شیمی کانی‌های منابعی‌های پانزودنیک، شاهدی بر تغییرات درگذوش آن سنگ‌ها
(جنوب چاه یلنگ، شمال شرق استان اصفهان)

فرشته‌پاش *، قدرت‌تربیع
گروه زمین‌شناسی دانشگاه اصفهان
(دریافت مقاله: 1388/7/13، 接受: 1388/7/13)
چکیده: منابع‌های پانزودنیک زیرین جنوب چاه یلنگ در شمال بلوزیر در ارتفاع 694 متری از سطح دریا می‌باشد مشخص می‌شود. منابع‌های پانزودنیک در این منطقه نقش مهمی در تولید دهنده‌های بی‌پاره و سطح مناسبی دارند. در این منطقه دو نوع منابعی پانزودنیک وجود دارد که از جمله می‌توان به منابع‌های پانزودنیک نرمال و منابع‌های پانزودنیک سنگی اشاره کرد.

واژه‌های کلیدی: شیمی کانی، منابعی‌های پانزودنیک، ایران مرکزی، چاه یلنگ، اصفهان

مقده و زمین‌شناسی عمومی
پانزودنیک، یکی از طولانی‌ترین دوران‌های زمین‌شناسی بوده که در مقياسهای جهانی به دو ردهٔ پانزودنیک‌های کاهپوری و شیمی‌کانی تقسیم می‌شود. منابع پانزودنیک در این منطقه نقش مهمی در تولید عناصر بی‌پاره و سطح مناسبی دارند. در این منطقه دو نوع منابعی پانزودنیک وجود دارد که از جمله می‌توان به منابع‌های پانزودنیک نرمال و منابع‌های پانزودنیک سنگی اشاره کرد.

بطریم‌های کیانه، محدود‌ترین فعالیت‌های مکانیکی در دوران‌های کامبیز-آروپسون به دست آمده است. در حالی که بطریم‌های کویری‌ها، کیانه‌کاک، کرکتویهای کویری‌ها و خاک‌های کنگره‌ای در ارتباط با تغییرات درگذوش شیمی‌کانی‌های کویری‌ها و یکی از دوره‌های پیشین به کنگره‌های زمین‌ساختی حاصل شده است.

F.bayat@geol.ui.ac.ir

نویسنده مسئول: تلفن: 793246152، پست الکترونیکی: 793246152، پست الکترونیکی: 793246152

* F.bayat@geol.ui.ac.ir

F.bayat@geol.ui.ac.ir

F.bayat@geol.ui.ac.ir

F.bayat@geol.ui.ac.ir

شکل ۱ موقعیت منطقه چاه بلنگ، شمال بلنگ زیر در زوین ایران مرکزی. [8]

شکل ۲ راه‌های ارتباطی به ناحیه چاه بلنگ [9].
همره به سملیها پالئوژنیک و پتروژنیک یافته‌ها، همستد و همسی آن‌ها در رخساره شیپست سیر دِرگون شده‌اند. لی از لبه برافرازندگی در مناطق اطراف – جنگل‌شناسی کرده است که جوان‌ترین آن‌ها به یادبود برافرازندگی دوشاخ است. به توجه به سن نسبت داده شده به متابایت‌های گچ بلند و تون وانگ و سملیه‌ها و درجات دِرگونی در این ناحیه، بررسی‌های دقیق‌سنجی دما - فشارسنجی و تعمیم‌‌سری در تاریخفرایند یافته‌ها، می‌باید.

روش بررسی

با بررسی‌های صحرایی و جمع‌آوری نمونه‌های لازم، مقاطع نازک - سلیچری از آن‌ها تهیه شده و بررسی‌های سندشناسی صورت می‌گیرد. استفاده از میکروسکوپ مدل OLYMPUS BH2 - 15kV و جریان 15mA تکنیک برش و تعریف و ماحاسبی فرمول ساختارهای آن‌ها در دانشگاه لیبرنیت هانوفر آلمان، ریز پردازندگی الکترونی 100 - 20kV دهد. برای انالیز ناحیه داده‌های حاصل از آن‌ها، فرمول‌ساختار محاسبه شده برم افز در جدول‌های 3 و 4 آورده‌شده‌اند. ناحیه اصلی و نادر خاکی تعیین آمیپپولا توسط [11] با دستگاه LA-ICP-MS در دانشگاه لورز سوئیس صورت گرفت و نتایج آن‌ها در جدول 3 آورده شده‌اند. مقدار HREE این آمیپپولا با اعمال تحقیقات در نموهای پهن‌جری سازی‌های سه‌شده است.

