سنجش‌نامه توعد‌های نفوذی منطقه‌ی معدنی تکنار، برده‌سکن (کاشمر)

محمدرضا کرم‌پور*، بهنام رحمی، و علی‌رضا ژرگنیزاده، احسان سلاطی

گروه زمین‌شناسی، دانشکده علوم، دانشگاه غربی کرمانشاه

(دریافت مقاله: ۸۸/۹/۲۲، قبلاً نهایی: ۸۸/۹/۲۳)

چکیده: منطقه‌ی معدنی تکنار در فاصله ۲۸ کیلومتری شمال غربی شهرستان برده‌سکن و در بخش مرکزی زون تکنار قرار گرفته است. زون تکنار از شمال با گسل ریوی و از جنوب با گسل درونه محدود شده است. حداقل ۳۰ درصد سازند تکنار از نوع سنگ‌های آتش‌نشانی زیر دنیایی (اردوپسین) تشکیل می‌دهند. شاهد نشان می‌دهد که زون تکنار از منطقه‌ی دیگر به محل فعلی جابجا شده است. همچنین تغییرات ساختمانی که در منطقه‌ی شناسایی شده‌اند: گسل‌های راستا نز و راست‌ر، گسل‌های راستا نز قب و گسل‌های راستا نز منطقه‌ی دیگر به محل فعلی جابجا شده است. همچنین تصمیم‌گیری از منطقه‌ی دیگر به محل فعلی جابجا شده است.

واژه‌های کلیدی: تکنار، برده‌سکن، گرانیت، زمین‌شناسی

مقدمه

منطقه‌ی معدنی تکنار در فاصله ۲۸ کیلومتری جنوب غربی شهرستان مرودخ، ۲۸ کیلومتری شمال غربی شهرستان برده‌سکن در ۴۲°۴۲ ' شمالی و ۵۷°۳۳ ' شرقی و ۳°۱۲ ' طول شرقی و ۳۵°۲۳ ' عرض شمالي قرار گرفته است. زون تکنار در منطقه‌ی کاشمر در دستگاه‌های که در منطقه‌ی دیگر به محل فعلی جابجا شده است. همچنین نشان می‌دهد که زون تکنار از منطقه‌ی دیگر به محل فعلی جابجا شده است.
دگرگونی ناحیه‌ای و همبستگی قرار گرفته است. توده‌های نفوذی بالاترین میزان و تراژیکی تپه‌های یک دارند. کانی‌سازی در منطقه‌های تک‌تار آن از نوع ماسیو Cu-Au-Zn-Pb سولفید است که همزمان با سازنده تک‌تار تشکل شده است. [5] این کانی‌سازی بعداً تحت تأثیر گسل‌ها تغییر مکان داده و گسترش یافته است. نام محلی کانی‌سازی از شمال به جنوب TK-II، TK-I، TK-IV، TK-III است. در منطقه‌های معدن تک‌تار جنوب‌تر کانی‌سازی ایجاد و مکانه‌شده است. [5-9]

منشأ شده است.

هدف از این بررسی سناسی، نفتکیک، بررسی خاس‌ها و تشخیص محیط ذهنی خاصی تا توده‌های نفوذی است که در منطقه‌های معدن‌های تک‌تار رخندیده شده‌اند.

روش بررسی

• تهیه نقشه فزین‌سناسی، آنتراسیون و کانی‌سازی در مقیاس 1:500

• بررسی سنگ‌نگاشتی بیش از 100 نمونه از توده‌های نفوذی منطقه

• تجزیه 35 نمونه از عنصر اصلی، به روش فلوئورسسانی پترو (XRF) در گروه فیزیکی دانشگاه فردوسی مشهد

• تجزیه 19 نمونه از عنصر جنی و کمیاب به روش ذوب ACME در آزمایشگاه کانادا.
کوارتهرای فناوریست به ۱۰۰/۰ تا اندامه ۱۲ میلیمتر می‌رسد. پیاژاکلازهای فناوریست در حدود ۵/۰ تا اندامه‌های بیشتری به مانند ویژگی‌های فناوریست‌های قبیلی تا ۱/۰ به اندامه‌های ۱/۰ میلیمتر وجود دارند. نیاز به اعمال زیاد در سنگ وجود داشته ولی اکنون تبدیل شده است. کانی‌های زمینی سنگ شامل کانی‌های نامبرده و کانی‌های حاصل از اثراتیست است. زیرکان تناهی کانی فسیلی در سنگ است. در سیر سگ است. در سنگ است. در سیر سگ است. در سنگ است.

