Petrology of Eocene volcanic rocks in NE of Ordib
(NE of Isfahan Province)

Gh. Torabi*, N. Shirdashtzadeh

Department of Geology, Faculty of Sciences University of Isfahan

(Received: 20/2/2009, in revised form: 9/6/2009)

Abstract: Eocene volcanic rocks in NE of Ordib, have a very good exposures near and along the Turkmeni-Ordib fault. These rocks, that are situated in the inner part of the Central Iran and margin of the Yazd block, comprise trachyte, trachy-andesite and basaltic trachy-andesite. Trachy-andesite is the pervasive rock unit. Rock forming minerals of these rocks are chloritized olivine, plagioclase, pyroxene, mica, amphibole, K-feldspar, quartz, ilmenite, magnetite and calcite. The most important mineralogical characteristics of the studied trachy-andesites are wide range of minerals in one rock sample, including two types of clinopyroxene, mica, plagioclase, sanidine, formation of reactionic clinopyroxene and calcite around the quartz, and oscillatory zoning of feldspars and amphiboles. Chemistry of clinopyroxenes and biotites with whole rock geochemical analyses, reveal that these rocks are similar to the continental volcanic arc rocks. Petrography and mineral chemistry demonstrate the magma mixing occurrence in formation of these rocks.

Keywords: Petrology, Eocene volcanic rocks, magma mixing, Ordib.

*Corresponding author, Tel.: +98 (0311) 7932165, Fax:+98 (0311) 7932152, E-mail: Torabighodrat@yahoo.com
سنگ شناختی سنگ‌های آتش‌نشانی انسان شمال غرب اوردیب
(شمال شرق استان اصفهان)

قدرت ترابی

desired services. Dastghahi اصفهان، دانشگاه علوم، بخش زمین شناسی

چکیده: در شمال غرب روستای اوردیب سنگ‌های آتش‌نشانی انسان در راستای و نزدیک به گسل ترمکنی - اوردیب دارای بروندهای بسیار خوبی هستند. این سنگ‌ها که در بخش‌های درونی ایران مرکزی و حاشیه بلند حفره دارند، بخشی شعله تراکی‌های گرفته‌های بازانی، تراکی‌های منقرض و تراکی‌های تکثیر دارند. بخشی شعله تراکی‌های گرفته‌های بازانی، تراکی‌های منقرض و تراکی‌های تکثیر دارند. این سنگ‌ها در حاشیه بلند حفره دارند، بخشی شعله تراکی‌های گرفته‌های بازانی، تراکی‌های منقرض و تراکی‌های تکثیر دارند. این سنگ‌ها در حاشیه بلند حفره دارند، بخشی شعله تراکی‌های گرفته‌های بازانی، تراکی‌های منقرض و تراکی‌های تکثیر دارند. این سنگ‌ها در حاشیه بلند حفره دارند، بخشی شعله تراکی‌های گرفته‌های بازانی، تراکی‌های منقرض و تراکی‌های تکثیر دارند. این سنگ‌ها در حاشیه بلند حفره دارند، بخشی شعله تراکی‌های گرفته‌های بازانی، تراکی‌های منقرض و تراکی‌های تکثیر دارند. این سنگ‌ها در حاشیه بلند حفره دارند، بخشی شعله تراکی‌های گرفته‌های بازانی، تراکی‌های منقرض و تراکی‌های تکثیر دارند. این سنگ‌ها در حاشیه بلند حفره دارند، بخشی شعله تراکی‌های گرفته‌های بازانی، تراکی‌های منقرض و تراکی‌های تکثیر دارند. این سنگ‌ها در حاشیه بلند حفره دارند، بخشی شعله تراکی‌های گرفته‌های بازانی، تراکی‌های منقرض و تراکی‌های تکثیر دارند. این سنگ‌ها در حاشیه بلند حفره دارند، بخشی شعله تراکی‌های گرفته‌های بازانی، تراکی‌های منقرض و تراکی‌های تکثیر دارند. این سنگ‌ها در حاشیه بلند حفره دارند، بخشی شعله تراکی‌های گرفته‌های بازانی، تراکی‌های منقرض و تراکی‌های تکثیر دارند. این سنگ‌ها در حاشیه بلند حفره دارند، بخشی شعله تراکی‌های گرفته‌های بازانی، تراکی‌های منقرض و تراکی‌های تکثیر دارند. این سنگ‌ها در حاشیه بلند حفره دارند، بخشی شعله تراکی‌های گرفته‌های بازانی، تراکی‌های منقرض و تراکی‌های تکثیر دارند. این سنگ‌ها در حاشیه بلند حفره دارند، بخشی شعله تراکی‌های گرفته‌های بازانی، تراکی‌های منقرض و تراکی‌های تکثیر دارند. این سنگ‌ها در حاشیه بلند حفره دارند، بخشی شعله تراکی‌های گرفته‌های بازانی، تراکی‌های منقرض و تراکی‌های تکثیر دارند. این سنگ‌ها در حاشیه بلند حفره دارند، بخشی شعله تراکی‌های گرفته‌های بازانی، تراکی‌های منقرض و تراکی‌های تکثیر دارند. این سنگ‌ها در حاشیه بلند حفره دارند، بخشی شعله تراکی‌های گرفته‌های بازانی، تراکی‌های منقرض و تراکی‌های تکثیر دارند. این سنگ‌ها در حاشیه بلند حفره دارند، بخشی شعله تراکی‌های گرفته‌های بازانی، تراکی‌های منقرض و تراکی‌های تکثیر دارند. این سنگ‌ها در حASH_01.jpg
در شکل زیر مجموعه محدوده از تراکم‌های ژئوفیزیکی آنتوفوگوی آتشفشانی ایسوس در زمینشناسی و مطالعه سیستم‌های زمین‌شناسی یکی از آن‌ها در ژئوفیزیک و سیستم‌های زمین‌شناسی است. تراکم‌های از تراکم‌های ژئوفیزیکی آنتوفوگوی آتشفشانی ایسوس در زمینشناسی و مطالعه سیستم‌های زمین‌شناسی یکی از آن‌ها در ژئوفیزیک و سیستم‌های زمین‌شناسی است.
شکل ۲ نقشه زمین‌شناسی ساده شده منطقه شمال شرق اردبیل (شمال شرق استان اصفهان) (برگرفته از [۱۱۱، با تغییرات).

