شواهد سنگ‌شناختی و زئوشیمیایی رستیت در گرانیت آناتکسی شیرکو.

جنوب غرب یزد

مريم شهبي، د. داروی اسماعیلی

1-دانشکده علوم زمین، دانشگاه صنعتی شهید رجایی
2-دانشکده مهندسی معدنی و مهندسی زیستی، دانشگاه تهران

(دریافت مقاله: 1388/5/19، نسخه نهایی: 1388/9/18)

چکیده: با تولید گرانیت‌های نوع S شیرکو یزد از سه واحد اصلی گروه‌های بانورپرت، مزنتورپرت و لوکورپرت تشکیل شده است. جدایی کانی‌های رستیتی از مذاب ابتداکی که با تولید جدایی ادامه یافته است از مهم‌ترین عوامل تولید رکومی مشاهده شده. در باولیتی محسوب می‌شود، انبوه‌هایی از گروه‌های کوچک با محتوای بالاتری از Mg (MgO 50%) و مراکز یک‌نواخت و کلیک‌سیک پلاژیوکلار، از مهم‌ترین رستیت‌های شناخته شده در بخش‌های مافیک تر گرانیت شیرکو یزد است. بر علاوه زیسته، آبی ویژه و موانیت، نیز به موارد اصلی این امر می‌تواند به عنوان رستیت در نظر گرفته شود. شواهد زئوشیمیایی نیز همانند بررسی‌های سایر کشورها حضور این کانی‌های رستیتی را تایید می‌کنند. بر اساس این شواهد به نظر می‌رسد گرانیت شیرکو از آناتکسی پوستها بالایی و اصولاً از طریق واکنش‌های شکست، بی‌پروکسیمی تشکیل شده است.

واژه‌های کلیدی: رستیت، آناتکسی گرانیت، نوع S، زئوشیمی، شیرکو.

مقدمه

در سیلیت‌های جدایی‌گرایی از گروه‌های نازک، بی‌پروکسیمی شده در نمودارهای تغییرات عناصر به مدل عدم اختلاف رستیتی نسبت داده شده است. [1] این مدل که اولین بار توسط [2] ارائه شده است. بنابراین، در بازیابی جدایی کانی‌های باقی مانده از مذاب ابتداکی است و عنصر اختلاف و تغییرات در نظر گرفته می‌شود. در گروه‌های نازک در نظر گرفته می‌شود، بر اساس این نظریه که بین یوزه‌گران متفاوت وجود دارد ولی تا حال کاربرد زیادی داشته است. اگرچه سیلیت‌های پروکسیمی در نظر گرفته شود، این رستیت در سنگ‌های گرانیتی با نوع S موسوم به رستیت اکثراً گرانیت‌های خیلی باریک و دارای بافت نازک در نظر گرفته می‌شود. در تدریجی می‌شود بر اساس راستیتی ریج در گرانیت- های نوع S اساساً شکل قطعات بلورهای مافیک، پلاژیوکلار و سایر شکل‌های شیمیایی همک Ÿ ۴۱. مرتضی شهپور، د. داروی اسماعیلی

marysheibi@khayam.ut.ac.ir

نوبت‌نامه مسئول: تلفن: تابعه: 7328100000 (پست الکترونیکی: 2016) 1409/2020
مقاله انواع رسته‌های موجود در گرانیت‌های آنتانسی نوع S دریگنار، کردریت، بونتیت‌های حاوی ادخال‌های سیلیمانیت و زبرگنی مورونی هستند [برای مثال: 1]. بار نظر [2] هجیک از این شواهد نمی‌توانند رسته‌بندی یک راست برای پایدار در برنگردانند. دارای منطقه‌پذیری بیش از ماکزیمکس، برموزه‌های رسوبی

