ساخت لایه‌ای نازک بیسومت تیتانتات (Bi\textsubscript{4}Ti\textsubscript{3}O\textsubscript{12}) به روش سل زل و بررسی خواص ساختاری و اپتیکی آن

سینا رنجبر. محمد رضایی رک آبادی، محمد بهدادی

گروه فیزیک، دانشکده علوم، دانشگاه فردوسی مشهد

چکیده: سرمایه‌های بیسومت تیتانات به دلیل ویژگی و کاربردی گسترده قابل توجهی مورد بررسی سیبیاری از پژوهشگران قرار گرفته است. در این پژوهش محول مورد نظر به روش سل زل تهیه شده و سپس با استفاده از اسپین کوتیژن روي برستی از شيپه لایه نشان شده و سپس به بررسی ویژگی ساختاری اپتیکی آن برداخته شد. بدین منظور نخست سل اولیه با نسبت‌های مولی مختلف تهیه شد. پس از مخلوط کردن مواد اولیه و هم‌زنده کردن آن با استفاده از روش سل زل سل ایجاد شده به روش پوشش اسپینی روي برست شیپه‌ای با سرعت مشخص نشانه شد. به منظور بررسی نوی فازه از طریق پروتو X، ریخت‌شناسی پوشش میکروسکوپی الکترونی (SEM) روانی و در تیعین خواص اپتیکی لایه‌ای نازک از طیف‌های اپتیکی جدی و تراگکلیومی به روش سان و بل استفاده شد که در گستره نور خورپایی بالای حدود 0.85/نپه است. اندام شکاف نوازی محاسبه شده 0/37/نپه است.

واژه‌های کلیدی: سل زل؛ بیسومت تیتانتات؛ لایه‌ای نازک؛ پوشش/اسپینی

مقدمه

اکسیدهای فولتفرکس به طور گسترده‌ای به توجه به ویژگی فولتفرکسی، الکترترانزیتیک و نیز ضربه سیالکتریک بالا در میکرو‌الکترنی، به‌طور خاص و ... برای مورد استفاده قرار می‌گیرند [1-2]. بیسومت تیتانات (Bi\textsubscript{4}Ti\textsubscript{3}O\textsubscript{12}) ماده‌ای فولتفرکسی است که اولین بار در سال 1979 میلادی به وسیله ارپولوس و فانگ گشته شد [3]. این دسته از مواد فولتفرکسی که به فولتفرکسیکی گروه ارپولوس یا فولتفرکسیکی‌های شامل نهایی بیسومت شهیر پافتند، با فرمول کلی زیر مشخص می‌شوند:

\[
A_{m-1}Bi_2B_2O_5O_{3m+3} = (Bi_2O_3)^{2+}(A_{m-1}B_2O_5O_{3m+1})^{2+}
\]

که در این فرمول A کاتیون یک، دو یا سه ظرفیتی با شعاع بیوی یزگی مثل (Bi3+,Pb2+,Ca2+,Sr2+,Ba2+,K+) است. نویشتی همچنین B کاتیونی با شعاع بیوی کوچک مثل B3+ و C2+ و D2+, بکرای (W6+,Ti4+,Nb5+,Fe2+) است.

\[\]
درجه سانتریفیوژ بندتی المسفبی 300 درجه سانتی‌گراد به مدت 10 دقیقه گاز داده شدند تا حال‌الا و مواد آن تبخیر شوند. این لاها نشان‌گذاری شد که متوسط سیستم با ضخامت درهای نیاز کردنی. در مرحله نهایی نمونه ساخته شده در دمای 600 درجه سانتی‌گراد به مدت 1 ساعت در گاز بخار پر شده است.

