Mineralogy and origin of Permian bauxite deposits in north of Saqqez, Kordestan Province

A. Abedini1*, A. A. Calagari 2

1 - Geology Department, Faculty of Sciences, Urmia University, Urmia 57173, Iran
2 - Geology Department, Faculty of Natural Sciences, Tabriz University, Tabriz 51666, Iran.

(Received: 1/2/2009, in revised form: 7/6/2009)

Abstract: Permian bauxite deposits in north of Saqqez occurred as stratiform lenses of carbonate within Ruteh Formation. Field evidence show that these deposits formed in swampy environment in which the water table was relatively high during their evolution. According to petrographic considerations, these deposits contain ooidic, pisoidic, spastoidic, nodular, skeletal, and spongy textures and have an authigenic origin. Based on mineralogical studies, these deposits are composed of minerals of diaspore, boehmite, corundum, hematite, goethite, magnetite, rutile, anatase, montmorillonite, quartz, illite, pyrophyllite, talc, nacrite, dickite, k-feldspar, muscovite, chlorite, chloritoid, plagioclase, pyroxene, amphibole, chamosite, gypsum, calcite, and fluorite. The presence of high quantities of silicate minerals indicates immaturity and poor draining system of these deposits. Comparison of the range of stability fields of major constituent minerals of the bauxite ores with the pH and Eh variations of natural environments show that the surface waters with oxidizing-acidic nature and underground waters with reducing-basic nature played crucial roles in developing of these deposits. Combination of mineralogical and geochemical data of immobile elements indicate that Saqqez bauxite deposits were developed from alteration and weathering of basaltic-andesitic rocks.

Keywords: Bauxite, Saqqez, diaspore, boehmite, authigenic origin, weathering.

*Corresponding author, Tel.: +98 (0441) 2972134, Fax: +98 (0441) 2776707, E-mail: a.abedini@urmia.ac.ir
کانی شناسی و خاستگاه نهشتیهای پوکسیتی پرمین در شمال سقز، استان کردستان

علي عابدینی،1 علي اصغر کلاغری2

1- گروه زمین شناسی، دانشکده علوم، دانشگاه ارومیه، کدپستی 57163
2- گروه زمین شناسی دانشگاه علوم طبیعی، دانشگاه تبریز کدپستی 51666

(دریافت مقاله: 27/11/1387، نسخه نهایی: 273/8/1387)

چکیده: نهشتیهای پوکسیتی پرمین شمال سقز به شکل اندرهای چینیاکه در منطقه تحقیقات گرفته‌اند. شواهدی از حمله نهشتیهای دهان که به آن نهشتیهای در محیط مردابی تشکیل شده، به‌طوری که سطح سفره آب‌های زیرزمینی طی شکل، گنبدی آنها نسبتاً پلاک آست. بنابراین، این نهشتیهای سرچشمه‌های سدگی‌گذاری، این نهشتیهای حاوی بافت‌های اولیندی، پیژوندی، اسپاستوندی و نودورال، اسکلریت و استنفیژی بوده و از یک خاستگاه برخوردی، با توجه به بررسی‌های کمی‌شناسی، این نهشتیهای شامل کلی‌های دیاسبوز، بومه‌یک، گرودیده، روبنی و گون‌یک، سفتی‌یک، روتین، آنانیا، مونسنورولونیا، کوارترز، ایلیت، پیورفلیت، تالک، کالکولینیت، ناتورتیت، دیکیت، فلدسپار، موسکیت، کلریت، کلرینویت، پلی‌کاکت، پیرکسرن، چارک‌سری، زیبس، کلشتیت و فلوریت هستند. حضور مقداری بایل کانی‌های سیلیکاکنات، نارس بودن و سیستم زهکشی ضعیف این نهشتیه‌ها را نشان می‌دهد. مقایسه‌ی گسترده میدان پایداری کانی‌های اصلی سازنده سرانه‌ی بهبودی پوکسیتی با خاک‌های محیط‌های طبیعی نشان می‌دهد که آب‌های سطحی با ماهیت اکسیده‌ی اسیدی و آب‌های زیرزمینی با مایعی بازی-احیاء ناشنده بازی در تشکیل اندرهای سقز می‌دهند. تلفیق یافته‌های کانی‌شناسی و زنگی‌شناسی عناصر بی‌تحرک نشان می‌دهد که نهشتیهای پوکسیتی سفرز از دِگررسی و هوازدگی سَندگه‌ای بزالتی-آندزِرتی گروه‌سازی یافته‌اند.