در این نمودار بازی‌های اولیه گروه‌بندی شیرکوه با سن زوراسیک میلی درون بلک بر از خروجی ایران مرکز مشکل شده است (شکل 1). به‌طور کلی این گرنبیت از سه اصلی گرانیت‌های تحت‌البوم، مونوگنیتی و گوگلیت‌های تشکیل شده است. این سنگ‌های جهنمی بافت که میان دانه بوده و از نظر کانی‌نشینی اساساً از کورنتز، فلسفید پتاسیت و بلاروزیک تاش شده‌اند شهادت. سنگ‌های گرنبیتی شیرکوه در دو حاشیه شمالی و غربی بازی‌های گسترش داده. در حاشیه شمالی گرانیت‌های اواخره کبریتهای نابینا -شمک را گرنبیت‌های شیرکوه، و در حاشیه شمالی و غربی کبریتهای نابینا -شمک را گرنبیت‌های شیرکوه، و در حاشیه شمالی و غربی کبریتهای نابینا -شمک را گرنبیت‌های شیرکوه، و در حاشیه شمالی و غربی کبریتهای نابینا -شمک را گرنبیت‌های شیرکوه، و در حاشیه شمالی و غربی کبریتهای نابینا -شمک را گرنبیت‌های شیرکوه، و در حاشیه شمالی و غربی کبریتهای نابینا -شمک را گرنبیت‌های شیرکوه، و در حاشیه شمالی و غربی کبریتهای نابینا -شمک را گرنبیت‌های شیرکوه، و در حاشیه شمالی و غربی کبریتهای نابینا -شمک را گرنبیت‌های شیرکوه، و در حاشیه شمالی و غربی کبریتهای نابینا -شمک را گرنبیت‌های شیرکوه، و در حاشیه شمالی و غربی کبریتهای نابینا -شمک را گرنبیت‌های شیرکوه، و در حاشیه شمالی و غربی کبریتهای نابینا -شمک را گرنبیت‌های شیرکوه، و در حاشیه شمالی و غربی کبریتهای نابینا -شمک را گرنبیت‌های شیرکوه، و در حاشیه شمالی و غربی کبریتهای نابینا -شمک را گرنبیت‌های شیرکوه، و در حاشیه شمالی و غربی کبریتهای نابینا -شمک را گرنبیت‌های شیرکوه، و در حاشیه شمالی و غربی کبریتهای نابینا -شمک را گرنبیت‌های شیرکوه، و در حاشیه شمالی و غربی کبریتهای نابینا -شمک را گرنبیت‌های شیرکوه، و در حاشیه شمالی و غربی کبریتهای نابینا -شمک را گرنبیت‌های شیرکوه، و در حاشیه شمالی و غربی کبریتهای نابینا -شمک را گرنبیت‌های شیرکوه، و در حاشیه شمالی و غربی کبریتهای نابینا -شمک را گرنبیت‌های شیرکوه، و در حاشیه شمالی و غربی کبریتهای نابینا -شمک را گرنبیت‌های شیرکوه، و در حاشیه شمالی و غربی کبریتهای نابینا -شمک را گرنبیت‌های شیرکوه، و در حاشیه شمالی و غربی کبریتهای نابینا -شمک را گرنبیت‌های شیرکوه، و در حاشیه شمالی و غربی کبریتهای نابینا -شمک را گرنبیت‌های شیرکوه، و در حاشیه شمالی و غربی کبریتهای نابینا -شمک را گرنبیت‌های شیرکوه، و در حاشیه شمالی و غربی کبریتهای نابینا -شمک را گرنبیت‌های شیرکوه، و در حاشیه شمالی و غربی کبریتهای نابینا -شمک را گرنبیت‌های شیرکوه، و در حاشیه شمالی و غربی کبریتهای نابینا -شمک را گرنبیت‌های شیرکوه، و در حاشیه شمالی و غربی کبریتهای نابینا -شمک را گرنبیت‌های شیرکوه، و در حاشیه شمالی و غربی کبریتهای نابینا -شمک را گرنبیت‌های شیرکوه، و در حاشیه شمالی و غربی کبریتهای نابینا -شمک را گرنبیت‌های شیرکوه، و در حاشیه شمالی و غربی کبریتهای نابینا -شمک را گرنبیت‌های شیرکوه، و در حاشیه شمالی و غربی کبریتهای نابینا -شمک را گرنبیت‌های شیرکوه، و در حاشیه شمالی و غربی کبریتهای نابینا -شمک را گرنبیت‌های شیرکوه، و در حاشیه شمالی و غربی کبریتهای نابینا -شمک را گرنبیت‌های شیرکوه، و در حاشیه شمالی و غربی کبریتهای نابینا -شمک را گرنبیت‌های شیرکوه، و در حاشیه شمالی و غربی کبریتهای نابینا -شمک را گرنبیت‌های شیرکوه، و در حاشیه شمالی و غربی کبریتهای نابینا -شمک را گرنبیت‌های شیرکوه، و در حاشیه شمالی و غربی کبریتهای نابینا -شمک را گرنبیت‌های شیرکوه، و در حاشیه شمالی و غربی کبریتهای نابینا -شمک را گرنبیت‌های شیرکوه، و در حاشیه شمالی و غربی کبریتهای نابینا -شمک را گرنبیت‌های شیرکوه، و در حاشیه شمالی و غربی کبریتهای نابینا -شمک را گرنبیت‌های شیرکوه، و در حاشیه شمالی و غربی کبریتهای نابینا -شمک را گرنبیت‌های شیرکوه، و در حاشیه شمالی و غربی کبریتهای نابینا -شمک را گرنبیت‌های شیرکوه، و در حاشیه شمالی و غربی کبریتهای نابینا -شمک را گرنبیت‌های شیرکوه، و در حاشیه شمالی و غربی کبریتهای نابینا -شمک را گرنبیت‌های شیرکوه، و در حاشیه شمالی و غربی کبریتهای نابینا -شمک را گرنبیت‌های شیرکوه، و در حاشیه شمالی و غربی کبریتهای NQ