شکل ۳ تصاویر صحراei سنگ‌های آنیشفتانی مورد بررسی تصویرهای E و D معدن بنوتیت مهرجان را نشان می‌دهند.
روش کار

به منظور بررسی سنگ‌های آتش‌نشانی مورد نظر، بررسی زمین‌شناسی صخره‌ای و نمونه‌برداری از پهنه‌های آتش‌نشانی باد شهد صورت گرفت و پس از تهیه مقاطع نازک، سنگ‌شناسی و کلی‌شناسی آن‌ها انجام شد. پس از بررسی سنگ‌شناسی سنگ‌شناسی، از نمونه‌های مناسب مقاطع نازک سیقلی تهیه شد و کلی‌های موجود در آن‌ها با استفاده از ریز پردازش الکترونی Brucker D8 Adventus یا الکترونیCamca SX-100 دهند 20 kV، دو HR-TEM 3 نمونه 200 نانومتر از منطقه سیقلی و شعاع الکترونی 8 میکرو متر بررسی و گرفته شد. در محاسبه سنگ‌شناسی و تعیین عضو‌های بنیادی کلی‌ها و نیز جداشتم نمونه‌برداری از پهنه‌های آتش‌نشانی کلی‌ای که در سطح شیمیایی روسی در بر روی تنکاکسبورت نیز مورد استفاده قرار گرفت. در نماشگر تصویر میکروسکوپی و خلاصه‌گیری کلی‌ها از منبع [6] استفاده شد.

جدول 1 نتایج آنالیز نسجی کلی‌واروکس و محاسبه سنگ‌شناسی فرمول ساختاری آن

<table>
<thead>
<tr>
<th>Sample</th>
<th>Point</th>
<th>Sample</th>
<th>Point</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reactionic Clinopyroxenes</td>
<td>Si</td>
<td>AlIV</td>
<td>AIVI</td>
</tr>
<tr>
<td>A+</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CPX zoned (A+V)</td>
<td>Si</td>
<td>AlIV</td>
<td>AIVI</td>
</tr>
<tr>
<td>CPX-Core</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CPX-Rim</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Structural formula based on the 6 Oxygens

<table>
<thead>
<tr>
<th>Sample</th>
<th>Point</th>
<th>Si</th>
<th>AlIV</th>
<th>AIVI</th>
<th>Ti</th>
<th>Cr</th>
<th>Fe2+</th>
<th>Fe3+</th>
<th>Mn</th>
<th>Mg</th>
<th>Ca</th>
<th>Na</th>
<th>K</th>
<th>Total</th>
<th>WO</th>
<th>EN</th>
<th>FS</th>
</tr>
</thead>
<tbody>
<tr>
<td>A+</td>
<td></td>
</tr>
<tr>
<td>Reactionic Clinopyroxenes</td>
<td>Si</td>
<td>AlIV</td>
<td>AIVI</td>
<td></td>
</tr>
<tr>
<td>CPX zoned (A+V)</td>
<td>Si</td>
<td>AlIV</td>
<td>AIVI</td>
<td></td>
</tr>
<tr>
<td>CPX-Core</td>
<td></td>
</tr>
<tr>
<td>CPX-Rim</td>
<td></td>
</tr>
</tbody>
</table>
جدول ۲ نتایج آنالیز نطفه‌ای امپیرون و محاسبه فرمول ساختاری آن‌ها

<table>
<thead>
<tr>
<th>Sample</th>
<th>Point</th>
<th>Si</th>
<th>Ti</th>
<th>Al IV</th>
<th>Al VI</th>
<th>Cr</th>
<th>Fe 2+</th>
<th>Fe 3+</th>
<th>Mn</th>
<th>Mg</th>
<th>Ca</th>
<th>Na</th>
<th>K</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

جدول ۲ نتایج آنالیز نطفه‌ای فلدسیت‌ها و محاسبه فرمول ساختاری آن‌ها و وجود در نوع پلاژیکلازر و نوع سایرین در این سیگها بخوبی مشخص است. چنانچه در نمایری نیز ارائه شده است در تراکی‌ای آتی‌تیه‌ی آتی‌تیه‌ی و فلدسیت‌های پتاسیم و پلاژیکلازرها محدود به زمینهٔ سیگ‌صد.