واژه‌های کلیدی: پوکسیتی، سفرز، دِگررسی، بومه‌یک، خاستگاه برجاگاه، هوازدگی

مقدمه

منطقه مورد بررسی در ۳ کیلومتری شمال سقز، در مختصات جغرافیایی "۵۳.۱۱، ۴۲.۷۵" طول شرقی و "۱۴.۳۰، ۳۶.۲۹" عرض شمالی در بخش شمالی استان کردستان واقع شده است (شکل۱). وجود کلنی‌های اسیدی‌های پوکسیتی در منطقه کرت‌پایه پرمین باعث شده است که این منطقه از دیدگاه مورف‌شناسی به منظور بررسی و کارشناسی داخلی و خارجی قرار گیرد. بالکه و صیمانی

نویسنده مسئول، تلفن: ۲۹۷۷۱۲۱۴۲، تلفن: (۰۲۴۱) ۲۹۷۴۰۵۲، تایم: ۲۰۱۹/۰۲/۰۷، پست الکترونیکی: a.abedini@urmia.ac.ir
شکل 1 موقعیت نهشت‌های بوسکیتی در واحد‌های کرینتی پروم در شمال سفر، نتایج زمین‌شناسی صاحبزاده از [1].

زخم اثرات شیست سنگ‌زایگون شده‌اند. نتایج مشابه‌های توسط اکبرپور [2] در بررسی‌های نهشت‌های یاد شده در قلم رساله کارشناسی ارشد ح חולشده است. حزبی و همکاران [3] در تهیه نقشه زمین‌شناسی ۱:۱۰۰۰۰۰ سفر عدی‌های بوسکیتی زیادی را با ضخامت‌های غیر‌نظیه و زنگه‌های متنوع و واحد‌های کرینتی رونده شناسایی و معرفی کرده‌اند. با مورا گفترا بر کارهای انجام شده روی بوسکیت‌های منطقه سفر معلوم شد که‌ به‌طور کلی‌های پژوهشی گستره در سطح زمین‌شناسی خانگی، کلی‌شناسی، سکناساخی و ویژگی‌های زننی‌ای این نوع نهشت‌ها در صفحه‌های [0-100] تا کننگین بررسی- های گستره‌ای روی نهشت‌های بوسکیتی این منطقه انجام نشده است. در این مقاله سعی شده تا مسائل بالا مورد بررسی قرار گیرند.

روش بررسی

بررسی سنگ‌های بوسکیتی پروم در منطقه سفر در دو بخش (جدول ۱) برای بررسی‌های زئومیکروپلوگی پرده است.
جدول 1 نتایج آنالیزهای شیمیایی ICP-MS عنصر اصلی، فرعی و جزئی کانسیگه‌های بوکسیتی دوم سقر، مقدار انکسیدها و LOI درصد وزنی و مقدار عنصر جزئی بر حسب ppm استفاده شده است.