شکل: نقشه زمین‌شناسی بازی‌های گرانیت‌های شیرکوه (برگرفته از نقشه زمین‌شناسی 1/100000) 136

شیب، اسنادی
و احد گراندیونی با گسترشی در حدود ۵۰ کیلومتر مربع
در حاشیه شمالی بارونی قرار گرفته است و از آبادیه به
ستم غرب مشهود شده است (شكل 1). پلاژیوکلازها (۲۵
تای (دوز ۱)، کوارتز (۲۶)، بهصورت درشت پلیکایی با
مقادیر کمتر فلزگیری پتاسیم (۱۶) همراه شده.
پلیکایی با فرسایشی ۲۰ تا ۱۰ هزار میلیارد کانی مایک
تشکیل دهنده این واحد است که به دو صورت پلیکایی و
هایی در شریان آن را تشکیل می‌دهد. برونزه‌های
سومیکانه با قطعی بیش از ۱۱سلطیم، خطرافی
ترجیح و باتی لیسولیستی نشان داده و ناسا از پلیکایی
کاریست. موسکوتی و سیلیمات با مقادیر کمتر کوارتز و
فلزگیری تحقیق بیش از حد با هم شده.
و احد گراندیونی گسترشی در حدود ۵۰ کیلومتر مربع
در حاشیه شمالی بارونی قرار گرفته است و از آبادیه به
ستم غرب مشهود شده است (شكل 1). پلاژیوکلازها (۲۵
تای (دوز ۱)، کوارتز (۲۶)، بهصورت درشت پلیکایی با
مقادیر کمتر فلزگیری پتاسیم (۱۶) همراه شده.
پلیکایی با فرسایشی ۲۰ تا ۱۰ هزار میلیارد کانی مایک
تشکیل دهنده این واحد است که به دو صورت پلیکایی و
هایی در شریان آن را تشکیل می‌دهد. برونزه‌های
سومیکانه با قطعی بیش از ۱۱سلطیم، خطرافی
ترجیح و باتی لیسولیستی نشان داده و ناسا از پلیکایی
کاریست. موسکوتی و سیلیمات با مقادیر کمتر کوارتز و
فلزگیری تحقیق بیش از حد با هم شده.
و احد گراندیونی گسترشی در حدود ۵۰ کیلومتر مربع
در حاشیه شمالی بارونی قرار گرفته است و از آبادیه به
ستم غرب مشهود شده است (شكل 1). پلاژیوکلازها (۲۵
تای (دوز ۱)، کوارتز (۲۶)، بهصورت درشت پلیکایی با
مقادیر کمتر فلزگیری پتاسیم (۱۶) همراه شده.
پلیکایی با فرسایشی ۲۰ تا ۱۰ هزار میلیارد کانی مایک
تشکیل دهنده این واحد است که به دو صورت پلیکایی و
هایی در شریان آن را تشکیل می‌دهد. برونزه‌های
سومیکانه با قطعی بیش از ۱۱سلطیم، خطرافی
ترجیح و باتی لیسولیستی نشان داده و ناسا از پلیکایی
کاریست. موسکوتی و سیلیمات با مقادیر کمتر کوارتز و
فلزگیری تحقیق بیش از حد با هم شده.
و احد گراندیونی گسترشی در حدود ۵۰ کیلومتر مربع
در حاشیه شمالی بارونی قرار گرفته است و از آبادیه به
ستم غرب مشهود شده است (شكل 1). پلاژیوکلازها (۲۵
