پارازنت کانی‌ها، کلید تعیین شرایط فیزیکوشیمیایی و دماي اسکارن زایی، بررسی موردی منطقهی محمد آباد، جنوب غربی استان یزد

فرید مهندی، رضا شریفی
گروه زمین شناسی دانشکده علوم، دانشگاه شیراز
(دریافت مقاله: 88/5/25، درج نهایی: 88/8/9)

چکیده: بررسی‌های کانی‌شناسی و زمین شیمیایی، نشان دهنده‌ی موله‌های اصلی دگرگانی اسکارنی شدن (پیشرونه و پسرنه) در منطقه‌ی محمد آباد واقع در جنوب غربی استان یزد است. اسکارن‌های دگرگانی (محلی‌های پیشرونه) با نهشت مجموعه کانی‌های سیلیکاتی کلسیمی بدون آب (اندرادیت و دوبیسید-هدنرگیت) در دمای ۵۰-۵۵ درجه سانتی‌گراد قرار گرفته است. در محلی‌های پسرنه (دمای ۴۷ درجه سانتی‌گراد) حجم پریه‌ی از این سیلیکات‌های بدون آب، دگرگانی‌های شده و به مجموعه‌ی از کانی‌های سیلیکاتی کلسیمی آباد با کلسیم کمتر (ایبدوت و اکتینولیت - اکتینولیت) تبدیل شده و در نهایت مجموعه سیلیکات‌های کلسیمی آباد و بدون آب، دستخوش دگرگانی شده و در گسترش دما و زیر ۵۰ درجه سانتی‌گراد قرار گرفته است. در این مجموعه ریز دانه شامل کلسیت، کوارتز و کانی‌های رسی تبدیل شده‌اند. نبود ولستینت در نمونه‌های اسکارنی موله‌های آباد می‌تواند نشانگر تشکیل مجموعه‌های آندرادیت و هدنرگیت در دمای کمتر از ۵۵ درجه سانتی‌گراد باشد. حضور بهاره‌ی هم‌ساخت و نبود باتیستی در محلی‌های پیشرونه و پسرنه (۴۷ درجه سانتی‌گراد) کانی‌های کوارتز، کلسیت و مگنتین نشانگر تبدیل شده است. حضور مگنتین و بپرت یا کوارتز با کوارتز و کلسیت در مجموعه کانی‌های زیر مرجع III نشان دهنده‌ی دگرگانی کنده است.

واژه‌های کلیدی: دیورن اسکارن‌های برون اسکارن‌های دگرگانی کلسیمی پیشرونه، کلسیمی پسرنه، پیشرونه، پسرنه، پیشرونه، پسرنه

مقدمه

بررسی‌های کانی‌شناسی ابزار مهم‌ی در تشخیص و تعیین انواع اسکارن‌ها مهم است؛ همچنین کانی‌شناسی یک عامل مهم در شناخت خاستگاه اسکارن‌ها، دمای تبدیل، تکیه‌گاه‌ها، کانی‌های ارزش‌آفرین، از دست‌اندازه‌ی کانی‌های جالب، کانی‌های شیمیایی و یا ارزش‌آفرین از دست‌اندازه‌ی کانی‌های جالب، کانی‌های شیمیایی و یا ارزش‌آفرین

moore@susc.ac.ir

نویسنده مسئول، تلفن: ۰۲۱۲۳۳۰۴۴۳۴، نمایر: ۲۳۸۱۴۴۷۸۳، پست الکترونیک: moore@susc.ac.ir.