<table>
<thead>
<tr>
<th>Sample</th>
<th>Point</th>
<th>Mineral</th>
<th>SiO2</th>
<th>TiO2</th>
<th>Al2O3</th>
<th>Fe2O3</th>
<th>MnO</th>
<th>MgO</th>
<th>CaO</th>
<th>Na2O</th>
<th>K2O</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

Structural formula based on the 23 Oxygens

<table>
<thead>
<tr>
<th>Sample</th>
<th>Point</th>
<th>Si</th>
<th>Ti</th>
<th>Al IV</th>
<th>Al VI</th>
<th>Cr</th>
<th>Fe 2+</th>
<th>Fe 3+</th>
<th>Mn</th>
<th>Mg</th>
<th>Ca</th>
<th>Na</th>
<th>K</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>
جدول ۴ نتایج آنالیز نقطه‌ای میکا و محاسبه فرمول ساختاری آن‌ها

<table>
<thead>
<tr>
<th>Sample</th>
<th>Point</th>
<th>SiO₂</th>
<th>TiO₂</th>
<th>Al₂O₃</th>
<th>Cr₂O₃</th>
<th>FeO*</th>
<th>MnO</th>
<th>MgO</th>
<th>CaO</th>
<th>Na₂O</th>
<th>K₂O</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>A-7</td>
<td>۵۵</td>
<td>۷۲.۰</td>
<td>۲۵.۲</td>
<td>۸.۲</td>
<td>۳.۲</td>
<td>۴.۴</td>
<td>۵.۴</td>
<td>۲.۹</td>
<td>۵.۲</td>
<td>۶.۵</td>
<td>۷.۳</td>
<td>۴۹.۴</td>
</tr>
<tr>
<td>A-7</td>
<td>۵۳</td>
<td>۷۲.۶</td>
<td>۲۵.۱</td>
<td>۸.۲</td>
<td>۳.۲</td>
<td>۴.۴</td>
<td>۵.۴</td>
<td>۲.۹</td>
<td>۵.۲</td>
<td>۶.۵</td>
<td>۷.۳</td>
<td>۴۹.۴</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sample</th>
<th>Point</th>
<th>SiO₂</th>
<th>TiO₂</th>
<th>Al₂O₃</th>
<th>Cr₂O₃</th>
<th>FeO*</th>
<th>MnO</th>
<th>MgO</th>
<th>CaO</th>
<th>Na₂O</th>
<th>K₂O</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>A-6</td>
<td>۴۸</td>
<td>۷۲.۰</td>
<td>۲۵.۲</td>
<td>۸.۲</td>
<td>۳.۲</td>
<td>۴.۴</td>
<td>۵.۴</td>
<td>۲.۹</td>
<td>۵.۲</td>
<td>۶.۵</td>
<td>۷.۳</td>
<td>۴۹.۴</td>
</tr>
<tr>
<td>A-7</td>
<td>۴۹</td>
<td>۷۲.۶</td>
<td>۲۵.۱</td>
<td>۸.۲</td>
<td>۳.۲</td>
<td>۴.۴</td>
<td>۵.۴</td>
<td>۲.۹</td>
<td>۵.۲</td>
<td>۶.۵</td>
<td>۷.۳</td>
<td>۴۹.۴</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sample</th>
<th>Point</th>
<th>SiO₂</th>
<th>TiO₂</th>
<th>Al₂O₃</th>
<th>Cr₂O₃</th>
<th>FeO*</th>
<th>MnO</th>
<th>MgO</th>
<th>CaO</th>
<th>Na₂O</th>
<th>K₂O</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>B-7</td>
<td>۵۵</td>
<td>۷۲.۰</td>
<td>۲۵.۲</td>
<td>۸.۲</td>
<td>۳.۲</td>
<td>۴.۴</td>
<td>۵.۴</td>
<td>۲.۹</td>
<td>۵.۲</td>
<td>۶.۵</td>
<td>۷.۳</td>
<td>۴۹.۴</td>
</tr>
<tr>
<td>B-6</td>
<td>۵۳</td>
<td>۷۲.۶</td>
<td>۲۵.۱</td>
<td>۸.۲</td>
<td>۳.۲</td>
<td>۴.۴</td>
<td>۵.۴</td>
<td>۲.۹</td>
<td>۵.۲</td>
<td>۶.۵</td>
<td>۷.۳</td>
<td>۴۹.۴</td>
</tr>
</tbody>
</table>

Structured formula based on the 22 Oxygens

<table>
<thead>
<tr>
<th>Sample</th>
<th>Point</th>
<th>Si</th>
<th>Ti</th>
<th>Al</th>
<th>Cr</th>
<th>Fe²⁺</th>
<th>Fe³⁺</th>
<th>Mn</th>
<th>Mg</th>
<th>Ca</th>
<th>Na</th>
<th>K</th>
<th>Cations</th>
<th>Fe#</th>
<th>Mg#</th>
</tr>
</thead>
<tbody>
<tr>
<td>A-7</td>
<td>۵۵</td>
<td>۷۲.۰</td>
<td>۲۵.۲</td>
<td>۸.۲</td>
<td>۳.۲</td>
<td>۴.۴</td>
<td>۵.۴</td>
<td>۲.۹</td>
<td>۵.۲</td>
<td>۶.۵</td>
<td>۷.۳</td>
<td>۴۹.۴</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A-6</td>
<td>۴۸</td>
<td>۷۲.۰</td>
<td>۲۵.۲</td>
<td>۸.۲</td>
<td>۳.۲</td>
<td>۴.۴</td>
<td>۵.۴</td>
<td>۲.۹</td>
<td>۵.۲</td>
<td>۶.۵</td>
<td>۷.۳</td>
<td>۴۹.۴</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