تای (دوز ۱)، کوارتز (۲۶)، بهصورت درشت پلیکایی با
مقادیر کمتر فلزگیری پتاسیم (۱۶) همراه شده.
پلیکایی با فرسایشی ۲۰ تا ۱۰ هزار میلیارد کانی مایک
تشکیل دهنده این واحد است که به دو صورت پلیکایی و
هایی در شریان آن را تشکیل می‌دهد. برونزه‌های
سومیکانه با قطعی بیش از ۱۱سلطیم، خطرافی
ترجیح و باتی لیسولیستی نشان داده و ناسا از پلیکایی
کاریست. موسکوتی و سیلیمات با مقادیر کمتر کوارتز و
فلزگیری تحقیق بیش از حد با هم شده.
و احد گراندیونی گسترشی در حدود ۵۰ کیلومتر مربع
در حاشیه شمالی بارونی قرار گرفته است و از آبادیه به
ستم غرب مشهود شده است (شكل 1). پلاژیوکلازها (۲۵
تای (دوز ۱)، کوارتز (۲۶)، بهصورت درشت پلیکایی با
مقادیر کمتر فلزگیری پتاسیم (۱۶) همراه شده.
پلیکایی با فرسایشی ۲۰ تا ۱۰ هزار میلیارد کانی مایک
تشکیل دهنده این واحد است که به دو صورت پلیکایی و
هایی در شریان آن را تشکیل می‌دهد. برونزه‌های
سومیکانه با قطعی بیش از ۱۱سلطیم، خطرافی
ترجیح و باتی لیسولیستی نشان داده و ناسا از پلیکایی
کاریست. موسکوتی و سیلیمات با مقادیر کمتر کوارتز و
فلزگیری تحقیق بیش از حد با هم شده.
و احد گراندیونی گسترشی در حدود ۵۰ کیلومتر مربع
در حاشیه شمالی بارونی قرار گرفته است و از آبادیه به
ستم غرب مشهود شده است (شكل 1). پلاژیوکلازها (۲۵
تای (دوز ۱)، کوارتز (۲۶)، بهصورت درشت پلیکایی با
مقادیر کمتر فلزگیری پتاسیم (۱۶) همراه شده.
پلیکایی با فرسایشی ۲۰ تا ۱۰ هزار میلیارد کانی مایک
تشکیل دهنده این واحد است که به دو صورت پلیکایی و
هایی در شریان آن را تشکیل می‌دهد. برونزه‌های
سومیکانه با قطعی بیش از ۱۱سلطیم، خطرافی
ترجیح و باتی لیسولیستی نشان داده و ناسا از پلیکایی
کاریست. موسکوتی و سیلیمات با مقادیر کمتر کوارتز و
فلزگیری تحقیق بیش از حد با هم شده.
شکل ۳ مجموعه‌ای از کلیه‌های رستینی مختلف که در بخش‌های مختلف بانایتی-گرانتونی و نیز در دانه‌های دیگر مشاهده شده است. (آ) بیشتر رستینی بزرگ و تجمع بیشتری‌ها در کوکه. (ب) مجموعه بیشتری سیلیمانیت که به نظر می‌رسد بخش‌های دیگر گذار باقی مانده و رستینی هستند. (پ) کریزیت نسبتاً سالم و (ر) کریزیت دیگرانش به مجموعه‌ای از کلریت و موسکوانیت و ریسانتینی مشابه مشاهده می‌شود.