† نویسنده مسئول، تلفن: ۰۲۱۲۳۳۰۴۴۳۴، نمایر: ۲۳۸۱۴۴۷۸۳، پست الکترونیک: moore@susc.ac.ir.
آبجاهی مشتق شده و رانده شده، نیز می‌تواند در اثر رفتارهای خود سازمان ده باشد. ذخایر اسکارن به ویژه آن‌ها که از کاتی‌های دیگر گز می‌گیرند، ممکن است بی‌رقی بی‌غیره بیشتر در اقلیت می‌باشند. آن‌ها ممکن است غربالگری اوج می‌کنند این اسکارن‌ها نبینند، ولی شایع‌البلاغه حفظ شده در این ممکن است در تفسیر فایل‌های کامپیوتری و گذاره‌های پیشنهادی – پسونده درون سامان‌های اسکارنی خاص به این‌ها می‌گویند کمک‌کننده. اگرهای مشاهده شده در نمونه‌های دستی و منطقه‌ای بلواری اگرهای اسکارنی مختلف نیز در تشخیص فایل‌های کامپیوتری کامپیوتری فیزیکی یا جریان‌های انسانی به‌طور گسترده‌ای می‌باشد و به‌عنوان یک ابزار اهمیت در پیچیده‌های گسترشی اسکارن به سیستم‌های ذخایر. اگرهای از نظر شکل‌شده نمایی از ماحور پیشنهاد و پسونده نشست سطح را نشان می‌دهد. غیر از این، اگرهای اسکارنی شدن پسونده استقلال شده‌های ماکمایی است، و累积 این جمله نفوذ کرده است. پیامدهای این رخداد تکامل اسکارن مکثی در دوران سازند جمل است (شکل 2).

بحث و بررسی

اسکارن‌زایی در این منطقه در همه نمونه‌های گراین‌توده در ترسیبی‌ها و اگرهای جمال (برنامه‌ای) رخ داده است. بررسی - هایی اگرهای ماکمایی (شکل 2) و شکل‌شده جمال به مدت گذشته گراین‌توده در منطقه‌های مختلف دارای تکیپ سنجی‌ها و درونریزگر‌های داده‌های مختلف. شکل‌شده گراین‌توده‌ها مه‌دانه گراین‌توده‌ها و دارای تکیپ شکل‌شده جمال. نفوذ کرده است. پیامدهای این رخداد تکامل اسکارن مکثی در دوران سازند جمل است (شکل 2).

پیشنهاد و پیش‌بینی نمایندگان ایجاد سازند اگرهای با کار گره‌نشان، اسکارن Cu ترسیبی‌ها به دوران سازند اگرهای جمال (برنامه‌ای) شکل‌شده است. در این کار پژوهشی سعی شده است که با استفاده از مجموعه‌های کتابی تکاملی که در فایل‌های اسکارن‌زایی شرایط فیزیک‌شیمیایی و دمای تکامل اسکارن در منطقه‌های مختلف. مورد بررسی قرار گرفته‌اند.

زمین‌شناسی منطقه

مکثی‌های گراین‌تودهی در غرب مکثی استان یزد و در فاصله 60 کیلومتری جنوب غربی شهرستان یزد در گسترش گراین‌توده‌ای 0.54 0.75 طول شرقی و 30° 55° عرض شمال قرار دارد و از نظر تشکیل‌های بخشی در بخش خاک‌آبی از توابع قوم‌داری یزد واقع شده است. نمودهای آتش‌نشانی- نفوذی منطقه‌ای مورد
نمایی از توده‌های نفوذی در اثر نفوذ این توده به داخل تشکیلات آهکی جمال.

شکل ۲

شکل ۲: رده‌بندی سنتی‌های گرانتونیت‌های محمد آباد بر اساس نمودار مجموع گلیایی‌ها نسبت به سپیس [۲] گرانتن: GaBr. دیوریت: Di. گرانتن‌پورت: Gd. گرانتن قلیایی: Gr.

شکل ۳

شکل ۳: موقعیت نمونه‌های منطقه‌ای مورد بررسی در نمودار اتیرو-و-بارگار [۸].

شکل ۴

شکل ۴: موقعیت نمونه‌های منطقه‌ای مورد بررسی بر روی آن [۹].

شکل ۵: نمودار \(\text{K}_2\text{O} \) نسبت به \(\text{SiO}_2 \) و موقعیت نمونه‌های منطقه‌ای مورد بررسی بر روی آن [۹].
شکل ۷: نمودار منطقه‌ای آذرین گرانیت‌های کالسی (ECOLOGIC) نشان‌دهنده از تغییرات در درجه سیال شناخته شده‌ها در این نمودار بنا بر \(\frac{A}{CNK} \).