شماره ۱۸، ۲۰۰۹
سکانستای توده‌های نفودی منطقه‌ی...
۶۹
زمین‌شناسی ساختاری منطقه
سنگ‌ها در زون ساختاری تک‌بر پس از اولین مراحل تغییرات
ساختاری که با چنین خوردنی، دگرگونی و گسل‌های ران‌گز
همراه بوده و در طول دوران‌ها متفاوت زمین‌شناسی
dستخور تغییرات ساختاری، بیشتر شکنند، شده است.[101.
گسل‌های راستا لغز راسته و از مهم‌ترین ساختارها در گستره‌

شکل ۳ نقشه زمین‌شناسی تک ۱

شکل ۲ نقشه زمین‌شناسی تک ۲

مورد بررسی بوده و در ایلی روند شمال شرقی - جنوب غربی
هستند. راستای آن‌ها میان N63°E تا N45°E در تغییر است. طول گسل‌های اصلی از ۳۰۰۰ متر بیشتر است ولی شاخه‌های
با طول کمتر از آن می‌باشد. گسل‌های راستا لغز چپ روش با گسل‌های راست روا از اهمیت کمتری بر
خوردار بوده و روند عمومی آن‌ها شمال غربی - جنوب شرقی
است. راستای این دسته از گسل‌ها ۰° تا N35° و شیب
انها نزدیک به قائم است. گسل‌های توده‌های نفوذی و پادوشابنده، در گسترش مورد بررسی قطع و بیان جریان می‌یابد جایزی از آن‌ها از جنبه باز همکاری و در راستای برخی از آن‌ها اثر دگرسانی و نیز اسیدهای مس دیده می‌شود. ابن رانگیها زونی‌های پشتی شکل گرد - شکل‌گیری با دوشاری‌های ریز مقياس و نیز سطح گسل و گسترش رخ در سطح‌ها به نمایش می‌گذارند. سبب‌ها در گسترش مورد بررسی چین شده‌اند. هر چند نشان‌های چین‌ها در مقياس بزرگ به دلیل پیچیدگی ساختاری حاصل از گسترش نسل‌های مختلف گسلی، راستا به‌صورت بسیار دماوی است ولی چین‌خودگی در مقیاس رخ‌نموده به خویی در سبب‌های این گسترش مشهود است. چین‌ها در مقیاس رخ‌نموده با ولایات گرد تا زاویه‌دار در سبب‌های گسترش دیده می‌شوند. محور چین‌ها راستای شمال شمال شرقی را داشته و میل انگیز در این راستا دارد و تمایل آن‌ها به سمت شرق- جنوب شرقی است.

شکل 5 نمودار تغییر میزان بنامیم توده‌های اواسط - اواخر بالتورزوئیک [12].
نمودار عنکبوتی توده‌های نفوذی اواست - اواخر پالژوئونیک [۱۱].

نمودار عنکبوتی توده‌های نفوذی اواست - اواخر پالژوئونیک با مقایسه باژاله‌های اقیانوسی (MORB) ترسیم شده (شکل ۷). نتایج اساسی بین متادوریت و توده‌های نفوذی دیگر مشاهده می‌شود (شکل ۷). این تفاوت به تغییرات در خاستگاه Ba, Rb, K, Sr, Nb, P, Ti و کاهش Ce, Sr, Nb, P, Ti منفی می‌تواند دلیل برچیدنی‌کننده‌های معاصر اپتیکی (Zr, Hf) با دلیل تبلور آپتیک است. بی‌هنرجاری منفی Ti حاوی P و بی‌هنرجاری منفی Ce با دلیل حضور کانی Zr و Hf بی‌هنرجاری مثبت Zr و Hf زیرکن است.

نمودار عنکبوتی کمیاب توده‌های اواست - اواخر پالژوئونیک نسبت به کندریت در شکل (۸) ترسیم شده. نمودار متادوریت تفاوت اساسی با توده‌های دیگر نشان می‌دهد (شکل ۸). این

نمودار عنکبوتی توده‌های نفوذی اواست - اواخر پالژوئونیک [۱۲].

نمودار عنکبوتی توده‌های نفوذی اواست - اواخر پالژوئونیک [۱۳].
مجادله زمین‌ساختی و نوع گرانیتونیت توده‌های نفوذی

dزیرگون شده

با استفاده از نمودار پیرس و همکلان (۱۹۸۲) [۱۶] موقعیت
زمین‌ساختی توده‌های نفوذی مورد بررسی قرار گرفت (شکل
۹). در نمودار Rb نسبت به Ta+Yb، در نمودار WPG (گرانیتونیت‌های درون صفحه‌ای) و VAG کمیت زن فورانش) قرار می‌گیرند. در نمودار Nb نسبت به WPG تا محیط‌های SSI، در نمودار و WPG تا محیط‌های VAG و

![شکل ۸ نمودار عناصر نادر خاکی توده‌های نفوذی - اواخر بالاتوزوئیک (۱۵۱۷)](https://example.com/image1)