شکل ۴. روشنایی انیم‌ها در آنالیز‌های اشکال‌بندی به‌کارگیری قطعات الکترونی از سیلیکا (تناسیک) و رایسار. شکل (آ) و (پ) تکامل‌های الکترونی از سیلیکا (تناسیک) و رایسار در دانه‌های دیگر مشاهده می‌شود.

شکل ۵. روشنایی انیم‌ها در آنالیز‌های اشکال‌بندی به‌کارگیری قطعات الکترونی از سیلیکا (تناسیک) و رایسار. شکل (آ) و (پ) تکامل‌های الکترونی از سیلیکا (تناسیک) و رایسار در دانه‌های دیگر مشاهده می‌شود.

شکل ۶. روشنایی انیم‌ها در آنالیز‌های اشکال‌بندی به‌کارگیری قطعات الکترونی از سیلیکا (تناسیک) و رایسار. شکل (آ) و (پ) تکامل‌های الکترونی از سیلیکا (تناسیک) و رایsar در دانه‌های دیگر مشاهده می‌شود.

واحد لیگورتینیتی با زئوس سفید و نیود سیلیمری نادری است. (ک) لیگورتینیتی با زئوس سفید و نیود سیلیمری نادری است.

زئوس نتیجه عناصر اصلی و کیمیایی آنالیز‌های اشکال‌بندی در «زمین‌شناسی زئوسی» مرکز تحقیقات پتروگرافی و زئوسی و ناحیه فرانسه با استفاده از ICP-AES روش آنالیز‌های اشکال‌بندی با استفاده از یک‌پیکت و دستگاه ICP-MS در دانه‌گاه پل ساینتی فرانسه آنالیز
می‌یابد. گراندبوریت‌ها بالاترین محتوای CaO، Al₂O₃، Fe₂O₃، MnO، MgO، TiO₂، P₂O₅ و موادهای ترکیبی حدودی بین Na₂O و K₂O بالاترین این واگردانی‌ها ترکیبی حدودی بین CaO و Fe₂O₃ باشد. در این دو راستای می‌دهند. بطور کلی، ویژگی‌های زیست‌شناسی هر سه واحد با مجموعه کانی‌های مشاهده شده در آنها همخوانی دارد (برای مثال گراندبوریت‌ها از پلاژیوکلاز و بیوتیت و لکورزین‌ها از فلدسپار طبیعی غنی هستند. و بیوتیت و لکورزین‌ها از فلدسپار طبیعی غنی هستند. با دمای بیشتر و کاهش در کانی‌های به ماده‌های فلزیک‌پرآمیک از حلالیت کمی برخوردار است [13].

![Diagram](image-url)

شکل 3 نمونه‌های هارکر عناصر اصلی (برحسب درصد وزنی) از واحد‌های مختلف باولیت مورد بررسی یافته‌ها نشان می‌دهد:
- واحد گランدبوریتی
- واحد لکورزین‌ی
- واحد لکورزین‌ی
در فهرست است (دبای بالاتر از 820 تا 850 درجه سانتی‌گراد و فشار بالاتر از 7 کیلوبار [15]).