جدول ۵ نتایج آنالیز نقطه‌ای کوارتز و محاسبه فرمول ساختاری آن‌ها نقطه ۴ و ۵ کوارتز‌های واپسین به سنگ دیواره بوده که با ماسا هنگام

عود حجم شدیدان، ولی نقطه ۱۹ نتایج آنالیز یک کوارتز مشابه شده توسط ماسا انجام گرفته است

<table>
<thead>
<tr>
<th>Sample</th>
<th>Point</th>
<th>SiO₂</th>
<th>TiO₂</th>
<th>Al₂O₃</th>
<th>Cr₂O₃</th>
<th>FeO*</th>
<th>MnO</th>
<th>MgO</th>
<th>CaO</th>
<th>Na₂O</th>
<th>K₂O</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>B-6</td>
<td>۴۹</td>
<td>۷۲.۰</td>
<td>۲۵.۲</td>
<td>۸.۲</td>
<td>۳.۲</td>
<td>۴.۴</td>
<td>۵.۴</td>
<td>۲.۹</td>
<td>۵.۲</td>
<td>۶.۵</td>
<td>۷.۳</td>
<td>۴۹.۴</td>
</tr>
<tr>
<td>B-5</td>
<td>۴۹</td>
<td>۷۲.۰</td>
<td>۲۵.۲</td>
<td>۸.۲</td>
<td>۳.۲</td>
<td>۴.۴</td>
<td>۵.۴</td>
<td>۲.۹</td>
<td>۵.۲</td>
<td>۶.۵</td>
<td>۷.۳</td>
<td>۴۹.۴</td>
</tr>
</tbody>
</table>

جدول ۶ نتایج آنالیز نقطه‌ای گلوگیت‌های پرپویان کوارتز‌های در حال واکنش و محاسبه فرمول ساختاری آن‌ها

<table>
<thead>
<tr>
<th>Sample</th>
<th>Point</th>
<th>SiO₂</th>
<th>TiO₂</th>
<th>Al₂O₃</th>
<th>Cr₂O₃</th>
<th>FeO*</th>
<th>MnO</th>
<th>MgO</th>
<th>CaO</th>
<th>Na₂O</th>
<th>K₂O</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>A-7</td>
<td>۴۸</td>
<td>۷۲.۰</td>
<td>۲۵.۲</td>
<td>۸.۲</td>
<td>۳.۲</td>
<td>۴.۴</td>
<td>۵.۴</td>
<td>۲.۹</td>
<td>۵.۲</td>
<td>۶.۵</td>
<td>۷.۳</td>
<td>۴۹.۴</td>
</tr>
<tr>
<td>A-7</td>
<td>۴۹</td>
<td>۷۲.۰</td>
<td>۲۵.۲</td>
<td>۸.۲</td>
<td>۳.۲</td>
<td>۴.۴</td>
<td>۵.۴</td>
<td>۲.۹</td>
<td>۵.۲</td>
<td>۶.۵</td>
<td>۷.۳</td>
<td>۴۹.۴</td>
</tr>
</tbody>
</table>

Structured formula based on the 3 Oxygens

<table>
<thead>
<tr>
<th>Sample</th>
<th>Point</th>
<th>Si</th>
<th>Ti</th>
<th>Al</th>
<th>Fe³⁺</th>
<th>Fe²⁺</th>
<th>Mn</th>
<th>Mg</th>
<th>Ca</th>
<th>Na</th>
<th>K</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>A-6</td>
<td>۵۵</td>
<td>۷۲.۰</td>
<td>۲۵.۲</td>
<td>۸.۲</td>
<td>۳.۲</td>
<td>۴.۴</td>
<td>۵.۴</td>
<td>۲.۹</td>
<td>۵.۲</td>
<td>۶.۵</td>
<td>۷.۳</td>
<td>۴۹.۴</td>
</tr>
<tr>
<td>A-6</td>
<td>۴۹</td>
<td>۷۲.۰</td>
<td>۲۵.۲</td>
<td>۸.۲</td>
<td>۳.۲</td>
<td>۴.۴</td>
<td>۵.۴</td>
<td>۲.۹</td>
<td>۵.۲</td>
<td>۶.۵</td>
<td>۷.۳</td>
<td>۴۹.۴</td>
</tr>
</tbody>
</table>

