم بودن شرایط محیط سیاحی و شوراهاهایی از این محیط است که احتمالاً بی‌پوشش دیاژنیک منجر به تحلول بیشتر از نمونه‌های شده است.

کاهشی داشتند، در صورتی که آهن و بی‌خصوص منکر روند افزایشی دارد. 

شیمیایی آهن مقداری دارند [14]. با تبدیل دومولیت‌ها و فراهم شدن شرایط احیای آهن ممکن است بتواند بر اثر شدن به شکل دومولیت از دست نهاشیم مجدداً در شرایط تنش سطح زمین و محیط‌های اکستری بسیار به‌مقدار خیلی کم‌تری می‌تواند وارد شکل دومولیت شود. تمرکز آهن در نمونه‌های مورد مطالعه (دومولیت نوع یک) احتمالاً به‌دلیل حاکمیت شرایط احیایی بسیار است. 

بررسی عناصر شیمیایی در این دومولیت‌ها نشان می‌دهد که به‌طور مشابه دومولیت‌های سنگ و تیتان مقداری از Sr و Na روند کاهشی را تجربه کرده، در صورتی که آهن و بی‌خصوص منکر روند تکراری افزایشی دارد، البته نتایج غیرمنتظره نیست. به‌دلیل مبهمی دندان مقدار منگنز در این نمونه‌ها (به‌طور متوسط 5ppm) بررسی مقاطع نازک این نمونه‌ها با میکروسکوپ کاندولوپیلی راتی خشکی نشان داده است. 

بنا به توجه به نتایج سنجش‌های متعدد شیمیایی مدل‌های سنگ‌سنگ اکستری و زئولیت‌های پایه‌گیر حاکم بودن شرایط محیط سیاحی و شوراهاهایی از این محیط است که احتمالاً بی‌پوشش دیاژنیک منجر به تحلول بیشتر از نمونه‌های شده است.

با توجه به نتایج سنجش‌های متعدد شیمیایی مدل‌های سنگ‌سنگ اکستری و زئولیت‌های پایه‌گیر حاکم بودن شرایط محیط سیاحی و شوراهاهایی از این محیط است که احتمالاً بی‌پوشش دیاژنیک منجر به تحلول بیشتر از نمونه‌های شده است.

کاهشی داشتند، در صورتی که آهن و بی‌خصوص منکر روند افزایشی دارد. 

شیمیایی آهن مقداری دارند [14]. با تبدیل دومولیت‌ها و فراهم شدن شرایط احیای آهن ممکن است بتواند بر اثر شدن به شکل دومولیت از دست نهاشیم مجدداً در شرایط تنش سطح زمین و محیط‌های اکستری بسیار به‌مقدار خیلی کم‌تری می‌تواند وارد شکل دومولیت شود. تمرکز آهن در نمونه‌های مورد مطالعه (دومولیت نوع یک) احتمالاً به‌دلیل حاکمیت شرایط احیایی بسیار است.

بررسی عناصر شیمیایی در این دومولیت‌ها نشان می‌دهد که به‌طور مشابه دومولیت‌های سنگ و تیتان مقداری از Sr و Na روند کاهشی را تجربه کرده، در صورتی که آهن و بی‌خصوص منکر روند تکراری افزایشی دارد، البته نتایج غیرمنتظره نیست. به‌دلیل مبهمی دندان مقدار منگنز در این نمونه‌ها (به‌طور متوسط 5ppm) بررسی مقاطع نازک این نمونه‌ها با میکروسکوپ کاندولوپیلی راتی خشکی نشان داده است. 

بنا به توجه به نتایج سنجش‌های متعدد شیمیایی مدل‌های سنگ‌سنگ اکستری و زئولیت‌های پایه‌گیر حاکم بودن شرایط محیط سیاحی و شوراهاهایی از این محیط است که احتمالاً بی‌پوشش دیاژنیک منجر به تحلول بیشتر از نمونه‌های شده است.

با توجه به نتایج سنجش‌های متعدد شیمیایی مدل‌های سنگ‌سنگ اکستری و زئولیت‌های پایه‌گیر حاکم بودن شرایط محیط سیاحی و شوراهاهایی از این محیط است که احتمالاً بی‌پوشش دیاژنیک منجر به تحلول بیشتر از نمونه‌های شده است.
فشرده شدن‌. برخورداری بین ندول‌ها با سانین- اسپار سیمانی شده است. در بیشتر موارد فضای بین ندول‌ها را دولومیت پر می‌کند (شکل A). در زیر میکروسکوپ ندول‌ها بیشتر با باخت آبستری و پورفیروبلاستی به همراه آثار باقیمانده از بلورهای اندر‌پریت و باخت‌الابستری به صورت شبحی با خاموشی موجی نامنظم زیر میکروسکوپ دیده می‌شود (شکل D 5).