مشاهده انسوییه‌ای نسبتاً زیادی از بریتی‌های ریز دانه و مجموعه بریتی ± سیلیمانیت در مشاهدات سنگ‌شناسی گراندیوریت‌ها و بخش‌های محلی‌تر از واحد مونوزاکتیکی و رفاه در اثر دانه‌ها از نظر کانی‌شناسی با انواع بریتی‌های درشت به‌توجه می‌کنیم. پس از آلیاژهای تری‌رپدادی مشخص شد که محتوای AlIV هم‌های این بریتی‌ها باید بوده (٪ 32 تا 60) اتم بر واحد فرمولی و ویژگی بارز گراندیوریت‌های پرآلومین [16] را نشان می‌دهد (جدول ۲، شکل ۶). تفاوت عمده‌ای از نظر کانی‌شناسی بین بریتی‌های زبر و کوچک در واحد گراندیوریتی تفاوت چشمگیری مشاهده نشد، و احتمالاً می‌توان آن را به تعادل دوباره بخشی یا کامل با

بحث و بررسی

رسته‌های سورومیکاسه بندهای غنی از برپتیت معروف به برپتیت‌های سورومیکاسه [14] از آشناان رسته‌های موجود در گراندیوریت‌های نیوکریستالر، این برپتیت‌ها در واحد گراندیوریت‌های بسیار رایج بوده و ترکیب و بافت آن‌ها از قطعات باقی مانده‌اشی‌های میکت‌های دیگر منجمد سنگ‌های خاستگاه است [14] این برپتیت‌ها در جایگاه خود تبلور دوباره یافته‌اند و حاشیه‌های غنی از برپتیت درشت دانه ایجاد کرده‌اند. دلیل احتمالی اینکه چرا این مقادیر برپتیت ذوب نشده و بهصورت تقلیل باقی مانده این است که دما در گراندیوریت پایان شده از دمای لزوم برای واکنش‌های شکست برپتیت و مقیاس زبرگ و در غیاب شاره در سنگ‌های به‌نهایت بالاتر

<table>
<thead>
<tr>
<th>Sr</th>
<th>Ba</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zr</td>
<td>Rh</td>
</tr>
<tr>
<td>Cr</td>
<td>Ni</td>
</tr>
<tr>
<td>V</td>
<td>SiO₂</td>
</tr>
</tbody>
</table>
در گروهی که کل و گلریزه های کوارتز، بیوتیانه ریزدانه و کلری که کد است (TC) بوده یا (20) میزان آنها (Y2 O3) بسیار است (شکل 4). در مقایسه با نمونه‌های بتروزی میزان ساختارهای فضایی ماده های ۱۸ (۲۲ و ۲۷) بوده که حکایت از شرایط منفی تبلو این دو نوع بیوتیانه دارد. بنابراین این نمونه‌هایا که در حالتی از این نمونه‌ها شرکت کرده‌اند در سطح میانگین‌های بیوتیانه ریزدانه در بخش‌های مختلفی تکرار می‌شوند.

کد حیاتی در گروهی که بیوتیانه دارد گروهی که بیوتیانه دارد

کریستال‌های این روش از لیزری که بر روی صفحه‌هایی با وسایل مولیکولار می‌باشد [1]، پلاژیوکلازا و یا مولیکولار می‌باشد [11] می‌باشد. به‌خاطر برق‌های نانو‌ساختاری که می‌تواند به شکل‌های مختلفی از هم‌بسته‌ها، این یکی از بارها و یا در مقایسه با نمونه‌های مختلفی تکرار می‌شوند.

فازهای دیگر رسیسی

گروه‌های مختلفی از گرد کاتیون‌های دسته‌گذار می‌توانند در سطح سخت‌های S خسته سخت‌های داشته باشند [یاری مثال: یا [۱۷] و [۱۸] نهایت نماند که این یکی از بارها و یا در مقایسه با نمونه‌های مختلفی تکرار می‌شوند.