خواص ساختاری لاها با وسیله‌ی پروش سنتر برت، اکس -8-Advance Bruker CuKαλλ = 0.15406nm با مدل اندازه‌گیری شدند. این نتایج ثابت می‌کند که استفاده از میکروسکوپ الکترونی رویشی MDR 1450 اندازه‌گیری شد. همچنین خواص ایبتکی، با استفاده از آندازه‌گیری UV-Visible 1800 Shimadzu بحت و برداشت به منظور مشاهداتی فازی ناکر بیسموت نتایج است از طرح پروش برت، اکس -8- Advance Bruker CuKαλλ = 0.15406nm با مدل اندازه‌گیری شدند. این نتایج ثابت می‌کند که استفاده از میکروسکوپ الکترونی رویشی MDR 1450 اندازه‌گیری شد. همچنین خواص ایبتکی، با استفاده از آندازه‌گیری UV-Visible 1800 Shimadzu بخت و برداشت به منظور مشاهداتی فازی ناکر بیسموت نتایج است از طرح پروش برت، اکس -8- Advance Bruker CuKαλλ = 0.15406nm با مدل اندازه‌گیری شدند. این نتایج ثابت می‌کند که استفاده از میکروسکوپ الکترونی رویشی MDR 1450 اندازه‌گیری شد. همچنین خواص ایبتکی، با استفاده از آندازه‌گیری UV-Visible 1800 Shimadzu بخت و برداشت به منظور مشاهداتی فازی ناکر بیسموت نتایج است از طرح پروش برت، اکس -8- Advance Bruker CuKαλλ = 0.15406nm با مدل اندازه‌گیری شدند. این نتایج ثابت می‌کند که استفاده از میکروسکوپ الکترونی رویشی MDR 1450 اندازه‌گیری شد. همچنین خواص ایبتکی، با استفاده از آندازه‌گیری UV-Visible 1800 Shimadzu بخت و برداشت به منظور مشاهداتی فازی ناکر بیسموت نتایج است از طرح پروش برت، اکس -8- Advance Bruker CuKαλλ = 0.15406nm با مدل اندازه‌گیری شدند. این نتایج ثابت می‌کند که استفاده از میکروسکوپ الکترونی رویشی MDR 1450 اندازه‌گیری شد. همچنین خواص ایبتکی، با استفاده از آندازه‌گیری UV-Visible 1800 Shimadzu بخت و برداشت به منظور مشاهداتی فازی ناکر بیسموت نتایج است از طرح پروش برت، اکس -8- Advance Bruker CuKαλλ = 0.15406nm با مدل اندازه‌گیری شدند. این نتایج ثابت می‌کن...
شکل 1. طرح شماتیک مراحل ساخت سل بیسوموت تیتانات.

شکل 2. طرح پراش پرتو X لاشه تازه بیسوموت تیتانات باریک شده در دمای 600 درجه سانتی‌گراد به مدت 1 ساعت.

شکل 3. نشان دهنده تصویر SEM نواحی ساختار لاشه تازه بیسوموت تیتانات روی زیر لاشهی شیشه‌ای بازیخت.
خوبی برخوردار است. و اندازه‌ی درایت برای نمونه بیسموت تیتانات حدود ۲۰ نانومتر است. به منظور بررسی خواص ایتیکی‌های نازک بیسموت تیتانات از بین بنا تراگرسیون به وسیله‌ی باناسنج استفاده شد. شکل ۴ بینه‌های نازک بیسموت تیتانات را در طول موج‌های مختلف نشان می‌دهد. با استفاده از این نمونه‌ها توان اطلاعات زیادی در مورد ویژگی‌های ایتیکی مانند ضریب جذب، ضریب شکست در طول موج‌های مختلف به دست آورد [۱۲].

شکل ۴ نشان می‌دهد که نازک ساخته شده دارای خاصیت عبوری بالا و قله‌های تداخلی است که دلالت بر یک‌واختی بالای آن دارد [۱۲]. همچنین نشان می‌دهد که در گستره‌ی نور مربوط به این نمونه‌ها عبور با در حدود ۸۵٪ است که هم‌خوانی خوبی با دستاوردهای مشابه دارد [۱۴]. همچنین با استفاده از این نمونه به دلیل داشتن نقاط بیشینه و کمینه‌ی مشخص، می‌توان پارامترهای ایتیکی را محاسبه کرد. در این پژوهش برای محاسبه‌ی پارامترهای ایتیکی مانند ضریب جذب

\[n = \left(\frac{N^2 + (N_s^2 - N)^2}{s^2} \right)^{1/2} \]
\[N = 2sT + s^2 + 1/2 \]

که ضریب شکست زیر لایه و ت با تغییرات ضریب شکست با طول موج برای لایه‌های نازک ساخته شده در دما مختلف در شکل ۵ نشان داده شد. به طور کلی می‌توان گفت که با افزایش ناحیه روشنگیری بیشتر مقدار ضریب شکست مربوط به طول موج ۴۱۰ نانومتر است که مقدار آن را ۲۵۰۰/۴ نشان می‌دهد که با مقادیر ضریب شکست در لایه‌ها هم‌خوانی خوبی با گزارشات مشاهده شده دارد [۱۲].

شکل ۳ تصویر SEM لایه‌های نازک بیسموت تیتانات با ضخامت شده در دمای ۶۰۰ درجه سانتی‌گراد.

شکل ۴ طیف عبوری لایه‌های نازک بیسموت تیتانات با ضخامت شده در دمای ۶۰۰ درجه سانتی‌گراد.
شکل ۵ تغییرات ضریب شکست با طول موج برای لاهی‌نارک بیسموت تیتانات در دمای ۶۰۰ درجه سانتی‌گراد.