واکنش‌ها و مجموعه‌های کالسی تشکیل شده در اسکارنها به‌طور طبیعی به ویژگی‌های سنگهای مهاجم، ترکیب شاره‌های دَگنده، انریکه، فشار کل و رزین دمای مربوط می‌شوند. [۱۲] بررسی‌های متعددی که کاملاً مختلف اسکارن نشان می‌دهد که در این هماهنگی، از میان این رده‌ها، آب‌های محیطی در مراتب‌های پایین تا بالا کم‌افزایشی و بافت‌های شاخص مرحله‌ای مکانیکی و ا şi تشکیل شده‌اند.

فرعی سنگ‌های آذرین منطقه (جدول ۱) استفاده شد. نمودار نسبت به \(Y \) و \(Y+Nb \) هم‌پیوسته با برخورد را از گرانیت‌های درون‌ساخته و پشتی اقیانوسی، جدا می‌کند. جنگل نمودار (شکل ۸) نشان می‌دهد، VAG + Syn همه نمونه‌ها، در ناحیه گرانیت‌های \(Rb \) قرار می‌گیرند. نمودار دو متغیره \(Y+Nb \) را به‌طور متوسط گرانیت‌های هم‌پیوسته با برخورد را از گرانیت‌های کم‌انفستی کم‌یند. از طرف دیگر، جداکننده مشخص بین گرانیت‌های درون‌ساخته و اقیانوسی

در این نمودار وجود دارد. بنابراین، بر اساس نمودار (VAG), گرانیت‌های محیداند در ستاره گرانیت‌های کم‌انفستی وYa (VAG) قرار می‌گیرند (شکل ۸).
جدول 1. نتایج تجزیه‌ی شیمیایی سنگ‌هایی آذرین درونی منطقه‌ی محمدآباد (کسیدهای عنصر اصلی بر حسب درصد وزنتی و عناصر فرعی بر حسب (ppm).)

<table>
<thead>
<tr>
<th>Sample</th>
<th>PM-2</th>
<th>PM-8</th>
<th>PM-9</th>
<th>PM-17</th>
<th>PP-2</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO₂</td>
<td>77.1</td>
<td>88.2</td>
<td>89.8</td>
<td>89.89</td>
<td>75.5</td>
</tr>
<tr>
<td>TiO₂</td>
<td>0.288</td>
<td>0.233</td>
<td>0.323</td>
<td>0.355</td>
<td>0.25</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>1.14</td>
<td>1.53</td>
<td>1.16</td>
<td>1.151</td>
<td>1.464</td>
</tr>
<tr>
<td>Fe₂O₃</td>
<td>1.22</td>
<td>1</td>
<td>1.15</td>
<td>1.2</td>
<td>2.19</td>
</tr>
<tr>
<td>FeO</td>
<td>0.583</td>
<td>0.446</td>
<td>0.585</td>
<td>0.843</td>
<td>0.982</td>
</tr>
<tr>
<td>MnO</td>
<td>0.202</td>
<td></td>
<td>0.1</td>
<td>0.1</td>
<td>0.224</td>
</tr>
<tr>
<td>MgO</td>
<td>0.8</td>
<td>0.923</td>
<td>0.9</td>
<td>0.8</td>
<td>1.24</td>
</tr>
<tr>
<td>CaO</td>
<td>3.88</td>
<td>2.24</td>
<td>2.1</td>
<td>3.87</td>
<td>3.39</td>
</tr>
<tr>
<td>Na₂O</td>
<td>3.98</td>
<td>4.24</td>
<td>4.1</td>
<td>4.51</td>
<td>4.6</td>
</tr>
<tr>
<td>K₂O</td>
<td>3.25</td>
<td>4.99</td>
<td>3.28</td>
<td>3.12</td>
<td>3.62</td>
</tr>
<tr>
<td>P₂O₅</td>
<td>0.91</td>
<td>0.111</td>
<td>0.1</td>
<td>0.11</td>
<td>0.117</td>
</tr>
<tr>
<td>Total*</td>
<td>99.324</td>
<td>98.214</td>
<td>99.928</td>
<td>98.775</td>
<td>99.76</td>
</tr>
<tr>
<td>Sr</td>
<td>2.4</td>
<td>4.7</td>
<td>4.5</td>
<td>6.1</td>
<td>59</td>
</tr>
<tr>
<td>Nb</td>
<td>0.5</td>
<td>0.6</td>
<td>0.6</td>
<td>0.5</td>
<td>0</td>
</tr>
<tr>
<td>Rb</td>
<td>1.4</td>
<td>2.1</td>
<td>1.3</td>
<td>0.6</td>
<td>38</td>
</tr>
<tr>
<td>Y</td>
<td>0.4</td>
<td>0.7</td>
<td>0.9</td>
<td>0.9</td>
<td>14</td>
</tr>
<tr>
<td>Zr</td>
<td>2.5</td>
<td>2.6</td>
<td>3.1</td>
<td>1.4</td>
<td>14</td>
</tr>
</tbody>
</table>

