ساخت لایه‌ای نازک بیسوموت تیتانات (Bi$_4$Ti$_3$O$_{12}$) به روش سل زل و بررسی خواص ساختاری و اپتیکی آن

سینا رنجری، محمدرضا رکان‌آبادی، محمد بهدادی

گروه فیزیک، دانشکده علوم، دانشگاه فردوسی مشهد

چکیده: سرامیک‌های بیسوموت تیتانات به دلیل ویژگی و کاربردهای قابل توجه مختلف، مورد بررسی بیشتری از پژوهشگران قرار گرفته است. در این پژوهش محلول مورد نظر به روش سل زل تهیه شده و سپس با استفاده از اسپین کوتینگ روی بسترهای شیشه‌ای لایه‌ای شده و سپس به بردارهای ساختاری اپتیکی آن پرداخته شد. بدین منظور نخست سل اولیه با نسبت‌های مولی مناسب تهیه شد. پس از مخلوط کردن مواد اولیه و هم زدن آن با استفاده از روش سل زل، سل ایجاد شده به روش پوشش اسپین روی بسترهای شیشه‌ای با سرعت مشخص نشانه‌شده شد. به منظور بررسی نویز فازی از طریق پراک S، رخ نشانه‌ای پوشش میکروسکوپی الکترونی (SEM) در تغییر خواص اپتیکی لایه نازکی از طیف‌های اپتیکی جذب و تراکسیلیس به روش سان و بل استفاده شد که در گستردگی نور محدودی بالا حدود 85 % بوده است. انداره شکاف نواری محاسبه شده و درصد بروز است.

واژه‌های کلیدی: سل زل؛ بیسوموت تیتانات؛ لایه نازک؛ پوشش اسپینی

مقدمه

اکسیدهای فوارولکریک به طور گسترده‌ای با توجه به ویژگی فوارولکریک، الکتروانیکی و نیز ضریب دی الکتریک بالا در میکروکنترلرهای خاص و همکار استفاده قرار می‌گیرند [1-2]. بیسوموت تیتانات (Bi$_4$Ti$_3$O$_{12}$) ماده‌ای فوارولکریک است که اولین بار در سال 1944 میلادی به وسیله اروپت انگلیسی مشاهده گردید [3]. این دسته از مواد فوارولکریک که به فوارولکریک‌های گروه اسپین‌دار یا فوارولکریک‌های شامل لایه‌ای بیسوموت شرکت یافته که با فرمول کلی زیر مشخص می‌شوند:

$$A_{m-1}Bi_{2}Bi_{2}O_{3m-1} = (Bi_{2}O_{3})^{2+}(A_{m-1}Bi_{2}O_{3})^{2+}$$

که در این فرمول A کاتونی یک، دو یا سه فریم‌های شعاع (Bi$^{3+}$،Pb$^{2+}$،Ca$^{2+}$،Sr$^{2+}$،Ba$^{2+}$،K$^{+}$) است. همچنین بی‌کاتونی با شعاع بی‌کاتونی B کاتیونی با شعاع بی‌کاتونی کوچک مثل (Bi$^{3+}$،Ti$^{4+}$،Nb$^{5+}$،Fe$^{3+}$) همکار است و عده‌ای از این کاتونی با شعاع بی‌کاتونی چون (W$^{6+}$،Ti$^{4+}$،Nb$^{5+}$،Fe$^{3+}$)
تولید دیور مورد استفاده در ساخت نمونه‌های نازک بیسموت

جدول 1

<table>
<thead>
<tr>
<th>درصد</th>
<th>خلوص</th>
<th>فرمول شیمیایی</th>
<th>نام ماده</th>
</tr>
</thead>
<tbody>
<tr>
<td>99%</td>
<td>2.5</td>
<td>CsH4O2Ti2</td>
<td>ceO2Ti</td>
</tr>
<tr>
<td>99%</td>
<td>1.5</td>
<td>BaTiO3</td>
<td>BaTiO3</td>
</tr>
<tr>
<td>99%</td>
<td>0.5</td>
<td>CeO2</td>
<td>CeO2</td>
</tr>
</tbody>
</table>

سپاس‌الله...
شکل ۱ طرح شماتیک مراحل ساخت نانو سیال بیسوموت تیتانات.

شکل ۲ طرح پراش نانو سیال بیسوموت تیتانات باز یک خش شده در دمای ۶۰۰ درجه سانتی‌گراد به مدت ۱ ساعت.