<table>
<thead>
<tr>
<th>عنصر</th>
<th>R-1</th>
<th>R-2</th>
<th>R-3</th>
<th>R-4</th>
<th>R-5</th>
<th>R-6</th>
<th>R-7</th>
<th>R-8</th>
<th>R-9</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO₂</td>
<td>12.9</td>
<td>14.1</td>
<td>14.2</td>
<td>14.5</td>
<td>14.1</td>
<td>14.3</td>
<td>14.5</td>
<td>14.7</td>
<td>14.8</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>12.4</td>
<td>11.9</td>
<td>11.8</td>
<td>12.1</td>
<td>11.9</td>
<td>12.0</td>
<td>12.1</td>
<td>12.3</td>
<td>12.4</td>
</tr>
<tr>
<td>Fe₂O₃</td>
<td>8.6</td>
<td>7.6</td>
<td>6.7</td>
<td>7.0</td>
<td>7.2</td>
<td>7.4</td>
<td>6.9</td>
<td>7.1</td>
<td>7.3</td>
</tr>
<tr>
<td>CaO</td>
<td>7.7</td>
<td>6.8</td>
<td>6.3</td>
<td>6.7</td>
<td>6.9</td>
<td>7.2</td>
<td>6.7</td>
<td>6.9</td>
<td>7.2</td>
</tr>
<tr>
<td>MgO</td>
<td>4.1</td>
<td>3.9</td>
<td>3.8</td>
<td>4.0</td>
<td>3.9</td>
<td>4.0</td>
<td>3.9</td>
<td>4.1</td>
<td>4.0</td>
</tr>
<tr>
<td>Na₂O</td>
<td>2.9</td>
<td>2.4</td>
<td>2.3</td>
<td>2.5</td>
<td>2.6</td>
<td>2.7</td>
<td>2.4</td>
<td>2.5</td>
<td>2.6</td>
</tr>
<tr>
<td>K₂O</td>
<td>3.9</td>
<td>5.0</td>
<td>4.1</td>
<td>4.4</td>
<td>4.6</td>
<td>4.9</td>
<td>4.4</td>
<td>4.6</td>
<td>4.9</td>
</tr>
<tr>
<td>SrO</td>
<td>0.1</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>BaO</td>
<td>0.1</td>
<td>0.2</td>
<td>0.3</td>
<td>0.4</td>
<td>0.5</td>
<td>0.6</td>
<td>0.4</td>
<td>0.5</td>
<td>0.6</td>
</tr>
<tr>
<td>LOI</td>
<td>9.5</td>
<td>9.3</td>
<td>9.2</td>
<td>9.4</td>
<td>9.5</td>
<td>9.7</td>
<td>9.4</td>
<td>9.6</td>
<td>9.7</td>
</tr>
<tr>
<td>Total</td>
<td>98.1</td>
<td>100.1</td>
<td>99.6</td>
<td>100.1</td>
<td>98.2</td>
<td>100.1</td>
<td>99.6</td>
<td>100.1</td>
<td>99.6</td>
</tr>
</tbody>
</table>

آتشنشانی، شیلی، ماسه‌سنگی کرانتی، آهکی قم (میوسن) و ناهشته‌های زمان ما هستند (شکل 1). در این منطقه سنگ‌های کرانتی رونه به عنوان سنگ‌های درونگر ناهشته‌های بوکسیتی بخصوص سنگ‌های آهکی دوولومینی و دوولومینی به رنگ‌های خاکستری تیره آبی رنگ دارند به‌طوری که در مکانی نقش روی می‌دهند. در این سنگ‌ها دارای گره‌های کریتی سیاه بوده و در اثر پلک‌گذاری در اثر تشکیل ساختاری وارد بر منطقه به شدت زمین‌شناسی بازترین واحد‌های سنگی کنار در شمال سقر ترک قدمی به جدید شال سرانه‌ای رولپین- توی (کریستال تو) مهاباد (بکامبیرن)، دوولومینی سلطانیه (اينفرکامبیرن)، ماسه-سنگ برآرت (کامبیرن زیرین)، شیلی- ماسه سنگی لالون (کامبیرن زیرین)، دوولومینی جریتی و آهکی میلا (کامبیرن-اردوسیین)، کرانتی رونه (پرمین میانی- بالابی)، شیلی، ماسه‌سنگی و آتشنشانی شمشک (ژوراسیک)، کرانتی.
برای انالیزهای زئوشیمیایی که با داروهای تو بر نشان داده شده بایستی به بررسی‌های فیزیشناسی انجام شده توسط حریری و همکاران [5] سرمایه‌برای این سنگ‌ها پیشنهاد شده است. برتری نهشته‌های بوسنی‌سی در این منطقه برتری عدسی شکل و به‌مدت کمتر به صورت لاچی، با دو روند کلی NW-SE و E-W در سانتی‌متر تا 10 متر در مجموع طولی باقی می‌ماند. سنگ‌های مانند سنگ‌های درون‌کوه تغییر کردها شدهاند. در بخش‌های بالایی سنگ‌های کربناتی، گاهی ماس‌سنگ‌هایی به رنگ خاکستری زرد رنگ‌های سفید سیلیسی و شیل‌های سرخ رنب متنوع مشاهده می‌شود. عدسی‌های بوسنی‌سی در این ناحیه دارای طولی غیر عادی از چند متر تا بیش از 300 متر. در بررسی‌های صحرا ظاهراً با توجه به ویژگی‌های رنگی در صحرا کانتسنگ‌های بوسنی‌سی در قسمت انتهای شمال 8 واحد کانتسنگ با رنگ‌های خاکستری رنگ بود. خاکستری تیره، رنگ قهوه‌ای تیره، زرد، صورتی، چند رنگ، بنفش و کانولون سفید دیده می‌شوند. نمک‌های اول از پایین به بالا شامل واحد‌های (1) سرخ قهوه‌ای تیره، (2) بنفش، (3) خاکستری رنگ و نمک دوم به ترتیب از پایین به بالا شامل واحد‌ها (4) سرخ قهوه‌ای