شکل 8. موقعیت سنگ‌های آذرین منطقه‌ی محمدآباد در نمودار Y – Nb. [14]

شکل 9. نمودار نسبت‌گرایی Y + Nb بر اساس (SyN-COLG)، که در آن گستره‌ی گرانیت‌های هم‌زمان با برخورد (WPG)، گرانیت‌های درون (ORG) و گرانیت‌های پشت‌های اقیانوسی (VAG) مشخص شده است. [12]
در طول مرحله ۱ برق کردهای کربن زا هر ماه بوته است.
این واکنش‌ها به‌طور طبیعی باعث کاهش حجم و منجر به تشکیل شکستگی‌ها در سنگ‌های مزبان شده‌اند. این نوع شکستگی‌ها همراه با فشار‌های ناشی از بالا آمدن و جای‌گیری توده‌های نفوذی در سنگ‌های مزبان و گسترش شکستگی‌های ایجاد شده از شاره‌ها به عنوان راهی مناسب برای هجوم و ورود سیالات دگرنهادی کنند به درون مرمرها و سنگ‌های آهکی نا خالص عمل کردهاند. اکسانس مناسب‌سازی‌های نهایت مجموعه‌ای کانی‌ای از اندراگتی غالف (شکل ۱۰) و دی‌بی‌سی‌دی- هدنبرگیت شکل گرفته است (شکل ۱۱). نیوی و ولستونیت در این مرحله ممکن است ناشی از یاپیونبودن نسبت (Fe₂O₃ به SiO₂) به گرما باشد [۱۷].

مرحله ۲ پیشرفته‌شده
درگسیسی پیشرفته در پس‌باری از ذخایر اسکلتی رایج است [۱۸] و در برخی از ذخایر ممکن است سیلیکات‌های کلسیم بدون آب پیشرفته را کاملاً تخریب کند [۱۹]. این مرحله خود شامل دو مرحله پیشین و پسین است:

- مرحله اکسیداسیون
- اکسناسیون (مرحله II)

با پیشرفت نیروی ماگمایی محدو آب و انجام آن و قرارگیری آن در سطح ظاهری نفوذ به مقدار حجم گرماهای و فازهای غنی از مواد فرار آن افزوده شده است. درگسیسی نهایی‌گرداشته شکل ۱۰. تحلیل گفتار در زون درون اسکالت.

شکل ۱۰. تحلیل گفتار در زون درون اسکالت.

شکل ۱۱. تحلیل گفتار پیشرفته به جای است بلوهای پلاژیوکلز در زون درون اسکالت.
مرحله پسونده پسین (مرحله III)

در این مرحله حجم زیادی از سیلیکات‌های غنی از کلسیم و بدون آب تشکیل شده از مرحله II و I در اثر ورود گرمایهای با دمای پایین و فراوان آبکافت، کربنات گیاهی و سولفیدی شدن، دگرسانی شده و به مجموعه‌ای از کلسیم‌های سیلیکات‌های کلسیم‌یابدار با کلسیم کمتر (مانند اپیدوتو و ترمولیت - آکتیونیت)، اکسیدی (مگنتیت و همان)، سولفیدی (پریت و

اکسیدیت) تشکیل می‌گیرند.