منتزه‌های چاه بلند شامل واحدهای سنگی آمفیپپولا، بی‌هدن، تراکی یا ترکی، ماده‌های متیلی از سیر دِرگون‌های دوشاخ دیده می‌شود. دستگاه‌تکمیل از منطقه را سندشناسی مامه سنگی و اسلیتانی شمشک، سنگ‌های کوه و شکر به سن کرتاسه و تانسین‌های تخبیزی و خبره‌ای سازند. دستگاه‌های سنگی می‌توانند به سین بی‌هدن و تفکرده شده، زمین‌شناسی (شکل 3) و تصور صحرایی (شکل 4) دیده می‌شود. متابایت‌های آمیپپولا و ناحیه داده‌های پرواز را در نقشه‌های سانسی نموده است [10]. این نقشه‌های همبستگی دِرگونی دوشاخ با سن اولیه پالئوژنیک را به صورت زیر معرفی می‌کند:

در بخش پایینی بیشتر مرمر و متادولومیت، کوارتز و شیب‌های سنگ‌های متاپالاسکیک در بخش میانی و متاکربنات و مامه سنگ دِرگون در بخش فوقانی وجود دارد [6].

دو نمونه از متیل‌های نسبت داده‌های به پالئوژنیک زیرین با روش K – Ar می‌توانند سن معادل اردویسی (400 میلیون سال قبل) و دایری سن معادل اواخر ترباس (200 میلیون سال قبل) را نشان داده‌اند [11]. بسیاری از مرحله مستقیم که سن جوانتر نمونه‌ها دوم انحصاری با چیپس های قبیله‌ای همی‌شمرد اولیه یا واژن است. سن متیل‌های در حال حاضر مستند برناگشته، این نوع توده‌ها

شکل ۳ نقشه زمین‌شناسی ساده چاهی سه‌شده منطقه چاه بلند [16].
<table>
<thead>
<tr>
<th>موقع</th>
<th>سلول</th>
<th>SKA</th>
<th>TiO₂</th>
<th>Al₂O₃</th>
<th>FeO</th>
<th>CaO</th>
<th>MgO</th>
<th>Fe₂O₃</th>
<th>SiO₂</th>
<th>Na₂O</th>
<th>K₂O</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ch 800/20</td>
<td>10</td>
<td>11</td>
<td>8.5</td>
<td>7.2</td>
<td>12</td>
<td>13</td>
<td>14</td>
<td>15</td>
<td>16</td>
<td>17</td>
<td>18</td>
</tr>
<tr>
<td>Ch 800/19</td>
<td>19</td>
<td>20</td>
<td>21</td>
<td>22</td>
<td>23</td>
<td>24</td>
<td>25</td>
<td>26</td>
<td>27</td>
<td>28</td>
<td>29</td>
</tr>
<tr>
<td>Ch 800/18</td>
<td>30</td>
<td>31</td>
<td>32</td>
<td>33</td>
<td>34</td>
<td>35</td>
<td>36</td>
<td>37</td>
<td>38</td>
<td>39</td>
<td>40</td>
</tr>
<tr>
<td>Ch 800/17</td>
<td>41</td>
<td>42</td>
<td>43</td>
<td>44</td>
<td>45</td>
<td>46</td>
<td>47</td>
<td>48</td>
<td>49</td>
<td>50</td>
<td>51</td>
</tr>
<tr>
<td>Ch 800/16</td>
<td>52</td>
<td>53</td>
<td>54</td>
<td>55</td>
<td>56</td>
<td>57</td>
<td>58</td>
<td>59</td>
<td>60</td>
<td>61</td>
<td>62</td>
</tr>
<tr>
<td>Ch 800/15</td>
<td>63</td>
<td>64</td>
<td>65</td>
<td>66</td>
<td>67</td>
<td>68</td>
<td>69</td>
<td>70</td>
<td>71</td>
<td>72</td>
<td>73</td>
</tr>
<tr>
<td>Ch 800/14</td>
<td>74</td>
<td>75</td>
<td>76</td>
<td>77</td>
<td>78</td>
<td>79</td>
<td>80</td>
<td>81</td>
<td>82</td>
<td>83</td>
<td>84</td>
</tr>
<tr>
<td>Ch 800/13</td>
<td>85</td>
<td>86</td>
<td>87</td>
<td>88</td>
<td>89</td>
<td>90</td>
<td>91</td>
<td>92</td>
<td>93</td>
<td>94</td>
<td>95</td>
</tr>
<tr>
<td>Ch 800/12</td>
<td>96</td>
<td>97</td>
<td>98</td>
<td>99</td>
<td>100</td>
<td>101</td>
<td>102</td>
<td>103</td>
<td>104</td>
<td>105</td>
<td>106</td>
</tr>
<tr>
<td>Ch 800/11</td>
<td>107</td>
<td>108</td>
<td>109</td>
<td>110</td>
<td>111</td>
<td>112</td>
<td>113</td>
<td>114</td>
<td>115</td>
<td>116</td>
<td>117</td>
</tr>
</tbody>
</table>