شکل 2 این کانولون نیم‌برم‌های مورد بررسی (بشكل یک مرحله شود) در نهشته‌های بوسنی‌سی سفر که در آن محل نمونه‌های برداشت شده.
کاني شناسی
جلسه بیولوژی و کاى شناسی ایران

شکل 3 تلاحم ميكروسكوپي كاسنكه‌ي بوزکسن سفت (الف) بوزکسن (ب)، بوزکسن (ج) بوزکسن سفتاندی، (د) بوزکسن نودولار، (ه) بوزکسن فکری، (و) بوزکسن كشته‌ي. (ر) تبديل شدگي بوزکسن كه به سه‌گي در اثر أيگري و آرين‌ي اهنجين و (ژ) شکستگي هاي خطي و حلقوي ناشي از تاثير نتروهاي زمين‌ساختي و انقباض زل. هم‌تهاصور در نور بارتمي و بهصورت xpl ترکم شده‌اند.

علاقه اختصاصي بهکار رفته عبارتند از: نديم، سپ، هيميتان، پيژولي و غرهک.

کاني شناسی
جلسه بیولوژی و کاى شناسی ایران

البيلهای پراش پرتو (XRD) X نشان می‌دهند که‌های تشکیل دهنده بهشت‌های بوسکستی پرمین سفر در 7 دسته کلي قابل بررسی بوده و عبارتند از: (1) هیدروکسید‌ها و اکسیدهای الومینیوم (دیسبور، بوهمیت و وگوندوم)، (2) هیدروکسید‌ها و اکسیدهای آلی (همانیت، مگنتیت و گوئنیت)، (3) اکسیدهای تبلوریوم (رولین، آنانات)، (4) سپیکتاه‌ها (مونتموریلونیت، ایلیت، پیروفلیت، تالک، کالسولینیت، ناکریت،...
جدول 2 درصد توزیع انباشت کانی‌های آزمایشگاهی آزاد، اکسیدهای تیتانیوم، آهن، دار و سیلیکات‌های در نهشت‌های پوکسیتی سقر. این درصدها بر اساس نسبت تعداد شناسایی کانی‌ها در 99 آنالیز برش‌پذیر X محاسبه شده‌اند.