Ca$_3$(Fe, Al)Si$_3$O$_{12}$+5/4O$_2$+HCO$_3$ = CaCO$_3$+Ca$_2$FeAl$_3$Si$_3$O$_{12}$(OH)$_2$+1/2Fe$_2$O$_3$

واکنش (1)

ژامباتیت اپیدوتو کلسیت

در این مرحله احتمالاً در اثر دگرسانی کلسیم‌یابورکسنسا حالت گرفته است (شکل 12). واکنش احتمالی به صورت زیر است:

5Ca (Mg, Fe)$_5$Si$_8$O$_{22}$+2H$_2$O+3CO$_2$ = Ca$_2$(Mg, Fe)$_5$Si$_8$O$_{22}$(OH)$_2$+3CaCO$_3$+2SiO$_2$

واکنش (2)

کوارتز - کلسیت - ترمولیت - آکتیونیت

در طول این مرحله، سیلیکات‌های کلسیم آبادار و بدون آب تشکیل شده در مرحله قبلی اسکارن‌زایی، در اثر شاره‌های با دمای نسبتاً پایین، دستخوش دگرسانی شده و به مجموعه‌ای رز داشته شامل کلسیت، کلسیت، کوارتز و کانی‌های رسی تبدیل شده (شکل 14). تشکیل کلسیت، کلسیت و کوارتز از اپیدوتو و ترمولیت تشکیل می‌گیرد.

برای تبدیل کامل گزارنده اپیدوتو در مرحله III
کانترایی
بررسی‌های کاتی شناسی و بافتی نشان می‌دهد که هیچ، و یا مقدار ناجی از کانئی‌های اصلی مورد شناسایی در طول مرحله I در سنگ‌های مرمر و اهدی تشكیل شده است. شواهد بافتی مانند ناهمرشدی و تواره‌ای بلوی بی‌جانشنی بین کانئی‌های تبره و سیلیکاته‌های کلسیم بدون آب، نشان می‌دهد که کانئی‌های نشان در مرحله ۱ در مراحل کلسیم‌بدون‌اب چسبند. همگونی نشان‌هایی در بافت‌های گیاه‌پذیری بین کانئی‌های تبره و سیلیکاته‌های کلسیم بدون آب و بافت‌های پاتون‌آبی (کلسیم‌بدون ابر و بین‌ریزه‌ای) از نظر فضاهای داخلی در سنگ‌های بدون سیلیکاته‌های کلسیم بدون آب (شکل ۱۵) و در هرم‌ریزه‌های بین کانئی‌های تبره و سیلیکاته‌های کلسیم آبریز (پاتون‌آبی، ترمولیت – اکوتونولیت) گواهی این است که کانئی‌های تبره و سیلیکاته‌های کلسیم آبریز در طول مرحله‌ی دگرسانی سپروده پیشین نشان گرفته‌اند (مرحله‌های III).

در مراحل دگرگردانده شده‌های حاوی فعالیت با و حالت نسبتاً اکستنده، بافت و ریزه‌ای کانئی‌های Fe و کستره سیلیکاته‌های کلسیم بدون آب غی در شوند[۲۲] و آندرادیت که یکی از سیلیکاته‌های کلسیم بدون آب اصلی در پیش‌تر ذکر در این راستا تشریح شد، در منطقهٔ محمد آباد بیروکس نیز همراه با گزاره در زون‌های اسکارنی به‌عنوان یکی از سیلیکاته‌های کلسیم بدون آب در مرحله‌ی پیش‌روده اسکارون‌زایی تشریح شده است.

9 CaFeSi2O6 + O2 = 3 CaFe2Si3O12 + Fe3O4 + 9 SiO2

گستره‌ای پایدار آن دو دانی که توجه به دما و فعالیت‌های

کانئی‌های در نمونه‌های (شکل ۱۸) در فشار ۲ کیلو

بار ناه می‌دانه است. نیود و وضع‌تیمی در نمونه‌های اسکارنی

محمداً می‌توانند شکل‌های مجموعه‌ای آنردادیت و

هیدرگیت در دمای کمتر از ۵۵ درجه سانتی‌گراد باشد

(شکل ۱۹). همچنین، هیرموندی و نیود بافت چسبندی در

آنردادیت و بیروکس در اسکارنی محمداً معنی‌دار نشانه‌ی

تشکیل هیمراه آن‌ها در شکل ۱۹ (۰.۵۰ - ۳.۰۰ و

fO2 (شکل ۱۹).
شکل ۱۶ پاراژنت گارنت، کلسبیت و بیروکس در زون برون اسکارن.

