خواص ساختاری و مغناطیسی ذرات گارنت ایتریوم آهن با جانشانی بوروبیوم سنتز شده به
روش سل - زل

سیده سوسن سادات احمدی، محمد نیاپور 1، احمد حسن پور 2

1- گروه فیزیک، واحد علوم و تحقیقات خورشیدان، دانشگاه آزاد اسلامی، اهواز/ ایران
2- گروه فیزیک، اتاق اهرام، دانشگاه آزاد اسلامی، اهواز/ ایران

درایط مقاومت: $\frac{320}{32}$

چکیده: در این پژوهش، فرآیند اتصال ذرات گارنت ایتریوم آهه جانشانی شده با بوروبیوم با ترکیب $\frac{32}{3}$ (XRD) ساختار تک فاز گارنت را در همراهی Fe_3O_4 و مقادیر جانشانی $\text{Eu}_2\text{Y}_2\text{O}_{12}$ تولید نمود. با استفاده از آنالیز‌های Raman و Far-FTIR تشکیل‌های منомнومه‌ای از نیم‌بندی که در تابع کشش مغناطیسی اشباع با افزایش جانشانی می‌گردد. این تغییرات با استفاده از نظیریه نیل و شکاف‌گذی حاصل از کجشگی انسپنی در هر یک از زیر‌شکه‌ها مغناطیسی پس از جانشانی Eu^{3+} در ساختار گارنت ایتریوم آهن توضیح داده شد.

واژه‌های کلیدی: سل-زل، گارنت ایتریوم آهه، بوروبیوم، نیم‌بندی، مغناطیسی نیم‌بندی، انتخابی

مقدمه

در سال‌های اخیر ذرات مغناطیسی گارنت ایتریوم آهن و ایتریوم آهن ایزی شده با عناصر مختلف به دلیل داشتن وزیگه‌های مغناطیسی ایتیکی و الکترونیکی بسیار مورد توجه قرار گرفته‌اند. از کاربردهای منفعت بین ذرات می‌توان به استفاده آنها در اجزای شیوه برای کاربردهای ایمنی و همگنیتی که کاربردهای الکترونیکی شیمی و الکتریکی (YIG) و حافظه‌های مغناطیسی بایا در حالی است که مورد نیاز و برای بررسی دیگری همگی الکترونیکی توری کارکرد می‌کنند. گرچه YIG وینگره - ایتیکی ها هم و منابع مختلف به دلیل حوزه‌های مغناطیسی در ناشی از پتانسیل مواد مغناطیسی در

YIG

ویژگی‌های این مواد با جایگزین کردن کانیون‌های با شعاع

یونی و با وزیگه‌های مغناطیسی متغیر به قابلیت‌های جدیدی از

این ماده دست افتاده، نظیر وزیگه‌های ناگهانی کرای پژوهشی

برای جانشانی بیشتر بوروبیومی در ساختار گارنت ایتریوم آهه

گزارش نشده است. لذا بررسی ویژگی‌های ساختاری و

Md.niyaifar@gmail.com

*توبنده مسئول. تلفن: 09361557243، پست الکترونیکی:
روش ساخت

روش ساخت ذرات گالنت ایتربروم Ahn چانهین شده با پروریوم به ترکیب EuYIG و مفادی گالنتانی (XRD = 2.0, 1.0, 0.0) به Eu2O3، Y2O3 و Fe2O3، Fe3O4 و مواد اولیه شال نمک‌های ایتربروم Eu(NO3)3.6H2O، Y(NO3)3.6H2O، Fe(NO3)3.6H2O (Aldrich 99.9%) و نیترات پورپیرون (Aldrich 99.99%) طبق روابط مواد خشک در 100 ml آب پروپیون به حالت شد. سپس محلول اضافه شد. محلول سیستریک سیستریک به یک محلول اضافه شد. محلول سیستریک سیسترا...
بحث و بررسی
بررسی ویژگی‌های ساختاری
الگویه‌های پرتو ایکس ذرات گارنت ایکترووم آهن جانشینی

شده با پرتو ایکس نمایش داده شده است. در شکل اول نشان داده شده است که در بیش از دو آورده شده، شادی‌های هم‌خوانی داشته‌اند و تشکیل ساختار نک فاز گارنت برای هر نمونه را تایید می‌کند. نمات‌های این هر دو از رابطه دیسپ‌شر در گستره 30-325 نانومتر محاسبه شد. این نمایش و تغییرات نزدیک به هم بوده و تغییرات می‌گردد.

شکل 2 الگویه‌ای پرتو ایکس نمایش داده شده در بیش از دو آورده شده، (x = 0.0, 1.0, 2.0)

شکل 3 تغییرات نمایش داده شده در بیش از دو آورده شده، (x = 0.0, 1.0, 2.0)
جدول 1 مقادیر اندازه بلوک‌ها و تابی شیبکه نمونه‌ها

<table>
<thead>
<tr>
<th>x</th>
<th>$a(A)$</th>
<th>$D(nm)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>12388</td>
<td>53</td>
</tr>
<tr>
<td>10</td>
<td>12395</td>
<td>53</td>
</tr>
<tr>
<td>20</td>
<td>12435</td>
<td>51</td>
</tr>
</tbody>
</table>