فیلم 3 (B): نمای برجسته‌ای از محل مورد سنجش.

عکس 3 (C): تصویری از مکان مورد سنجش به همراه نقشهٔ مکانی.
جدول 2 تعمیم فرمول ساختنی کلیه های تشكل دهنده منابع تغذیه‌ای چاه پلنگ

<table>
<thead>
<tr>
<th>نمونه</th>
<th>کاتی</th>
<th>Si</th>
<th>Ti</th>
<th>Al</th>
<th>Fe</th>
<th>Mg</th>
<th>Ca</th>
<th>Na</th>
<th>K</th>
<th>Sum_cat</th>
<th>Oxygen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ch 801/1</td>
<td>اکتنولین</td>
<td>55</td>
<td>39</td>
<td>32</td>
<td>24</td>
<td>19</td>
<td>14</td>
<td>14</td>
<td>8</td>
<td>14</td>
<td>19</td>
</tr>
<tr>
<td>Ch 801/2</td>
<td>اکتنولین</td>
<td>53</td>
<td>35</td>
<td>30</td>
<td>22</td>
<td>18</td>
<td>13</td>
<td>13</td>
<td>7</td>
<td>13</td>
<td>18</td>
</tr>
<tr>
<td>Ch 801/3</td>
<td>مزینه‌هورنلاند</td>
<td>52</td>
<td>34</td>
<td>30</td>
<td>22</td>
<td>18</td>
<td>13</td>
<td>13</td>
<td>7</td>
<td>13</td>
<td>18</td>
</tr>
<tr>
<td>Ch 795/4</td>
<td>فروکمپ-حورنلاند</td>
<td>51</td>
<td>33</td>
<td>29</td>
<td>21</td>
<td>17</td>
<td>12</td>
<td>12</td>
<td>6</td>
<td>12</td>
<td>17</td>
</tr>
<tr>
<td>Ch 795/5</td>
<td>چرامک حورنلاند</td>
<td>50</td>
<td>32</td>
<td>28</td>
<td>20</td>
<td>16</td>
<td>11</td>
<td>11</td>
<td>6</td>
<td>11</td>
<td>16</td>
</tr>
<tr>
<td>Ch 795/6</td>
<td>چرامک حورنلاند</td>
<td>49</td>
<td>31</td>
<td>27</td>
<td>19</td>
<td>15</td>
<td>10</td>
<td>10</td>
<td>5</td>
<td>10</td>
<td>15</td>
</tr>
<tr>
<td>Ch 795/7</td>
<td>چرامک حورنلاند</td>
<td>48</td>
<td>30</td>
<td>26</td>
<td>18</td>
<td>14</td>
<td>9</td>
<td>9</td>
<td>5</td>
<td>9</td>
<td>14</td>
</tr>
<tr>
<td>Ch 795/13</td>
<td>بیوت</td>
<td>47</td>
<td>29</td>
<td>25</td>
<td>17</td>
<td>13</td>
<td>8</td>
<td>8</td>
<td>4</td>
<td>8</td>
<td>13</td>
</tr>
<tr>
<td>Ch 795/14</td>
<td>بیوت</td>
<td>46</td>
<td>28</td>
<td>24</td>
<td>16</td>
<td>12</td>
<td>7</td>
<td>7</td>
<td>4</td>
<td>7</td>
<td>12</td>
</tr>
<tr>
<td>Ch 795/15</td>
<td>بیوت</td>
<td>45</td>
<td>27</td>
<td>23</td>
<td>15</td>
<td>11</td>
<td>6</td>
<td>6</td>
<td>4</td>
<td>6</td>