شکل ۱۵ رشد مکننیت در فضاهای پایین‌تر کانی‌های بدون آب مرحله‌بندی می‌شود.

شکل ۱۷ گستره‌ی پایداری کانی‌های اسکارن در سیستم Ca-Fe-Si-O در ارتباط با فشار مولر اکسیژن و دما، در فشار ۲ کیلوپیو در. مکننیت - همانیت - کوارتز - سیدریت - Wol - ستونیت [۲۴].

شکل ۱۸ نمایشی از گستره‌ی پایداری اندرادیت و هدنبرگیت در نمودار T-fO2 در فشار ۲ کیلوپیو [۲۵].
شکل 19 نمودار Log fO₂ در دمای 25°C و 450°C به مجموعه کالیسیک کوارتز کلسیت و fO₂<24% به مجموعه کوارتز-کلسیت-همانبتی تبدیل می‌شود (شکل 19). در دمای 460°C شاره‌هایی که با توده نفوذی به تعادل رسیده‌اند ممکن است با مجموعه سیلیکات‌های کلسیم بدون آب در تعادل باشد (مرحله II) در دمای 460°C شاره‌های در تعادل با توده نفوذی، نمی‌تواند با مجموعه‌های سیلیکات کلسیم بدون آب در تعادل چندین باشد و احتمالاً با شروع دگرگشت پرونده مجموعه‌های سیلیکات کلسیم بدون آب در کوارتز، پیبرت و کانی‌های کربنات‌دانگرسانی می‌شود (شکل 2) در این مرحله شاره‌های دگرخیز کندن مدل شده با XCO₂=0.1 و fO₂<10⁻⁷ به مجموعه کالیسیک تقلیدی شده جدید، شیلد دارای Ca²⁺ به ترتیب از سیلیکات-های کلسیم آنیوئی شده و باعث تشكل برخی کانی‌های کربناتی می‌شوند. در دمای 440°C حاوی در شرایط سولفیدی بالا، و در دمای 430°C حاوی در شرایط سولفیدی بالا، و در دمای 420°C حاوی در شرایط سولفیدی بالا، و در دمای 410°C حاوی در شرایط سولفیدی بالا، و در دمای 400°C حاوی در شرایط سولفیدی بالا، و در دمای 390°C حاوی در شرایط سولفیدی بالا، و در دمای 380°C حاوی در شرایط سولفیدی بالا، و در دمای 370°C حاوی در شرایط سولفیدی بالا، و در دمای 360°C حاوی در شرایط سولفیدی بالا، و در دمای 350°C حاوی در شرایط سولفیدی بالا، و در دمای 340°C حاوی در شرایط سولفیدی بالا، و در دمای 330°C حاوی در شرایط سولفیدی بالا، و در دمای 320°C حاوی در شرایط سولفیدی بالا، و در دمای 310°C حاوی در شرایط سولفیدی بالا، و در دمای 300°C حاوی در شرایط سولفیدی بالا، و در دمای 290°C حاوی در شرایط سولفیدی بالا، و در دمای 280°C حاوی در شرایط سولفیدی بالا، و در دمای 270°C حاوی در شرایط سولفیدی بالا، و در دمای 260°C حاوی در شرایط سولفیدی بالا، و در دمای 250°C حاوی در شرایط سولفیدی بالا، و در دمای 240°C حاوی در شرایط سولفیدی بالا، و در دمای 230°C حاوی در شرایط سولفیدی بالا، و در دمای 220°C حاوی در شرایط سولفیدی بالا، و در دمای 210°C حاوی در شرایط سولفیدی بالا، و در دمای 200°C حاوی در شرایط سولفیدی بالا، و در دمای 190°C حاوی در شرایط سولفیدی بالا، و در دمای 180°C حاوی در شرایط سولفیدی بالا، و در دمای 170°C حاوی در شرایط سولفیدی بالا، و در دمای 160°C حاوی در شرایط سولفیدی بالا، و در دمای 150°C حاوی در شرایط سولفیدی بالا، و در دمای 140°C حاوی در شرایط سولفیدی بالا، و در دمای 130°C حاوی در شرایط سولفیدی بالا، و در دمای 120°C حاوی در شرایط سولفیدی بالا، و در دمای 110°C حاوی در شرایط سولفیدی بالا، و در دمای 100°C حاوی در شرایط سولفیدی بالا، و در دمای 90°C حاوی در شرایط سولفیدی بالا، و در دمای 80°C حاوی در شرایط سولفیدی بالا، و در دمای 70°C حاوی در شرایط سولفیدی بالا، و در دمای 60°C حاوی در شرایط سولفیدی بالا، و در دمای 50°C حاوی در شرایط سولفیدی بالا، و در دمای 40°C حاوی در شرایط سولفیدی بالا، و در دمای 30°C حاوی در شرایط سولفیدی بالا، و در دمای 20°C حاوی در شرایط سولفیدی بالا، و در دمای 10°C حاوی در شرایط سولفیدی بالا، و در دمای 0°C حاوی در شرایط سولفیدی بالا، و در دمای -10°C حاوی در شرایط سولفیدی بالا، و در دمای -20°C حاوی در شرایط سولفیدی بالا، و در دمای -30°C حاوی در شرایط سولفیدی بالا، و در دمای -40°C حاوی در شرایط سولفیدی بالا، و در دمای -50°C حاوی در شرایط سولفیدی بالا.
نمودار دو متغیره $\log f\text{O}_2$ و $\log f\text{S}_2$ نسبت به T در گستره پایداری آندرادیت در دمای $420^\circ C$ و $400^\circ C$.