![شکل ۹ نمودار تبیین موقعیت زمین‌ساختی توده‌های نفوذی (۱۶۱۷)](https://example.com/image2)
جدول 1 پذیرفتنی مغناطیسی در توده‌های نفوذی اواسط - اواخر پالنژونیک [17]

<table>
<thead>
<tr>
<th>پذیرفتنی مغناطیسی</th>
<th>شماره نمونه</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 × 10⁻⁵</td>
<td>TK2-29</td>
</tr>
<tr>
<td>0 × 10⁻⁵</td>
<td>TK1-60</td>
</tr>
<tr>
<td>4 × 10⁻⁵</td>
<td>TK2-15</td>
</tr>
<tr>
<td>0 × 10⁻⁵</td>
<td>TK1-48</td>
</tr>
<tr>
<td>9 × 10⁻⁵</td>
<td>TK1-53</td>
</tr>
<tr>
<td>0 × 10⁻⁵</td>
<td>TK1-2</td>
</tr>
<tr>
<td>12 × 10⁻⁵</td>
<td>TK1-1</td>
</tr>
<tr>
<td>0 × 10⁻⁵</td>
<td>TK2-27</td>
</tr>
<tr>
<td>31 × 10⁻⁵</td>
<td>TK1-43</td>
</tr>
<tr>
<td>1 × 10⁻⁵</td>
<td>TK2-28</td>
</tr>
<tr>
<td>0 × 10⁻⁵</td>
<td>TK2-18</td>
</tr>
<tr>
<td>71 × 10⁻⁵</td>
<td>TK2-21</td>
</tr>
</tbody>
</table>

ترکیب توده‌های نفوذی در نمونه با رکوردهای ۱۹۷۹ [۱۸] ترسیم شدند (شکل ۱۱). براساس نمونه، سیلیکاسیون نمونه‌ها در این نمونه به تواناسی‌دهنده خاصیت‌های مختلف توده‌ها پاشیده شدند. نمونه‌های محلولی توده‌های نفوذی پس از پالنژونیک در نمونه ماپس با پارامترهای اقیانوسی (MORB) ترسیم شد (شکل ۱۲) در نمونه شاخه آلومینیوم به جز تروناکبیتی که در گستره‌های متناسب می‌گرتفت، توده‌های دیگر در گستره‌های پراکنده نیش‌ها در این نمونه می‌تواند شناخته شده‌باشد. نمونه‌های توده‌های نفوذی پس از پالنژونیک در نمونه ماپس با پارامترهای اقیانوسی (MORB) ترسیم شد (شکل ۱۲) در نمونه شاخه آلومینیوم به جز تروناکبیتی که در گستره‌های متناسب می‌گرتفت، توده‌های دیگر در گستره‌های پراکنده نیش‌ها در این نمونه می‌تواند شناخته شده‌باشد.
بی‌هنجاری منفی، کمی پلاژیوکلاز کلزیک در نوده‌های مربوط به کاندیدگی نشان می‌دهند (شکل ۱۴). نمودار عناصر کم‌مانندی در پس از پالئوزوئیک نشان می‌دهد که این نمایی در شکل (۱۵) ترسیم شده است. در نمودارهای رنگی (LREE) نشان می‌دهد (شکل ۱۵). نسبت (La/Yb)N = ۴۴۷ مشخص می‌گردد که ترتیب یافته است. بی‌هنجاری منفی در تمامی نوده‌های مشاهده می‌شود (شکل ۱۵). علت
شکل 3. نمودار تعیین شاخص آلومینیوم [13].

شکل 4. نمودار عناصر توده‌های نفوذی پس از بالاپوشک [14].

شکل 5. نمودار عناصر نادر خاکی توده‌های پس از بالاپوشک [15].
زمن ساختمانی تشکیل آن گالا درون صفحات قرار دارد، همچنین اگر فروریزیس، براساس نمودار عناصر کمیاب و نسبت (La/Yb)N = 9.85/2/15 خاستگاه ماکما بوسیجه فارهای است. براساس تشکل کالیشندازی پذیرفته مگناطیسی توده‌های نفوذی این توده‌ها به سری ایلمنین وابسته‌اند. توده‌های نفوذی پس از پالئوزیک شامل: گرانیت، ترونگلیت و کوارتز مونزونیت هستند. این توده‌ها از نوع پتانسیم متوسط و بالا بوده و به غیر از ترونگلیت و گرانیت متألفهین K, Rb, Sr, Nb, P, Ti و کاهی‌گری دیده می‌شود. براساس نمودار عنصری غنی‌ترین عناصر Na, K, Sr, Nb, P و Ti نمودار عناصر کمیاب و نسبت (La/Yb)N = 9.85/2/15 خاستگاه ماکما بوسیجه فارهای بوده است.

مراجع