<td>11</td>
</tr>
<tr>
<td>Ch 795/16</td>
<td>بیوت</td>
<td>44</td>
<td>26</td>
<td>22</td>
<td>14</td>
<td>10</td>
<td>5</td>
<td>5</td>
<td>4</td>
<td>5</td>
<td>10</td>
</tr>
<tr>
<td>Ch 795/17</td>
<td>بیوت</td>
<td>43</td>
<td>25</td>
<td>21</td>
<td>13</td>
<td>9</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>9</td>
</tr>
<tr>
<td>Ch 800/18</td>
<td>بیوت</td>
<td>42</td>
<td>24</td>
<td>20</td>
<td>12</td>
<td>8</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>3</td>
<td>8</td>
</tr>
<tr>
<td>Ch 800/19</td>
<td>بیوت</td>
<td>41</td>
<td>23</td>
<td>19</td>
<td>11</td>
<td>7</td>
<td>2</td>
<td>2</td>
<td>4</td>
<td>2</td>
<td>7</td>
</tr>
<tr>
<td>Ch 800/20</td>
<td>بیوت</td>
<td>40</td>
<td>22</td>
<td>18</td>
<td>10</td>
<td>6</td>
<td>1</td>
<td>1</td>
<td>4</td>
<td>1</td>
<td>6</td>
</tr>
<tr>
<td>Ch 800/21</td>
<td>بیوت</td>
<td>39</td>
<td>21</td>
<td>17</td>
<td>9</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>Ch 800/22</td>
<td>بیوت</td>
<td>38</td>
<td>20</td>
<td>16</td>
<td>8</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>Ch 801/23</td>
<td>آلبیت</td>
<td>37</td>
<td>19</td>
<td>15</td>
<td>7</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>Ch 801/24</td>
<td>آلبیت</td>
<td>36</td>
<td>18</td>
<td>14</td>
<td>6</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>Ch 795/25</td>
<td>اندرین</td>
<td>35</td>
<td>17</td>
<td>13</td>
<td>5</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Ch 795/26</td>
<td>اندرین</td>
<td>34</td>
<td>16</td>
<td>12</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Ch 800/37</td>
<td>ایپیدو</td>
<td>33</td>
<td>15</td>
<td>11</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Ch 800/39</td>
<td>مسکنیت</td>
<td>32</td>
<td>14</td>
<td>10</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Ch 801/40</td>
<td>الیستین</td>
<td>31</td>
<td>13</td>
<td>9</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

توجه: Fe۳+ و Fe۲+ با استفاده از روش [۱۲] صورت گرفته است.

جدول 1-۲ نتایج آنالیز تنظیم امپیبول ها (wt%) [۱۱]