اسبانه محمدرضا اباد، زیر ناپایداری در آندرادیت و پیروکسن در اسكاتریوم نیاز به درک دگرگونی ایزوپتریک و دگرگونی حاصل در بالا نیز در سنگ میزانی شده و سپس تشکیل مربوطه کلسیمی و اسکاتریوم هورتوبریلی در آنها شده است. در این مرحله کانی-های دیده (اسکاتریوم و واتردها) تشکیل نشده و در دسته‌ای از کانی‌های سپیکات کلسیم بدون آب (گارتن و پیروکسن) فقیر از آهن تشکیل شده‌اند (شکل 22).
بدون آب در دماهای ۴۰۰-۵۰۰°C شده است. در این مرحله، کاکسیت دما و مصرف آبیون در اثر آبکافته کلیه‌های سیلیکات کلسیم و آب باعث ناپایداری کمیکس‌های بیشتر کلرید آهن شده و سپس نهشت کانی‌های آکسدی (مکنتیت) و سولفیدی (بیوکسید و کالکوبیسیدی) شده است. کاکسیت و پیروکسین به فازهای کانی‌ای با دمای بایین، شامل سیلیکات کلسیم آبیار با کلسیم کمتر (ایپیدوت و ترمولیت - اکتیولیت)، کلسیت، کاکسیت و کالی‌های تبر، تبدیل شده‌اند (شکل ۲۲).

مرحله IV

در اثر دگرسانی پس از تاکید، سیلیکات‌های کلسیم آبیار و بدون آب تکیه شده در مراحل قبلی اسکاری زایی در اثر آبیون‌های با دمای دویپین و/or به دست انجام دستخوش کلسیم‌های ماده تشکیل کلریت، کلسیت، کاکسیت را و همانندی به‌طوری که در راستای تشکیل‌های پیوستگی کلریت، کلسیت، کاکسیت و سیلیکات‌های ترکیبی شامل دگرسانی کلسیم‌های آبیار (گونیت و لیموخان)

و گرینت‌های آن (مالاکیت و آزوریت) نهشت شده‌اند.

مراجع