<table>
<thead>
<tr>
<th>نوع تجمع</th>
<th>انباشت کانی‌ای</th>
<th>درصد فراوانی</th>
</tr>
</thead>
<tbody>
<tr>
<td>کانی‌های آلومینی آزاد</td>
<td>Boehmitic bauxite</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Boehmite-diasporic bauxite</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Diasporo-boehmatic bauxite</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Diasporic bauxite</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Diasporo-corundumic bauxite</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Corundum boehmitic bauxite</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Corundum-diasporo-boehmatic bauxite</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Corundum-diasporic bauxite</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Corundous bauxite</td>
<td>1</td>
</tr>
<tr>
<td>کانی‌های تینیتوم دار</td>
<td>Rutile bauxite</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>Anatassio-rutile bauxite</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>Chamasito-Hematitie bauxite</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Hematitio-goethitic bauxite</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Hematitic bauxite</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Goethitic bauxite</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Magnetito-hematitic goethitic bauxite</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Magnetito-chamosite-hematitic goethitic bauxite</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Hematitio-magnetitic bauxite</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Goethitio-hematitic magnetitic bauxite</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Magnetito-hematitic bauxite</td>
<td>1</td>
</tr>
<tr>
<td>کانی‌های آهن دار</td>
<td>Kaolinitic bauxite</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Kaolinito-chloritic bauxite</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Illitic bauxite</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Illito-kaolinito-chlorito-montmorillonitic bauxite</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Illito-chloritic bauxite</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Kaolinito-illitic bauxite</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Kaolinito-illito-chloritic bauxite</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Illito-kaolinito-chloritic bauxite</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Illito-kaolinito-chloritic bauxite</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Illito-kaolinito-chloritic bauxite</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Pyrophyllito-illitic bauxite</td>
<td>11</td>
</tr>
</tbody>
</table>
بحث و بررسی
مبحث تشکیل و چگونگی زندگی با توجه به شواهد صحرایی و باتفی

مبحث تشکیل این نشته‌ها احتمالاً با توجه به حضور قابل ملاحظه‌ای از مواد آلی در واحد کاتلون همراه بوده بروز نواحی سیگنتره کلاکتری و باعث تنش که نشته‌ها بازمانده این ناخود از کشور دیگر‌ها مسیر نوشتاری با سطح آب‌های زیرزمینی نسبتاً بالا بوده.

حضور بافت‌های اولیسید پیژونی‌های اپسانتوزید و گروهی دالت بر چگونگی تشکیل برخی این نشته‌ها در

قدی کاهی کاتلوی حرارت نشته‌ها به وجود آمد است

[12] آگیری و آب‌زایی انگیزه‌ای باتب طی مدت است

است [12] به ظرفیت درک می‌گردد که کوتولوین اولیه و قبیل

هسته‌ها مناسب همراه با ضعیف بودن انرژی حوضه شکل نشته‌ها، تشکیل کاتلونی‌ها در یک محدودیت آب، تغییر مداوم سطح آب‌های زیرزمینی مانع از گسترش شدت پیشنهاد

Atlantis در بایستی‌زدایی و اپسانتوزید تغییرات حداکثر از چهار محدودیت اضافه‌ها باعث شدید بافت‌های

آتیسید پیژونی‌های اولیسید و اپسانتوزید طی زمانی که به شکل نشته‌ها

[16] با توجه تشکیل کنکسیون‌های چمن گروهی و

آتیسید پیژونی‌های اولیسید و اپسانتوزید به نظر می‌رسد تغییرات آب

و هوا در طول محدودیت در ترتیب 1 درجه نسبتاً طولانی

و هوا و چگونگی انگیری‌ها غلبه در 2 20 درجه آب و هوا

کوتولوی مدت شکل و مرطوب تشکیل این نشته‌ها انجام

شده است. به‌طور محدود بودن بروز از شکستگی‌ها در هسته‌های

همانیتوپیونی‌ها به شکل‌های مانند و شعاعی و عدم نفوذ

آنها در کاتلون‌ها دلیل محیطی بروزتازه می‌باشد

الومونیتی‌ها [11] در طول موشک‌کی‌ارز کاتزینات

هست. شکستگی‌های نداشته بافت دیدن کاتلون‌ها به شکل

های خالی و شکل‌های خامه‌ای دید شده‌اند فاصله نزدیک احتمالاً در اثر نشته‌سازی وارد این نشته‌ها

بوده آمد است.