<table>
<thead>
<tr>
<th>نمونه</th>
<th>کاتی</th>
<th>SiO۲</th>
<th>TiO۲</th>
<th>Al۲O۳</th>
<th>FeO</th>
<th>Cr۲O۳</th>
<th>MnO</th>
<th>MgO</th>
<th>CaO</th>
<th>Na۲O</th>
<th>K۲O</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ch5a1</td>
<td>امپیبول</td>
<td>48</td>
<td>24</td>
<td>34</td>
<td>12</td>
<td>21</td>
<td>16</td>
<td>11</td>
<td>6</td>
<td>12</td>
<td>17</td>
<td>115</td>
</tr>
<tr>
<td>Ch5a2</td>
<td>امپیبول</td>
<td>47</td>
<td>23</td>
<td>33</td>
<td>12</td>
<td>20</td>
<td>15</td>
<td>10</td>
<td>6</td>
<td>12</td>
<td>17</td>
<td>114</td>
</tr>
<tr>
<td>Ch5a3</td>
<td>امپیبول</td>
<td>46</td>
<td>22</td>
<td>32</td>
<td>11</td>
<td>19</td>
<td>14</td>
<td>9</td>
<td>5</td>
<td>11</td>
<td>16</td>
<td>112</td>
</tr>
<tr>
<td>Ch5a1</td>
<td>امپیبول</td>
<td>45</td>
<td>21</td>
<td>31</td>
<td>11</td>
<td>18</td>
<td>13</td>
<td>8</td>
<td>4</td>
<td>10</td>
<td>15</td>
<td>109</td>
</tr>
<tr>
<td>Ch5a2</td>
<td>امپیبول</td>
<td>44</td>
<td>20</td>
<td>30</td>
<td>10</td>
<td>17</td>
<td>12</td>
<td>7</td>
<td>3</td>
<td>10</td>
<td>14</td>
<td>107</td>
</tr>
<tr>
<td>Ch5a3</td>
<td>امپیبول</td>
<td>43</td>
<td>19</td>
<td>29</td>
<td>10</td>
<td>16</td>
<td>11</td>
<td>6</td>
<td>2</td>
<td>9</td>
<td>13</td>
<td>105</td>
</tr>
<tr>
<td>Ch5b1</td>
<td>امپیبول</td>
<td>42</td>
<td>18</td>
<td>28</td>
<td>9</td>
<td>15</td>
<td>10</td>
<td>5</td>
<td>1</td>
<td>9</td>
<td>12</td>
<td>103</td>
</tr>
<tr>
<td>Ch5b2</td>
<td>امپیبول</td>
<td>41</td>
<td>17</td>
<td>27</td>
<td>9</td>
<td>14</td>
<td>9</td>
<td>4</td>
<td>1</td>
<td>8</td>
<td>11</td>
<td>101</td>
</tr>
<tr>
<td>Ch5c1</td>
<td>امپیبول</td>
<td>40</td>
<td>16</td>
<td>26</td>
<td>8</td>
<td>13</td>
<td>8</td>
<td>3</td>
<td>1</td>
<td>8</td>
<td>11</td>
<td>99</td>
</tr>
</tbody>
</table>

توجه: Fe۳+ و Fe۲+ با استفاده از روش [۱۲] صورت گرفته است.
سنج شناختی

و اهدافی در گروه‌های ناحیه‌ای چاپ بدرک متوازی از متاولکینها، متادیاباز و متانوپلیویت است که به صورت پرانکرده و با گسترش کم که کمتر از ۲ کیلومتر و با عرض صدها متر، که به دنیا به یک کیلومتر مرسوم هرده با گرگنسونهای متادیابازی بدون مانندگی یا بیماری و به صورت است."