جدول ۷ نتایج آنالیز نقطه‌ای کلیروئی کرک و محاسبه فرمول ساختاری آن‌ها

<table>
<thead>
<tr>
<th>Sample</th>
<th>Point</th>
<th>SiO₂</th>
<th>TiO₂</th>
<th>Al₂O₃</th>
<th>Cr₂O₃</th>
<th>FeO*</th>
<th>MnO</th>
<th>MgO</th>
<th>CaO</th>
<th>Na₂O</th>
<th>K₂O</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>A-7</td>
<td>۴۸</td>
<td>۷۲.۰</td>
<td>۲۵.۲</td>
<td>۸.۲</td>
<td>۳.۲</td>
<td>۴.۴</td>
<td>۵.۴</td>
<td>۲.۹</td>
<td>۵.۲</td>
<td>۶.۵</td>
<td>۷.۳</td>
<td>۴۹.۴</td>
</tr>
<tr>
<td>A-7</td>
<td>۴۹</td>
<td>۷۲.۰</td>
<td>۲۵.۲</td>
<td>۸.۲</td>
<td>۳.۲</td>
<td>۴.۴</td>
<td>۵.۴</td>
<td>۲.۹</td>
<td>۵.۲</td>
<td>۶.۵</td>
<td>۷.۳</td>
<td>۴۹.۴</td>
</tr>
</tbody>
</table>

Structured formula based on the 32 Oxygens

<table>
<thead>
<tr>
<th>Sample</th>
<th>Point</th>
<th>Si</th>
<th>Ti</th>
<th>Al</th>
<th>Cr</th>
<th>Fe³⁺</th>
<th>Fe²⁺</th>
<th>Mn</th>
<th>Mg</th>
<th>Ca</th>
<th>Na</th>
<th>K</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>A-6</td>
<td>۵۵</td>
<td>۷۲.۰</td>
<td>۲۵.۲</td>
<td>۸.۲</td>
<td>۳.۲</td>
<td>۴.۴</td>
<td>۵.۴</td>
<td>۲.۹</td>
<td>۵.۲</td>
<td>۶.۵</td>
<td>۷.۳</td>
<td>۴۹.۴</td>
<td></td>
</tr>
<tr>
<td>A-6</td>
<td>۴۹</td>
<td>۷۲.۰</td>
<td>۲۵.۲</td>
<td>۸.۲</td>
<td>۳.۲</td>
<td>۴.۴</td>
<td>۵.۴</td>
<td>۲.۹</td>
<td>۵.۲</td>
<td>۶.۵</td>
<td>۷.۳</td>
<td>۴۹.۴</td>
<td></td>
</tr>
</tbody>
</table>

Downloaded from ijcm.ir at 12:16 +0430 on Thursday August 15th 2019
سنگ شناختی
چنانکه اشاره شد، سنگ‌های آتش‌شناختی این منطقه بیشتر شامل تراکی آندزیت بازالت، تراکی آندزیت، تراکی و توقف بوده و لیسنگ‌های تراکی آندزیتی در مقایسه با لیسنگ‌های

۵۲۶

در دیگر زمینه‌ها واقعی اولیه بوده و بیشتر مورد بررسی‌های
سنگ‌شناسی و شیمی کانی‌ها قرار گرفته‌اند. تحقیقاتی
میکروسکوپی سنگ‌های آتش‌شناختی مورد بررسی در شکل
۴ اورده شده‌اند.

شکل ۴: تصاویر میکروسکوپی سنگ‌های آتش‌شناختی مورد بررسی A، B، C و D نمای کلی در زیر میکروسکوب، و C، D و E وجود دو نوع میکا (پیتونت و
فلوگوپت) با بهره‌های کاملاً متفاوت در بررسی‌های میکروسکوپی E در شکل H و G، F، G، F و H در همان بررسی‌های اولیه، با همان
کلینوبروکسین و کلسیت‌های واکنشی برمی‌آورند که از طریق
B بمزمن‌بندی بیشتر نشان می‌دهد.
سنگ شناختی سنگ‌های آتش‌نشانی انسان شمال غرب اوراسیا

سنگ‌های تراکی اندزینی موجود در منطقه دارای ساخت توده‌ای و در برخی موارد آماده‌یونیزاسیون هستند. این سنگ‌ها در نمونه‌هایی دارای سنگ‌های روشان، صورتی‌ها و سری بوده و یافته‌های یورپی‌تی و چرایی‌های آنها به خوبی مشخص است. کانی‌های تشكل‌دهنده‌ای این سنگ‌ها بلژیکولاری، آمفیبو، الیپس‌های کریتی‌سک، کلینیتوپروکس، بلژیکولاری، پلی‌کریتی و سیلیت‌ها در منطقه‌ی این سنگ‌ها نیز به صورت قطعات درشت (با حاشیه کلینیتوپروکس) و هم به صورت بلژیکولاری در زمینه سنگ قابل مشاهده است.

شیمی کانی

بررسی شیمی‌کانی‌های موجود در سنگ‌های تراکی اندزینی نشان می‌دهد که کلینیتوپروکس‌های نوع اول (کلینیتوپروکس‌های نوع اولیه) از نوع دیوپسید و اوزیت بوده و دارای ترکیب شیمیایی بسیار نزدیک به هم هستند. بخشی از مکانیزمی‌هایی که در شرایط بلژیکولاری این سنگ‌های اولیه‌ی گرفته شده‌اند می‌تواند با دیگر سنگ‌های به‌هم‌خوانی و در منطقه‌ی ترکیب‌های سنگ‌های دوم (کلینیتوپروکس‌های حاشی، وکس) نیز دارای ترکیب دیوپسید و اوزیت‌تاند (شکل ۱).