شکل ۳ نشان دهنده تصور پوشش نانو سیال بیسوموت تیتانات روبی زیر نانو ساختار SEM برداشت می‌شود، لایه نانو ساختار بوده و از یک‌واختی لایه نانو ساختار بیسوموت تیتانات است.
شکل ۳ تصویر SEM لایه نازک بیسانسی تیتانات با لگ کاری شده در دمای ۶۰۰ درجه سانتی‌گراد.

شکل ۴ طیف عبوری لایه نازک بیسانسی تیتانات با پخت شده در دمای ۶۰۰ درجه سانتی‌گراد.
شکل ۵ تغییرات ضریب شکست با طول موج برای لایه نازک بیسموت تیناتات در دمای ۶۰۰ درجه سانتی‌گراد.

\[k = \frac{a \lambda}{4\pi} \]
(8)

\[\text{که شکل ۷ نشان دهنده ضریب خاموشی لایه نازک بر حسب طول موج مقدار } k \text{ برای لایه‌های بیسموت تیناتات کوچکی است که این مقدار برای طول موج‌های کوچک به سرعت افزایش می‌یابد. که ممکن است ناشی از پراکندگی باشد. همچنین با معادله } n = \sqrt{\frac{\varepsilon_2}{\varepsilon_0}} \text{ و } k = \sqrt{\frac{\varepsilon_0}{\varepsilon_2}} \text{ را محاسبه کرده، برای محاسبه از روابط زیر استفاده شد:} \]

\[\varepsilon_1 = \frac{1}{n^2} - k^2 \]
(9)

\[\varepsilon_2 = 2nk \]
(10)

تغییرات \(\varepsilon_1 \) بر حسب انرژی فوتون برای لایه نازک بیسموت تیناتات بازیخ شده در دمای مختلف در شکل ۸ نشان داده شده است. باعث وقوع تغییرات در کنار کارکرد روند افزایشی را با افزایش انرژی نشان می‌دهد. باعث وقوع تغییرات در طول موج‌های بلند تغییرات خطی گمی دارد، ولی در ناحیهی جذب و در طول موج‌های کوتاه به دلیل برهم‌کنش شدید بین الکترون و فوتون این تغییرات بیشتر است. اندارزی بخش حقيقی نشان دهنده این است که نمونه‌های ساخته شده، دریا الکتریک خوبی هستند [۱۵].

از طرف دیگر ضخامت نمونه با استفاده از رابطه (۶) برای دو بیشینه چرخه (و یا دو کمینه چرخه) محاسبه شد.

\[d = \frac{\lambda_1 \lambda_2}{2(\lambda_1 n_2 - \lambda_2 n_1)} \]
(6)

ضخامت نمونه‌ها با استفاده از معادله (۶) این‌گونه که دری رابطه (۶) برای لایه‌های نازک بیسموت تیناتات در دمای ۶۰۰ درجه سانتی‌گراد nm برای نمونه‌های ۵۰۸ در نشان می‌دهد. از دیگر پارامترهای مهمی که از طرف عبوری قابل محاسبه است می‌توان به گرفتار شدن کرک که از برترینای نمودار (ahv) بر حسب hv محاسبه شد. با فرض کوچک بودن انرژی فوتون‌ها نسبت به فوتون‌های فروندی، رابطه ضریب چرب و گرفتاری به صورت زیر است:

\[ahv = B(hv - E_g)^{3/2} \]
(7)

در این رابطه B ثابت مستقل از انرژی E_g گرفتار نوازی انتی‌کی و ثابت ثابتی است که مشخص کننده نوع گرفتار انتی‌کی است، و مقادیر آن برای گرفتار مستقیم برای ۲ و برای گرفتار غیر مستقیم برای انت‌های ۵. ۰ در شکل ۶ پتانسیل انتی‌کی لایه‌ای نازک بیسموت تیناتات داده شده است.

مشاهده می‌شود گرفتار انتی‌کی لایه نازک بیسموت تیناتات نشان داده شده است. این گرفتار برای است با ۷۷/۳۷ ایجاد شده [۱۵].

ضریب خاموشی لایه‌ها با استفاده از رابطه زیر بدست می‌آید:
شکل ۶: منحنی تغییرات $e^2 (\alpha h \nu)$ بر حسب $h \nu$.

شکل ۷: نمایش ضریب خاموشی بر حسب طول موج برای لایه نارک بیسموت تیتانات.

شکل ۸: نمودار تغییرات ξ بر حسب انرژی فوتون برای لایه نارک بیسموت تیتانات در دمایهای مختلف.