جوه ناشی‌ات از کاتلون‌های سیگنتره و پیژونی‌های

میزان اولیسید پیژونی‌های اولیسید و اپسانتوزید طی

[16] با توجه تشکیل کنکسیون‌های چمن گروهی و

آتیسید پیژونی‌های اولیسید و اپسانتوزید به نظر می‌رسد تغییرات آب

و هوا در طول محدودیت در ترتیب 1 درجه نسبتاً طولانی

و هوا و چگونگی انگیری‌ها غلبه در 2 20 درجه آب و هوا

کوتولوی مدت شکل و مرطوب تشکیل این نشته‌ها انجام

شده است. به‌طور محدود بودن بروز از شکستگی‌ها در هسته‌های

همانیتوپیونی‌ها به شکل‌های مانند و شعاعی و عدم نفوذ

آنها در کاتلون‌ها دلیل محیطی بروزتازه می‌باشد

الومونیتی‌ها [11] در طول موشک‌کی‌ارز کاتزینات

هست. شکستگی‌های نداشته بافت دیدن کاتلون‌ها به شکل

های خالی و شکل‌های خامه‌ای دید شده‌اند فاصله نزدیک احتمالاً در اثر نشته‌سازی وارد این نشته‌ها

بوده آمد است.

جوه ناشی‌ات از کاتلون‌های سیگنتره و پیژونی‌های

میزان اولیسید پیژونی‌های اولیسید و اپسانتوزید طی

[16] با توجه تشکیل کنکسیون‌های چمن گروهی و

آتیسید پیژونی‌های اولیسید و اپسانتوزید به نظر می‌رسد تغییرات آب

و هوا در طول محدودیت در ترتیب 1 درجه نسبتاً طولانی

و هوا و چگونگی انگیری‌ها غلبه در 2 20 درجه آب و هوا

کوتولوی مدت شکل و مرطوب تشکیل این نشته‌ها انجام

شده است. به‌طور محدود بودن بروز از شکستگی‌ها در هسته‌های

همانیتوپیونی‌ها به شکل‌های مانند و شعاعی و عدم نفوذ

آنها در کاتلون‌ها دلیل محیطی بروزتازه می‌باشد

الومونیتی‌ها [11] در طول موشک‌کی‌ارز کاتزینات

هست. شکستگی‌های نداشته بافت دیدن کاتلون‌ها به شکل

های خالی و شکل‌های خامه‌ای دید شده‌اند فاصله نزدیک احتمالاً در اثر نشته‌سازی وارد این نشته‌ها

بوده آمد است.

جنبه‌های زندگی کاتلوی

حضور متفاوت بالایی از کاتلوهای سیلیکات‌ها در کاتلون‌ها

پیژونی‌های اولیسید و اندر است. (Immature) پیژونی‌های سفر نزدیک تولید که از دنیار کاتلون‌های

میزان اولیسید پیژونی‌های اولیسید و اپسانتوزید به نظر می‌رسد تغییرات آب

و هوا در طول محدودیت در ترتیب 1 درجه نسبتاً طولانی

و هوا و چگونگی انگیری‌ها غلبه در 2 20 درجه آب و هوا

کوتولوی مدت شکل و مرطوب تشکیل این نشته‌ها انجام

شده است. به‌طور محدود بودن بروز از شکستگی‌ها در هسته‌های

همانیتوپیونی‌ها به شکل‌های مانند و شعاعی و عدم نفوذ

آنها در کاتلون‌ها دلیل محیطی بروزتازه می‌باشد

الومونیتی‌ها [11] در طول موشک‌کی‌ارز کاتزینات

هست. شکستگی‌های نداشته بافت دیدن کاتلون‌ها به شکل

های خالی و شکل‌های خامه‌ای دید شده‌اند فاصله نزدیک احتمالاً در اثر نشته‌سازی وارد این نشته‌ها

بوده آمد است.
رژیم‌های آتشفشانی نشان می‌دهند که بطور عمده کلیت‌هایی گوناگونی را در سطحی با کانال‌های زیر سطحی در خود بگردند که بتواند مناسب‌سازی این مشخصات را برقرار کند. این آتشفشانی‌ها با مکانیسم‌های مختلفی از جمله ناشناخته‌های دیگری که تاکنون شناخته نشده‌اند، تاثیر می‌گیرند.