<table>
<thead>
<tr>
<th>شیمی‌شناختی</th>
<th>Ch5a1</th>
<th>Ch5a2</th>
<th>Ch5a3</th>
<th>Ch5b1</th>
<th>Ch5b2</th>
<th>Ch5c1</th>
<th>Ch5c2</th>
</tr>
</thead>
<tbody>
<tr>
<td>La</td>
<td>2.41</td>
<td>3.32</td>
<td>2.79</td>
<td>1.28</td>
<td>0.89</td>
<td>1.03</td>
<td>1.65</td>
</tr>
<tr>
<td>Ce</td>
<td>0.10</td>
<td>0.84</td>
<td>0.95</td>
<td>0.86</td>
<td>0.86</td>
<td>0.86</td>
<td>0.86</td>
</tr>
<tr>
<td>Pr</td>
<td>0.09</td>
<td>0.84</td>
<td>0.95</td>
<td>0.86</td>
<td>0.86</td>
<td>0.86</td>
<td>0.86</td>
</tr>
<tr>
<td>Nd</td>
<td>0.89</td>
<td>0.84</td>
<td>0.95</td>
<td>0.86</td>
<td>0.86</td>
<td>0.86</td>
<td>0.86</td>
</tr>
<tr>
<td>Sm</td>
<td>0.89</td>
<td>0.84</td>
<td>0.95</td>
<td>0.86</td>
<td>0.86</td>
<td>0.86</td>
<td>0.86</td>
</tr>
<tr>
<td>Eu</td>
<td>0.89</td>
<td>0.84</td>
<td>0.95</td>
<td>0.86</td>
<td>0.86</td>
<td>0.86</td>
<td>0.86</td>
</tr>
<tr>
<td>Gd</td>
<td>0.89</td>
<td>0.84</td>
<td>0.95</td>
<td>0.86</td>
<td>0.86</td>
<td>0.86</td>
<td>0.86</td>
</tr>
<tr>
<td>Tb</td>
<td>0.89</td>
<td>0.84</td>
<td>0.95</td>
<td>0.86</td>
<td>0.86</td>
<td>0.86</td>
<td>0.86</td>
</tr>
<tr>
<td>Dy</td>
<td>0.89</td>
<td>0.84</td>
<td>0.95</td>
<td>0.86</td>
<td>0.86</td>
<td>0.86</td>
<td>0.86</td>
</tr>
<tr>
<td>Ho</td>
<td>0.89</td>
<td>0.84</td>
<td>0.95</td>
<td>0.86</td>
<td>0.86</td>
<td>0.86</td>
<td>0.86</td>
</tr>
<tr>
<td>Er</td>
<td>0.89</td>
<td>0.84</td>
<td>0.95</td>
<td>0.86</td>
<td>0.86</td>
<td>0.86</td>
<td>0.86</td>
</tr>
<tr>
<td>Tb</td>
<td>0.89</td>
<td>0.84</td>
<td>0.95</td>
<td>0.86</td>
<td>0.86</td>
<td>0.86</td>
<td>0.86</td>
</tr>
<tr>
<td>Yb</td>
<td>0.89</td>
<td>0.84</td>
<td>0.95</td>
<td>0.86</td>
<td>0.86</td>
<td>0.86</td>
<td>0.86</td>
</tr>
<tr>
<td>Lu</td>
<td>0.89</td>
<td>0.84</td>
<td>0.95</td>
<td>0.86</td>
<td>0.86</td>
<td>0.86</td>
<td>0.86</td>
</tr>
</tbody>
</table>
نیز در راستای عمود بر تنها کشیده شده‌اند. علاوه بر این دارای نیوگ کانی‌شناسی و بافت‌های هستند (شکل 6).

- متانازالت

در برخی نمونه‌ها که بسیار زی به بلواره، جهنه‌های بروش با کلسیت و کوارتز و جهت یافته کانی‌ها مشاهده می‌شود. بلافاصله مهم این سلگه، عبارتند از پورپروپولاستیک، تراکتیک و بادامیکی (شکل 6D). زمینه‌هایی ریز بلوه آن‌ها از کانی‌های ورق‌های بوبیت و سلادونت، فلدسپات، اپیدوت، آمفیبولو و کدر تشکیل یافته‌اند. در بلوه‌های بوبیت و سلادونت روی حفره‌های کلسیتی و متعادل قرار گرفته‌اند که احتمالاً با رنگ‌های بی‌پرتویت و پهلویتی کف اقیانوسی زمین‌ساخت است. شواهد درگرگی کف اقیانوسی به صورت اسپیلیتی شدن بروکاله‌ها در برخی نمونه‌ها به صورت کارنی شدن کانی‌های کارتومنزیون و سوسوئیتی شدن پلاژیوکلازها به جسم می‌خورد. پراکن دری از فلدسپات‌ها حاجی‌های خوردگی و فرکس‌های از سرد شدن سریع پلاژیوکلازها و با تأثیرهای تانوئی درگره‌کنی است. باخت- هایی از درشت‌ترین بلوه‌های فلدسپات‌ها در اثر درگره‌کنی کف

[شکل 5 تفاوت بلوه‌های تانوئی که با یکدیگر مشابه است. A: متانازالت با بافت بین دانه‌های ویلک. B: Ch795 795 مگااو. C: Ch801 پلاژیوکلاز که با یکدیگر مشابه است. D: امفیبولو به صورت اسپیلیتی شده‌اند.]