برای بررسی ارتباطات بین اکسیژن با کاتیون‌های موجود در ساختار YIG پیمان‌های تبیین فیزیکی فورم دول‌های $x = 0, 1, 2$ با مقادیر جانشینی 20 cm^{-1} Y_2O_3 با استفاده از GBL-FTIR گرفته شد که در شکل 4 نشان داد شد. براساس این ارزیابی گزارش شده بود که در تابی نوراهای MR گازداری است که این مدل مشاهده نمایشگر چگال ویژه γ Conference γ (T, R) به نوکیا کاتیون‌های یک چگال ویژه (T, R) است. [13]

در این پژوهش با توجه به محصولاتی که آنها گیری نوراهای ZIR 228 cm^{-1} قابل تبیین نبودند. نوراهای موجود $565,643 \text{ cm}^{-1}$ در ارتباطات $x = 0$ هستند. نوراهای موجود $47,8,0 \text{ cm}^{-1}$ در $47,8,0 \text{ cm}^{-1}$ هستند. نوراهای موجود $332,0 \text{ cm}^{-1}$ مربوط به تمایل هستند.

با توجه به شدت جذب نوراهای ارتباطات در شکل 4 مشاهده می‌شود که این شدت با چگالی چگال ویژه نسبت به چگالی چگال ویژه کاهش یافته است که این اکسیژن در بین حذف Eu^{3+} با بهبود Eu^{3+} وابسته دارد. جایگزینی بین Eu^{3+} صدق کرده است که این چگالی Eu^{3+} باعث ساختار باشد. این نشان دهنده این است که کاهش میکروغل در $47,8,0 \text{ cm}^{-1}$ باعث می‌شود که شدت ارتباطات Eu^{3+} نمایه Eu^{3+} می‌شود.

<table>
<thead>
<tr>
<th>شناختن نمونه‌ها</th>
<th>$x = 0, 1, 2$</th>
</tr>
</thead>
<tbody>
<tr>
<td>شناسه PbO2</td>
<td>800 cm$^{-1}$</td>
</tr>
</tbody>
</table>

که همیشه جایگزینی در عدد موج قله‌ها دیده می‌شود.
بررسی ویژگی‌های مغناطیسی
شکل ۶ منحنی پسماند مغناطیسی نمونه‌های Eu۳⁺Y۳₋ₓFe۳O۱۲ (x = ۰.۰، ۱.۰، ۲.۰) با مقادیر جاشانئی (۰.۰، ۲.۰) در دمای اتفاق نشان می‌دهد. تغییرات مغناطیسی اشباع (Mₛ) نمونه‌ها نیز بر حسب مقادیر جاشانئی آورده شده‌اند. مقدار

\[M = |M_d - M_a| - M_c \]

\[\text{x = 0.0, 1.0, 2.0} \]

شکل ۷ طیف‌های رامان نمونه‌های Eu۳⁺Y۳₋ₓFe۳O۱۲ (x = ۰.۰، ۱.۰، ۲.۰) با مقادیر جاشانئی (۰.۰، ۲.۰).

\[M = |M_d - M_a| - M_c \]

\[\text{x = 0.0, 1.0, 2.0} \]

مغناطیس اشباع نمونه‌ها با افزایش میزان جاشانئی یون Eu۳⁺ کاهش می‌یابد. بر مبنای نظرهای نیل، گشتاورهای مغناطیسی بونهای آن در زیر شیب‌های a و d نسبت به یکدیگر دارای YIG نظام پادره مغناطیسی هستند و مغناطیس کل در ساختار

\[M = |M_d - M_a| - M_c \]

\[\text{x = 0.0, 1.0, 2.0} \]
در جهت مختلف خواص شد و تولید دو محدود نیمه‌ی شیمیایی متفاوت در اطراف زیرشیشه‌های این می‌کند. از افزایش میزان جانشینی Eu۳+ آشفته ایجاد شده، بسته به تعداد همسایگان افزایش، پایه‌ای است و سپس شکافته هر یک از زیر شیشه‌های Eu۳+ های d و a به هدفین زیر شیشه مغناطیسی با جهت‌گیری اسپینی متفاوت خواهد شد و گستردگی مغناطیسی مؤثر تغییر شده با کاهش یافته و منجر به کاهش مغناطیسی کل می‌شود که این همغونی با نتایج کارهای گذشته این است [۱۹۱].

همگامی که پوئی با شعاع پوئی بزرگتر از Y۳+ وارد ساختار می‌شود موجب آشفتگی در زیرشیشه‌های a و d با YIG که مقدار مغناطیس جابجاهت به دلیل وجود پوئی دیامغناطیس Y۳+ در این جابجاه برای صفر است. گشتوارهای مغناطیسی Eu۳+ پوئی این از زیر شیشه‌های a و d به سپر پادو و مغناطیس سمت‌بندی می‌کنند، بنابراین روند کاهشی مشاهده شده با افزایش جانشینی پوئی Eu۳+ در ساختار YIG قابل انظار است [۱۹۱].

شکل ۶ تغییرات مغناطیس اسپاستی و منحنی‌های پسماند مغناطیسی نمونه‌های Eu۳+ Fe۳+۰.۱۲ با مقادیر جانشینی (۰، ۰.۱۰، ۱.۰)

برداشت

در این پژوهش برای آماده سازی نمونه های EuₓY₃₋ₓFe₅O₁₂ با مقادیر جانشینی (x) از روش سل زل استفاده شد و تحلیل الگوی های پرتو ایکس ساختار نک فاز گزارنده در تا نام مکسیم شد.

References