akk014148678

کانالیت و خاستگاه نشته‌های پیکسینی بریمین...
مورد بررسی را تشکیل می‌دهند. با این حال با توجه به نمودار
شکل ۴ نمودار pH محیط‌های چوی طبیعی با توجه به گستره یا یادگیری کانسگ‌های [۲۴] که در آن موقعیت نهشت‌های بوسکسیتی سفر مستحکم
تشکیل کانسگ‌های کیتیز، همانند، گوتیت و شاموزی از [۸] افتخارات شده است. pH شده و مقدار Eh و pH
شکل 5 موقفیت کانسگه‌های بوسیسی نیمرخ دوم مورد بررسی در نمودار سه متغیره $\text{Al}_2\text{Si}_3\text{O}_8\text{TiO}_2$ و $\text{Fe}_2\text{Si}_2\text{O}_5\text{Fe}_2\text{O}_3$ تیپ‌های کانسگه نسبت به هم.

شکل 6 موقفیت کانسگه‌های بوسیسی نیمرخ دوم مورد بررسی در نمودار سه متغیره $\text{Al}_2\text{Si}_3\text{O}_8\text{Fe}_2\text{Si}_2\text{O}_5\text{SiO}_2$ و چگونگی قرارگیری گونه‌های کانسگه نسبت به هم.

شکل 7 موقفیت کانسگه‌های بوسیسی نیمرخ ۲ مورد بررسی در نمودار سه متغیره Al_2O_3 و Fe_2O_3, SiO_2 خاستگاه در این کار پژوهشی برای تعیین سنج مادر نهشته‌های بوسیسی سفر از دو روش زئوئپمیایی استفاده شده است. ترسیم مقادیر عناصر $\text{Cr}, \text{Ga}, \text{Zr}$ و Ga و Zr در نمودای بوسیسی مورد

بررسی هر از با مقادیر عناصر یافته گانسگه‌های بوسیسی کارستی و لاته‌ریتی در نقاط مختلف جهان [۲۷-۲۱] (جدول ۲) نشان می‌دهد که نهشته‌های بوسیسی سفر در گستره‌ای از سنج‌های مادر.
است بررسی ارتباط احتمالی این نشانه‌ها با سنگ‌های بازالتی Y و Zr, Nb, Ti با استفاده از چگونگی توزیع عناصر Y، Ti و Zr، Nb و کامل‌سازی بالای برای Y و Zr و کامل‌سازی در نیم‌برم مورد بررسی و بررسی آن‌ها، نشان می‌دهد که عناصر Y و Zr که در سنگ‌های بازالتی مانند تغییرات شیمیایی در نیم‌برم‌های هوا، از سنگ‌های مایفیک ریشه گرفته‌اند. [144] این سنجش‌ها با توجه به شتاب‌های نشانه‌های کاسارن‌هایی پایدار و شباهت را دارند و مستند به سنگ‌های کربناتی رونه مشاهده می‌شود. با توجه به این مسئله دومین روش زئوسیمپاتی که برای تعیین سنگ‌های مادر نشانه‌های بوسکیتی سفر در نظر گرفته شده‌است بررسی ارتباط احتمالی این نشانه‌ها با سنگ‌های بازالتی Y و Zr، Nb، Ti با استفاده از چگونگی توزیع عناصر Y، Ti و Zr، Nb و کامل‌سازی بالای برای Y و Zr و کامل‌سازی در نیم‌برم مورد بررسی و بررسی آن‌ها، نشان می‌دهد که عناصر Y و Zr که در سنگ‌های بازالتی مانند تغییرات شیمیایی در نیم‌برم‌های هوا، از سنگ‌های مایفیک ریشه گرفته‌اند. [144] این سنجش‌ها با توجه به شتاب‌های نشانه‌های کاسارن‌هایی پایدار و شباهت را دارند و مستند به سنگ‌های کربناتی رونه مشاهده می‌شود. با توجه به این مسئله دومین روش زئوسیمپاتی که برای تعیین سنگ‌های مادر نشانه‌های بوسکیتی سفر در نظر گرفته شده‌است.