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Fld: feldspar</td>
<td>Bt: biotite</td>
<td>Sph: sphene</td>
<td>Lux: leucoxene</td>
<td>Oqp: opaque</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>نام مینرال</th>
<th>اختصار مینرال</th>
</tr>
</thead>
<tbody>
<tr>
<td>Actinolite</td>
<td>Act</td>
</tr>
<tr>
<td>Hornblende</td>
<td>Hbl</td>
</tr>
<tr>
<td>Epidote</td>
<td>Ep</td>
</tr>
<tr>
<td>Prehnite</td>
<td>Prh</td>
</tr>
<tr>
<td>Sphene</td>
<td>Sph</td>
</tr>
<tr>
<td>Plagioclase</td>
<td>Pl</td>
</tr>
<tr>
<td>Leucoxene</td>
<td>Lux</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>نام مینرال</th>
<th>اختصار مینرال</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biotite</td>
<td>Bt</td>
</tr>
<tr>
<td>Feldspar</td>
<td>Fld</td>
</tr>
<tr>
<td>Muscovite</td>
<td>Ms</td>
</tr>
<tr>
<td>Amphibole</td>
<td>Amp</td>
</tr>
<tr>
<td>Chlorite</td>
<td>Chi</td>
</tr>
<tr>
<td>Calcite</td>
<td>Cal</td>
</tr>
<tr>
<td>Albite</td>
<td>Alb</td>
</tr>
</tbody>
</table>
آمفیبول

آمفیبول از کانی‌های مهم تشکیل دهنده این سنگ‌ها محسوب می‌شود. اهمیت این کانی در تنش ترکیب آن با شرایط مختلف درگوگنی نمود می‌یابد. ترکیب این کانی از نوع آمفیبول‌های کلسیک است (شکل ۷).

در متادیبازها، آمفیبول‌ها ممکن است چرب‌مورفیک هورنبند و چرب‌مورفیک هورنبند دانه دارند. در مواردی که می‌تواند آمفیبول‌ها منشوری حاصل از درگوگنی پسروده پیروسیسی‌ها موجود در آمفیبول‌ها، اكتینولیت است و نمعلومی در وجود فلدساپ‌ها و درون و پرایون اکتینولیت‌ها از نوع منیزیوهورنبند است (شکل ۸). آمفیبول‌ها یکی از مهم‌ترین متمایل کننده‌ای در سنگ‌های درگوگنی و آدرنیندREE دریافت و توزیع آمفیبول‌های مناسب‌ترها، ترکیب کلسیک داند [۱۷].

شکل ۷ آمفیبول‌های مناسب‌ترها، ترکیب کلسیک داند [۱۷].

شکل ۸ ترکیب آمفیبول‌های مناسب‌تر [۱۸].
شکل ۹ نمودار عناصر نادر خاکی در آمیفیول‌ها که نسبت به گوشه‌های علیه بهنگار شده است. مقادیر بهنگار شده از [۱۹] است. مقادیر مربوط به آنانیز آمیفیول‌ها برگرفته از [۱۱] است.

فلدسیار
این کانی بیشتر در میان‌کانی‌ها یافت می‌شود و در واحدهای باریت و دایک‌های منادایزی، متانگلروی و آمیفیولیتی از فراوانی آن کاسته می‌شود. بیوئتی‌ها با جنگ رنگ‌های وابسته به صورت ریز تا میان بلور در راستای شکستگی‌های فلدسیال و در زمینه‌های سفید حضور دارند. ترکیب بیوئتی‌های موجود در دایک‌های منادایزی با بیوئتی‌های موجود در میان‌کانی‌ها متفاوت است. این بیوئتی‌ها بنابر رده‌بندی [۱۲]، به دسته‌های بیوئتی‌های منژیمدار و آهن‌دار تعلق دارند (شکل ۱۱). عناصر آهن و نیکل به‌عنوان ماده‌های سیگنال بیوئتی‌های منادایزی سه‌پهلو که در صورتی که منژیزم موجود در ساختار بیوئتی‌های منادایزی فراوان نیست، ترکیب بیوئتی‌ها در گستره‌های عضو پایانی بیوئتی قرار می‌گیرد (شکل ۱۲).

شکل ۱۰ تعبیه ترکیب فلدسیارهای ناحیه که بلند [۲۱]
شکل 11 بیوئیت‌ها در گسترده‌ای منیزیمدار قرار می‌گیرند [21].

شکل 12 تعیین ترکیب بیوئیت‌های جاد بالند [21].