آمپفیولی‌ها دارای منطقه‌های و در تعداد با زمینه سنگ، از نوع هاستیتگنریت غنی از منیزیتی، مگنیتوهاستیتگنریت و هورنلاند مگنیتوهاستیتگنریتی هستند. در صورتی که آمپفیولی‌های دارای حاشیه‌های سری‌زیر و به دو منطقه‌ای بیشتری و هورنلاند مگنیتوهاستیتگنریتی قرار دارند (شکل ۵). منطقه‌بندی توالی آمپفیولی‌هایی که در تعداد با زمینه‌های ترکیبی در شکل ۶ به خوبی دیده می‌شود.

انالیز نقطه‌ای فلدوپرسی‌های بنابر این سنگ‌ها وجود دو نوع سنگ‌های ساده را نشان داده و بررسی شیمی‌بلژیکولاری این سنگ‌ها دارای وجود دو گونه بلژیکولاری با ترکیب‌های لابرادوریت-آندزینی و الیگتوکولاری دارد (شکل ۵).
درشت بلورهای میکاوی نوع اول که دارای خورده‌گی خلیجی نیز هستند از نوع فلوروسیت بوده و میکاهای نوع دوم که دارای نفوذی‌هایی از کلیه‌ای کدر هستند، از نوع بیتونیت‌های (شکل 5) کانی‌های کدر موجود در بیتونیت‌ها دارای ترکیب مگنتیت-تیتانیت-تمادین اند. مقدار تراومیت در بیتونیت‌ها حدود 23% و در فلوروسیت‌ها حدود 2% است.

آنالیز نقطه‌ای کوارتزهای این سنگ‌ها (جدول 5) نشان می‌دهد که کوارتزهای موجود در زمینه (نقطه 19) از نظر ترکیب شیمیایی با نقاط دیگر کوارتز که در این حاشیه واقع شده کلینوپیریوسن و کلیسیت هستند (نقطه 2 و 5)، متغیر بوده و در دارای مقادیر بیشتر این ترکیب-کمتر است. کوارتزهای موجود در زمینه سنگ‌های مورد بررسی از نوع آدریت بوده و از نسبت ماگما به سوخت آدم‌های اند، ولی قطعات دشت کوارتز، به سگ دیواره وابستگی بوده و هنگام صورت ماگما، درون آن قرار گرفته و حمل شده‌اند.

شکل 5 موضعیت ترکیبی کلینوپیریوسن، آمفیبول، فلدسپار و میکا در تمودارهای تقسیم بنده مربوطه A: کلینوپیریوسن های اولیه به صورت گرمسار و کلینوپیریوسن های نیومن به صورت تراومیت نمایش داده اند. آمفیبول های دارای منطقه بنده و در تعادل با زمینه سنگ با علائم المرع و آمفیبول دارای خاصیت سوخته و بدون منطقه بنده با علائم دیگر نشان داده اند. تراومیت به شکلی که در این سنگ‌ها به علت مشخص است (تمودار برگرفته از 16). B: وجود دو نوع بالاپورت‌کن و دو نوع ساینیدین در این سنگ‌ها به خوبی مشخص است (تمودار برگرفته از 14). C: خلیجی از نوع فلوروسیت و میکاهای دارای نفوذی‌های از کلیه‌ای کدر از نوع بیتونیت هستند (تمودار برگرفته از 16).
سنگ زایی

به منظور بررسی دقیق تر این سنگ‌ها از نتایج آنالیز‌های شیمیایی کالی و سنگ‌ها در تیبن سنگ زایی آن‌ها استفاده شد. بررسی نسبی کلینوپروکسین‌های نوع اول و استفاده از ان در زمین فلسفه‌نگاری نشان می‌دهد که این کلینوپروکسین‌های آنالیز شده در طیف گسترده‌ای از فاصله متوسط متبلور شده‌اند. به عقیده نوسانگران مالق، کلینوپروکسین‌های نوع اول حین مصرف (نه در یک اثر متوالی و فشار تابی) که فشار رو به کاهش بوده و بخش از فلوره به وجود آمده‌اند هنگامی ترکیب کلینوپروکسین‌ها نشان می‌دهد که مکان‌های سازنده آن‌ها دارای مقدار قابل ملاحظه‌ای (حدود 50 %) از بوده است (شکل VB). برای لیک‌های طبقه‌بندی گردشی کلینوپروکسین‌ها می‌تواند به فلوره اولین نوع کلینوپروکسین‌های معرفی شده باشد. بنابراین، شکل VB به‌صورت مرحله‌ای به‌طور مفهومی می‌تواند نشان‌دهنده‌ی فلوره شکل آن را به‌صورت جغرافیایی طبیعی گسترش دهد.

شکل ۶ منطقه بندی نوسانی امپیروپل‌هایی که در تعادل با زمینه هستند بیانگر عدم وجود یک تبیلور ساده و برقراری تعادل است.