شکل ۴- تغییرات مقدار عناصر A- B- C
- غلیظ تغییرات مقدار عناصر آهن و
شکل 5 اشکال مختلف تبخیری یا موجود در سازند ساجون.

- A: نمایی از بخش پایینی بخش بالایی که بیشتر از زیپس های توده‌ای با یا بدون باعثهای دولومیتی تشکیل شده است.
- B: زیپس با بافت الابستری و فراگیر در دولومیت نوع یک (D1).
- C: زیپس با بافت پورفیرولاستی در دولومیت نوع یک (D1).
- D: محفظه در محلول آلی بارین رنگ آمیزی زیبای لامیناسیون زیپس لایه‌ای.
- E: زیپس‌های فراگیر که در اثر جانشینی اندریت ایجاد شده است (فلش).
- F: زیپس‌های فراگیر که در اثر جانشینی اندریت ایجاد شده است (فلش) (مقطع با محلول آلی بارین رنگ آمیزی زیبای لایه‌ای).
- G: زیپس‌های زیبای ساتینی - اسپار (فلش) در دولومیت (D1) نوع یک (مقطع با محلول آلی بارین رنگ آمیزی شده است).

تیخریها هنونست‌های هستند که محقق شکلی بروند آنها در تفسیر محتوای تغییری مورد استفاده قرار داده‌ایند. زیپس‌های ابزارهای اولیه در اثر تبلور یا پورفیرولاستی در دولومیت به سبب اثرات نانو و زیبای ساتینی پیشین. سپس در حین تغییر طبیعی می‌دهند [23].

بر پایه مشاهدات صحرایی و سنگ‌نواختی، تیخریهای سازند ساجون، بیشتر نانوایه‌های زیپس‌های نانوایه، بافت آلبستری و پورفیرولاستی به همراه آثار باقی‌مانده از بلوارهای اندریت است. زیپس‌های ساتینی-اسپار در نتیجه افزایش حجم به وجود می‌آید که این خود تایید کننده تغییر شکل از اندریت به زیپس است [24].
درجه سیستم و کانی‌زایی تیخیری‌های ساژند ساچون... 

دولومیتهای نوع اول هستند و دولومیتهای نوع چهارم در مرحله دیاژن دفنی کم عمق خارج شدن شاره‌های میان درای به انرژی‌های شناخته‌شده به سمت بالا تشکیل شدند. در چنین شرایطی، زیربخش‌های لایه‌ای تحت تأثیر دانه‌های تیخیری، گروه‌های چهارمی و دولومیتهای قبیله در راستای رگه‌های احتمالی باعث به وجود آمدن این نوعهای جدید از چهارمی شده که در دوران شکاف‌های و حفره‌های وارد شده و به صورت سیمان یا جانشین دولومیتهای نوع یک و یا نوع دوم، حفره‌ها را یا به کرده است.

براساس بررسی‌های سیاه‌چال و سنجش‌گشایی دو نوع زیب در توده‌های نرم و نرم، شاخص‌های شکلی تشکیل است. به علاوه زیب‌های فراک، میکرودولوز و پر کننده فاصله (سیویل- اسپار) و به شکلی درون‌آمیخت. آن‌ها به شکل‌های نسبتا کوچکتر دانسته شده و به شکل‌های میکرومولوز مشاهده شدند. نشان‌دهنده‌های تیخیری ساژند شکل‌های پیشروی و پیشروی‌اندکارهای آن‌ها داشته‌اند از انواعی چون دومین و پیشروی‌اندکارهای آن‌ها داشته‌اند. 

است

مراجع

[1] أمیری، خیبر، ج، همیاری، ا، صادقی، ع، یادی، م، وزیبی، مقدم ح، خیبری‌کردن شرایط، به‌طور ساندهای تاریک و ساژند در گروه ساچون، جنگ، دارا، فارس (محال برخ شیاطین ساژند ساچون)، مجله علمی، تاریک، فصل نامه شماره 16، 1385، مشهد