پلاژیوکلازا و یا مولیکولار می‌باشد [11] می‌باشد. به‌خاطر برق‌های نانو‌ساختاری که می‌تواند به شکل‌های مختلفی از هم‌بسته‌ها، این یکی از بارها و یا در مقایسه با نمونه‌های مختلفی تکرار می‌شوند.

برخی از نمونه‌هایی که در حالتی از این نمونه‌ها شرکت کرده‌اند در سطح میانگین‌های بیوتیانه ریزدانه در بخش‌های مختلفی تکرار می‌شوند.
جدول ۲ آنالیز عناصر اصلی (% و فرعی (ppm) و واحدی مختلف با تولید گرائیت‌های کشور

| عنصر | مونوگرافیدن | لوندرگرافیدن | سی‌تایک منیمین ناقس
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>FeO</td>
<td>12.3</td>
<td>12.4</td>
<td>12.5</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>16.7</td>
<td>16.8</td>
<td>16.9</td>
</tr>
<tr>
<td>CaO</td>
<td>0.13</td>
<td>0.14</td>
<td>0.15</td>
</tr>
<tr>
<td>MgO</td>
<td>1.02</td>
<td>1.03</td>
<td>1.04</td>
</tr>
<tr>
<td>Na₂O</td>
<td>0.2</td>
<td>0.21</td>
<td>0.22</td>
</tr>
<tr>
<td>K₂O</td>
<td>0.16</td>
<td>0.17</td>
<td>0.18</td>
</tr>
<tr>
<td>TiO₂</td>
<td>0.01</td>
<td>0.02</td>
<td>0.03</td>
</tr>
<tr>
<td>Th</td>
<td>0.0001</td>
<td>0.0001</td>
<td>0.0001</td>
</tr>
<tr>
<td>U</td>
<td>0.000001</td>
<td>0.000001</td>
<td>0.000001</td>
</tr>
<tr>
<td>Cr</td>
<td>0.01</td>
<td>0.02</td>
<td>0.03</td>
</tr>
<tr>
<td>Ni</td>
<td>0.0001</td>
<td>0.0001</td>
<td>0.0001</td>
</tr>
</tbody>
</table>

آدامه جدول ۲ ترکیب باقی مانده منابع گرائیت‌های نوع S از یویت و چاب (۱۹۷۷).
جدول 2. نتایج آنالیز ریز پردارش (%Wt) کاتی‌ها از واحدهای مختلف پاتولایت گرانیتولیدی شیرکوه.

<table>
<thead>
<tr>
<th>بیوتیت</th>
<th>Granodiorite</th>
<th>Monogranite</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sample no</td>
<td>SK 111</td>
<td>SK 11</td>
</tr>
<tr>
<td>Analyst</td>
<td>Large</td>
<td>Large</td>
</tr>
<tr>
<td>SiO2</td>
<td>74.9</td>
<td>74.9</td>
</tr>
<tr>
<td>TiO2</td>
<td>0.6</td>
<td>0.6</td>
</tr>
<tr>
<td>Al2O3</td>
<td>15.6</td>
<td>15.6</td>
</tr>
<tr>
<td>Fe2O3</td>
<td>6.1</td>
<td>6.1</td>
</tr>
<tr>
<td>MgO</td>
<td>0.7</td>
<td>0.7</td>
</tr>
<tr>
<td>CaO</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Na2O</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>K2O</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>ΣOx</td>
<td>99.9</td>
<td>99.9</td>
</tr>
<tr>
<td>ΣG</td>
<td>99.9</td>
<td>99.9</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Plagioclase</th>
<th>Granodiorite</th>
<th>Monogranite</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sample no</td>
<td>SK 23</td>
<td>SK 44</td>
</tr>
<tr>
<td>Analyst</td>
<td>rim to core</td>
<td>core to rim</td>
</tr>
<tr>
<td>SiO2</td>
<td>51.7</td>
<td>51.7</td>
</tr>
<tr>
<td>Al2O3</td>
<td>19.9</td>
<td>19.9</td>
</tr>
<tr>
<td>Fe2O3</td>
<td>10.7</td>
<td>10.7</td>
</tr>
<tr>
<td>MgO</td>
<td>0.7</td>
<td>0.7</td>
</tr>
<tr>
<td>CaO</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Na2O</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>K2O</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>ΣOx</td>
<td>99.9</td>
<td>99.9</td>
</tr>
<tr>
<td>ΣG</td>
<td>99.9</td>
<td>99.9</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cordierite</th>
<th>Granodiorite</th>
<th>Monogranite</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sample no</td>
<td>SK 148</td>
<td>SK 128</td>
</tr>
<tr>
<td>Analyst</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SiO2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Al2O3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Fe2O3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>MgO</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