* (0.0087 * MgO) – (0.0128 * CaO) – (0.0419 * Na2O)*
* F2 = - (0.0469 * SiO2) – (0.0818 * TiO2) + (0.0212 * Al2O3) – (0.0041 * Fe2O3) – (0.1435 * MnO) + (0.0029 * MgO) – (0.0085 * CaO) – (0.016 * Na2O)*

زمین دماسنجی فلسفه‌نگاری نتایج موجود در سنگ‌های مورد بررسی نشان می‌دهد که برخی از این ها در مدت ۶۷۵ میلیون سال تا اکنون دوباره به‌صورت فلزر و به‌صورت دوم بررسی شده‌اند. شکل ۵ نشان می‌دهد که سنگ‌های فلزریوپلیسی و سنگ‌های فلزریوپلیسی از نظر نسبی کلینوپروکسین‌ها نشان دهنده‌ی فلزریوپلیسی از ساختار طبیعی به شکل VB است (شکل VR).
نمودارهای مربوط به استفاده از شیمی کاتی‌ها در بررسی های سنگ زایی بر اورد کلی فشار تیلور کلوپیروکسنس ها (A) (نمودار برگرفته از [10]), بررسی مقدار آب موجود در ماکما (B) (نمودار برگرفته از [11]), بررسی چگونگی فوگاسانگی اکسیژن ماکما (C) (نمودار برگرفته از [12]), نوع محیط زمین ساختن جهانی (D) (نمودار برگرفته از [13]), و نمودار ساختن ماکما (E) (نمودار برگرفته از [14]) با استفاده از ترکیب شیمیایی کلوپیروکسنس ها نمودار (F) مربوط به دمسنتی فلز سیاره های پناسی بوده که سیگنال وجود دو نوع سالیدن در این سنگ ها است (نمودار برگرفته از [15]).
شکل 8 نمودارهای تعیین سری ماده‌ای (A)، و محوطه زمین ساختی جهانی (B، C) با استفاده از ترکیب شیمیایی بیوتیت‌های (B، C) برگرفته از (171)، در این شکل ها بیوتیت‌ها با علامت دایره و فلوجهیت‌ها به صورت مربع نشان داده شده‌اند.

یک سنگ می‌رسد.

1- وجود دو نوع ساده‌سین، پلاژیوکلاز، میکا، آمفیبول، و کانی
2- حركت نوسانی در آمفیبول‌های با منطقه‌بندی و در تعادل با
3- زمان سنگ، و نیز فلوجهیت‌های پتاسیم که از شواهد آبی‌رود

ماکماس.

- خورشیدی خلیجی پیرامون کوارتز‌ها و فلوجهیت‌ها.
- تشکیل هاله‌ای از کلونپروفسن و کلسی‌فیت‌های اکتشی
- پیرامون کوارتز‌ها که از ورگی‌های سیاره‌های رنگ‌آمیزی و آبی‌رود

ماکماس [121].

- نتایج حاصل از دماسنتی کانی‌ها بیانگر تشکیل کانی‌های
- بکاسان در دو دما متفاوت است.

محاسبات دما- فشار دن‌گر درشت‌پلرها کلونپروفسن
لوله‌ها، میانگین دما را 900 درجه سانتی‌گراد و میانگین فشار را

11 کیلوبار نشان می‌دهد [181].

داماسنتی بیوتیت‌ها در حدود 231 دما و دماسنتی
فلوجهیت‌ها نیز دما در حدود 275 درجه سانتی‌گراد را به

دست داده است [192].

بررسی های سنگ‌شناسی و شیمی‌کانی‌ها نشان می‌دهد که

این سنگ‌ها از نیلور ساده و تغییری یک ماکماس اولیه به وجود

نیامدهای و در تشکیل آن‌ها ایجاد دو ماکماس داشته‌اند.

از مهم‌ترین نشان آن می‌توان به موارد زیر اشاره کرد:

1- تغییر کانی‌ها موجود در این سنگ‌ها که با در نظر گرفتن

اختلاف ترکیب کانی‌ها تعداد آنها به 17 نوع کانی آدنی در
جهل 8 نتایج آنالیز بدون شیمیایی سنگ‌های کلایدر و کلایدری در شرکت اوریک. نتایج آنالیز 7 نمونه اولیه که با فرآیند تهیه نمونه به‌طور همزمان الکترو می‌باشد.