![Diagram](attachment:diagram.png)

(a) موضعیت نیم‌برم بوسکیتی سفر و مقایسه آن با کاسارن‌های بوسکیتی کارستی و لاورتی بر اساس مقادیر Ga و Cr. Zr از 1.1 گروه (b) موضعیت کاسارن‌های بوسکیتی سفر در نمودار دو متغیره Zr/Ti-Nb/Y

شوند (پی جدول 3 مراجعت شود).
جدول ۳ مقایسه توزیع مقدارد ppm Zr و Ga

<table>
<thead>
<tr>
<th>Location</th>
<th>Zr</th>
<th>Ga</th>
<th>Cr</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ariege (France)</td>
<td>46</td>
<td>53</td>
<td></td>
<td>[27]</td>
</tr>
<tr>
<td>SE France</td>
<td>489</td>
<td>64</td>
<td>485</td>
<td></td>
</tr>
<tr>
<td>Herzegovine (Yougoslavie)</td>
<td>220</td>
<td>40</td>
<td>244</td>
<td>[28]</td>
</tr>
<tr>
<td>Obrovac (Yougoslavie)</td>
<td>140</td>
<td>20</td>
<td>90</td>
<td></td>
</tr>
<tr>
<td>Bosnie</td>
<td>214</td>
<td>46</td>
<td>280</td>
<td></td>
</tr>
<tr>
<td>Kosova</td>
<td>285</td>
<td>30</td>
<td>3500</td>
<td></td>
</tr>
<tr>
<td>Parnasse I (Jurassic) (Greece)</td>
<td>314</td>
<td>40</td>
<td>233</td>
<td>[29]</td>
</tr>
<tr>
<td>Parnasse II (Cretaceous) (Greece)</td>
<td>276</td>
<td>32</td>
<td>299</td>
<td></td>
</tr>
<tr>
<td>Mandra II (Greece)</td>
<td>590</td>
<td>30</td>
<td>2000</td>
<td></td>
</tr>
<tr>
<td>Tran (Bulgarie)</td>
<td>200</td>
<td>15</td>
<td>75</td>
<td></td>
</tr>
<tr>
<td>Padura Graiului (Romania)</td>
<td>820</td>
<td>43</td>
<td>424</td>
<td>[30]</td>
</tr>
<tr>
<td>Gant, Halimbia (Hungary)</td>
<td>400</td>
<td>40</td>
<td>250</td>
<td>[36]</td>
</tr>
<tr>
<td>Arkansas (USA)</td>
<td>1300</td>
<td>86</td>
<td>110</td>
<td></td>
</tr>
<tr>
<td>Aksoki-seydisehir (Turkey)</td>
<td>540</td>
<td>68</td>
<td>365</td>
<td></td>
</tr>
<tr>
<td>SE Guinea Bissau</td>
<td>262</td>
<td>52</td>
<td>226</td>
<td></td>
</tr>
<tr>
<td>SE Venezuela</td>
<td>425</td>
<td>51</td>
<td>245</td>
<td></td>
</tr>
<tr>
<td>Yercaud (India)</td>
<td>20</td>
<td>5</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Belguam (India)</td>
<td>400</td>
<td>30</td>
<td>350</td>
<td>[41]</td>
</tr>
<tr>
<td>Saggez (NW Iran)</td>
<td>427</td>
<td>37</td>
<td>209</td>
<td></td>
</tr>
</tbody>
</table>

برداشت

وقتی های تغییراتی مکرر در مقطع زمینی پرمی در سفر با امکان وجود رایانه ماشینی با ماهیت کسیدی- اسیدی و آب‌های زیرزمینی با ماهیت بازی- احیاء در تشکیل این نسخه‌های نشان می‌دهد که سوختگی بسیار خشک نخواهد کننده و نیاز به سطح سفره آب‌های زیرزمینی و ساز و کار اهمیت‌پذیری آن‌ها می‌باشد. این نشان‌گذاری سنجش‌شانش‌هاشان‌هندست تغییر نشته‌ها از کانی‌های گنی از آلومنیوم و آهن.
[10] Karadag M., Kupeli S., Arik F., Ayhan A., Zedef V., Doyen A., "Rare earth element (REE) geochemistry and genetic implications of the Mortas bauxite deposit (Seydisehir/Konya-southern Turkey”", Chemie der Erde-Geochemistry 69(2009), 143-159

Jane Worldwide