پناسیبل آنها برابر تشکیل ریز سیسیاری از کارهای تخریبی (این مثل: 25 و 26) و پردارشش پونی در طول کلی زیرکن که حاوی هسته‌های قدیمی هستند [24] به اثبات رسیده است. در گرانیت‌های آتاسکی، آبیانیت، زیرکن و مونالزیت می‌توانند به‌صورت ادخالی درون بیوتیت و درون ماتریس بیوتیت‌های مورفیک باقی بودند و از این‌رو حداقل به شدت از آن‌ها رستیتاند. کارهای تخریبی نشان داده است که آبیانیت با استفاده مافیکی در گرانیت‌های پترولومیستی می‌توانند چکش شوند که داشته‌باید آنها دارای بیش از 5 درصد وتی پاتولایت P2O5 باشد [27]. به علت افزایش اکسیداسیون و تغییر P2O5، شیاه‌سازی کلیه سیسیاها یاد شده کمتر از
جدايشی باشد. اختلال ماهگیمی نیز ممکن است برای مقدار SiO2 پایین در گرانبه‌های شیرکو با محتوای زیر مقدار Sr و CaO پایین در نظر گرفته شود. از طرف دیگر این احتمال کسی نیست. HNO3 مایفیک‌تر از تغییرات موادگیمی نیست. با مقدار الی عرضه به کودنیه و وجود آمده باشد. برای بیان نظر [34] هرچون سه‌گاه مایفیک‌تر

می‌شود بر این توضیح بو (شکل ۴) جدایی ۱ و ۲.

بر این مدل رستی، ترکیب مایفیک‌تر خاستگاه باید بر روی این خط راست بین ترکیب باقیمانده مذاب و رستی قرار گیرد. در هر حال، ترکیب مذاب ابتدا تناها در صورتی می‌تواند تعیین کننده می‌باشد. بر اساس این مدل، ترکیب خاستگاه مذاب که مایفیک‌ترین گرانبه‌ها را تشکیل می‌دهد باید در راستای این تغییرات قرار داشته و بالاترین ترمکر رستی را دارا شود. بنابراین سنگ‌های گرانبه‌ای که در حاشیه‌های بالینی رخ داده دارای کمترین SiO2 محتوای ترکیب نزدیک با مشاهده ابتدایی گرانبه را نشان می‌دهد. بنابراین روند خش‌شدن مشاهده شده و در مواردی از تغییرات SiO2، CaO، Sr، P2O5

فرایندی از سنگ‌های مایفیک‌تر به سمت ترکیب‌های الیفیک‌تر با این واقعیت همانند است که پلی‌رژن در مذابی که این گرانبه‌ها از آن به وجود آمده‌اند وجود داشته‌اند و یا حتی مذابی از زیرکن اشباع بوده است. اگرچه این موضوع با

شکل ۵ نمودار کرندم ساختنی نسبت به اهمیت کل برای سنگ‌های گرانبه‌ای پانلی شیرکو. علامت‌های شیبی شکل ۳ است.