اندک‌های ویژه سنگ‌های کلایدر و کلایدری در شرکت اوریک

<table>
<thead>
<tr>
<th>Sample</th>
<th>SiO$_2$</th>
<th>TiO$_2$</th>
<th>Al$_2$O$_3$</th>
<th>Fe$_2$O$_3$</th>
<th>MnO</th>
<th>MgO</th>
<th>CaO</th>
<th>Na$_2$O</th>
<th>K$_2$O</th>
<th>P$_2$O$_5$</th>
<th>LOI</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>C-4251</td>
<td>58.00</td>
<td>7.71</td>
<td>14.90</td>
<td>58.9</td>
<td>0.1</td>
<td>0.2</td>
<td>0.34</td>
<td>0.42</td>
<td>0.37</td>
<td>0.28</td>
<td>0.35</td>
<td>99.98</td>
</tr>
<tr>
<td>C-4260</td>
<td>58.20</td>
<td>15.01</td>
<td>0.6</td>
<td>55.0</td>
<td>0.4</td>
<td>0.8</td>
<td>0.38</td>
<td>0.35</td>
<td>0.27</td>
<td>0.29</td>
<td>0.36</td>
<td>99.95</td>
</tr>
<tr>
<td>C-4277</td>
<td>58.72</td>
<td>51.03</td>
<td>55.0</td>
<td>0.0</td>
<td>0.3</td>
<td>0.2</td>
<td>0.33</td>
<td>0.36</td>
<td>0.30</td>
<td>0.27</td>
<td>0.37</td>
<td>99.98</td>
</tr>
<tr>
<td>C-4299</td>
<td>59.99</td>
<td>14.01</td>
<td>0.0</td>
<td>55.0</td>
<td>0.1</td>
<td>0.3</td>
<td>0.31</td>
<td>0.36</td>
<td>0.27</td>
<td>0.27</td>
<td>0.37</td>
<td>98.92</td>
</tr>
<tr>
<td>C-4823</td>
<td>59.99</td>
<td>55.0</td>
<td>55.0</td>
<td>0.0</td>
<td>0.3</td>
<td>0.2</td>
<td>0.31</td>
<td>0.36</td>
<td>0.27</td>
<td>0.27</td>
<td>0.37</td>
<td>99.98</td>
</tr>
<tr>
<td>C-4840</td>
<td>60.50</td>
<td>55.0</td>
<td>0.0</td>
<td>55.0</td>
<td>0.1</td>
<td>0.3</td>
<td>0.31</td>
<td>0.36</td>
<td>0.27</td>
<td>0.27</td>
<td>0.37</td>
<td>99.98</td>
</tr>
<tr>
<td>C-5241</td>
<td>57.81</td>
<td>57.0</td>
<td>0.0</td>
<td>55.0</td>
<td>0.1</td>
<td>0.3</td>
<td>0.31</td>
<td>0.36</td>
<td>0.27</td>
<td>0.27</td>
<td>0.37</td>
<td>99.98</td>
</tr>
<tr>
<td>H40</td>
<td>55.0</td>
<td>40.0</td>
<td>14.01</td>
<td>55.0</td>
<td>0.1</td>
<td>0.3</td>
<td>0.31</td>
<td>0.36</td>
<td>0.27</td>
<td>0.27</td>
<td>0.37</td>
<td>99.98</td>
</tr>
<tr>
<td>H51</td>
<td>55.0</td>
<td>55.0</td>
<td>0.0</td>
<td>55.0</td>
<td>0.1</td>
<td>0.3</td>
<td>0.31</td>
<td>0.36</td>
<td>0.27</td>
<td>0.27</td>
<td>0.37</td>
<td>99.98</td>
</tr>
<tr>
<td>H54</td>
<td>55.0</td>
<td>55.0</td>
<td>0.0</td>
<td>55.0</td>
<td>0.1</td>
<td>0.3</td>
<td>0.31</td>
<td>0.36</td>
<td>0.27</td>
<td>0.27</td>
<td>0.37</td>
<td>99.98</td>
</tr>
<tr>
<td>H55</td>
<td>55.0</td>
<td>55.0</td>
<td>0.0</td>
<td>55.0</td>
<td>0.1</td>
<td>0.3</td>
<td>0.31</td>
<td>0.36</td>
<td>0.27</td>
<td>0.27</td>
<td>0.37</td>
<td>99.98</td>
</tr>
<tr>
<td>H56</td>
<td>55.0</td>
<td>55.0</td>
<td>0.0</td>
<td>55.0</td>
<td>0.1</td>
<td>0.3</td>
<td>0.31</td>
<td>0.36</td>
<td>0.27</td>
<td>0.27</td>
<td>0.37</td>
<td>99.98</td>
</tr>
<tr>
<td>H59</td>
<td>55.0</td>
<td>55.0</td>
<td>0.0</td>
<td>55.0</td>
<td>0.1</td>
<td>0.3</td>
<td>0.31</td>
<td>0.36</td>
<td>0.27</td>
<td>0.27</td>
<td>0.37</td>
<td>99.98</td>
</tr>
</tbody>
</table>
برداشت

بررسی سنگ‌شناسی و زئوپتیمیا سنگ‌های آنتفیشانی لوسن پایینی شمال شرقی روستای آرودبه نشان می‌دهد که در تشکیل آن‌ها امیزش دو ماده سه‌هم به سرایی داشته است. با در نظر گرفتن سنگ‌شناسی، شیمی کاتیون‌ها و تنوع سنگ‌شناسی در بررسی‌های صحرایی منطقه می‌توان گفت که پیش از آنتفیشانی در لوسن پایینی، یک ماده امیزشی انتزاعی آندزیتی با یک ماده آب‌ارسیک طبیعی بافت یافته و ماده‌ای حاصل از آمیزش آن‌ها درای ترکیب آندزیتی آب‌ارسیک جای گرفته است. سنگ‌های حاصل از آمیزش ماده‌ای نبردوانگ جای گرفته و نشان می‌دهد که بافت هوا به سری ماده‌ای آب‌خرس پدید آمده است.

مراجع

[21] Sato H., "Diffusion Coronas around Quartz Xenocrysts in Andesite and Basalt from Tertiary Volcanic Region in Northeastern Shikoku, Japan", Contributions to Mineralogy and Petrology 50 (1975) 49-64.