\(k = \frac{a\lambda}{4\pi} \) \hspace{1cm} (8)

که شکل ۷ نشان دهنده ضریب خاموشی لاهی‌نارک بر حسب طول موج مقدار \(k \) برای لاهی‌نارک بیسموت کوچک است که این مقدار برای طول موج‌های کوچک به سرعت افزایش می‌یابد. که ممکن است ناشی از پراکندگی باشد. همچنین با محاسبه \(n \) و \(k \) می‌توان بخش خفیفی و موهومی ثابت دی الکتریک \(e_1 \) و \(e_2 \) را محاسبه کرد. برای محاسبه از روابط زیر استفاده شد.

\[e_1 = n^2 - k^2 \] \hspace{1cm} (9)

\[e_2 = 2nk \] \hspace{1cm} (10)

تغییرات \(e_1 \) بر حسب انرژی فوتون برای لاهی‌نارک بیسموت تیتانات بازی خت شده در دمای مختلف در شکل ۷ نشان داده شده است. بخش خفیفی تابع دی الکتریک روند افزایشی را با افزایش انرژی نشان می‌دهد. بخش خفیفی در طول موج‌های بلند تغییرات خطی کمی دارد، ولی در ناحیه گریز و در طول موج‌های کوتاهتر به دلیل برهم‌کنش بین الکترون و فوتون این تغییرات بی‌شتر است. اندازه‌گیری بخش خفیفی تابع دی الکتریک از بخش موهومی ان بی‌شتر است. این عده‌ها نشان دهنده‌ای است که نموده‌های ساخته شده، دی الکتریک خوبی هستند [۱۵].

از طرف دیگر ضخامت نموده با استفاده از رابطه (۶) برای دو بیشینه مجاور (و دو دو کمینه مجاور) محاسبه شد.

\[d = \frac{\lambda_2}{2(\lambda_1 + \lambda_2)} \] \hspace{1cm} (6)

ضخامت نموده‌ها با استفاده از معادله ۶ ایندازه‌گیری شد. که برای لاهی‌نارک بیسموت تیتانات در دمای ۶۰۰ ۰ درجه سانتی‌گراد NM ۵۸۰ nm را نشان می‌دهد. از دیگر پارامترهای مهمی که از طیف عبوری قابل محاسبه است می‌توان به فاصله اضافه کرد که از برونیابی نمودار \((ahv)^2 \) بر حسب \(hv \) محاسبه شد. با فرض کوچک بودن آنرژی فوتون، نسبت به فوتون‌های فرودی، \((hv) \) رابطه ضریب جذب و فاصله به صورت زیر است:

\[ahv = B(hv-E_g)^\frac{1}{2} \] \hspace{1cm} (7)

در این رابطه، \(B \) ثابت مستقل از انرژی، \(E_g \) گاز نواری انتیکی و ۲ ثابتی است که مشخص کننده نوع گزار انتیکی است، و مقدار این گزار مستقیماً درباره ۲ و برای گزار غیر مستقیم درباره است با این تفاوت در شکل ۸ در می‌آید. گاز نواری انتیکی لاهی‌نارک بیسموت تیتانات داده شده است مشاهده می‌شود که گاز نواری انتیکی لاهی‌نارک بیسموت تیتانات می‌تواند نشان داده شده است. این گاز نواری برای است با ۰.۵۷۳۷ ۷۵۰ درجه سانتی‌گراد [۱۵].

ضریب خاموشی لاهی‌ها با استفاده از رابطه (۷) برای بست می‌آید:
شکل ۶ منحنی تغییرات $e(hv)$ بر حسب hv.

شکل ۷ نمایش ضریب خاموشی بر حسب طول موج برای قطعی اوای نارک بیسموت تیتانات.

شکل ۸ نمودار تغییرات I_e بر حسب انرژی فوتون برای قطعی اوای نارک بیسموت تیتانات در دماهای مختلف.
برداشت
در این پژوهش ساخت لایه‌ای نازک بیسموت تیتانات و خواص ساختاری و اینتریک آن بررسی شدند. طرح برای پرتو ایکس نشان می‌دهد که لایه‌های نازک بیسموت تیتانات دارای ساختار اورتوپروپیک است و با استفاده از رابطه شر ایزودا هلیکرها برای دمای 600 درجه سانتی‌گراد حداکثر 16 نانومتر محاسبه شد. از تصاویر نمایش می‌شود که برای نمونه‌ی بیسموت تیتانات سطح دارای یک‌واحختی خوبی است و نیز اندازه ذرات در گسترده 25-30 نانومتر برای نمونه‌ی بیسموت تیتانات غیر می‌کند. اینکه، به‌طور عمده در دمای مختلف برای لایه‌ای نازک بیسموت تیتانات نشان دهنده‌ای است، نمونه‌ی در گستره‌ی آزمایش شده‌ام 600 درجه سانتی‌گراد 30 می‌باشد. مقادیر ضریب شکست و ضخامت لایه‌ها از روش سان پل محاسبه شدند. و منشا‌هایی که ضریب شکست شکست با فاصله تلک می‌باشد.

می‌باشد مقادیر ضریب خاموشی و تابع دی الکتریک برای نازک بیسموت تیتانات در دمای 600 درجه سانتی‌گراد اندوزگیری شد و بخش حقیقی تابع دی الکتریک بر حسب انرژی فوتون رسم شد که به فاصله‌ی ارزی مقدار بخش حقیقی افزایش می‌باید همچنین این مقادیر تابع دی الکتریک نشان دهنده‌ای است، که نمونه‌ها دارای خصائص الکتریکی خوبی هستند.

مراجع