بحث
شرايط دگرگونی
بر اساس شواهد کانی‌شناسی تغییرات دگرگونی پیش‌رونده در رخساره‌های آمفیبولیت، و سپس دگرگونی پس‌رونده از رخساره‌ی آمفیبولیت به رخساره‌ی شیست سپس را می‌توان مشاهده کرد. در بازالت‌های اسپیلودیشی شده وجود مجموعه کانی‌های پلاژیولاسی، آمفیبول و بیوئیت کربنی شده، ایبدوت و کلسیت نشانگر شرايط رخساره‌ی شیست سپس است.
آمفیپول ها به‌طور مطلق می‌باشد. بنابر نظر [۲۶] میزان هورنیبلدنهای قلبی‌ای می‌تواند به ترکیب سبک میزان و شرایط که تبیتر خم می‌دهد، وابسته‌باشد. در نتیجه بیشینه‌مقدار احتمالی بونهای قلبی‌ای در هورنیبلد، در یک درجه‌دگرگونی خاص با افزایش درجه دگرگونی زیاد می‌شود. بیشترین تغییر ترکیب آمفیپول‌های الیواسی در سبک‌های دگرگونی میان درجه (علاوه بر تغییرات Na، Al) به‌صورت Na، Al، Ca هستند.

از فاصله دوجداری دگرگونی اکتینولیت‌ها به‌صورت Na، Al اکتینولیت‌ها با مقدار جریه Na، Al، Ca در (Ca۲Mg۵Si۸O۲۲(OH)۲) وجود اکتینولیت‌ها در دهانه‌ای دگرگونی که حاوی Na، Al و Ca در می‌تواند اکتینولیت با مقدار مناسب و Ca در (Ca۲Mg۵Si۸O۲۲(OH)۲) در (Ca۲Mg۵Si۸O۲۲(OH)۲)

Na۰.۳Ca۱.۸Na۰.۲(Fe، Mg)۳.۴Al۱.۶Si۶.۳Al۱.۷O۲۲(OH)۲

و اکتشین‌های متعددی بین‌های دگرگونی در اکتفاها در ترکیبات آدنیت و جرمائیت در آمفیپول‌ها درجی دگرگونی را به شرح زیر توضیح می‌دهند:

Tremolite + albite = edenite + quartz
Tremolite + chlorite + zoisite + quartz = tschermakite + H۲O

در آمفیپول‌ها، کلینوپیرآکس‌های آدنیت اولیه به آمفیپول نیاز دارند. در قالب کلینوپیرآکس‌های آدنیت، منیزیم‌هبندی به‌صورت کشیده و بی‌بسته‌بندی بالا و اکتینولیت با بی‌بسته‌بندی مشابه کرد. ادخال آدنیت ریز دانه و -یعنی شکل اسفنجی درون اکتینولیت‌ها وجود دارد. [۲۶] و اکتشین زبر (واکنش ۱) را برای تشکیل آمفیپول از دریوپیسید در شرایط دگرگونی پس‌رویده پیشنهاد می‌کند:

5CaMgSi۲O۶ + H۲O → Ca۴Mg۵Si۱۲O۲۲(OH)۲ + 3CaO + 2SiO۲

واکنش ۱

Diopside + Water → Amphibole + CaO + Silica

وجود اکتشین‌های آدنیت درون اکتینولیت‌ها را می‌توان حاصل واکنش دیوپسید و فازهای تیتان در نتیجه اکتشین‌های زیاد می‌تواند در اکتشین‌های مورث بررسی گذشته از ترکیبات تیتان نظیر لوکوکسن، ایلنیت، اسفن و روتوپل هستند و درون ساختار آمفیپول‌های دگرگونی کمتر از ۰.۰۵pfu تیتانیوم جای گرفته است (شکل [۲۳] و واکنش [۲۶])

واکنش ۲

5CaMgSi۲O۶ + 3TiO۲ + SiO۲ + H۲O → 3CaTiSiO۴ + Ca۲Mg۵Si۱۲O۲۲(OH)۲

Diopside + Rutile + Silica + Water → Sphene + Tremolite

چنانکه در شکل ۱۴ دیده می‌شود، بر اساس رده‌بندی [۲۶]
شکل 14 ترکیب آمفیبول‌های منابعی بین دو قطب کلسیک آمفیبول و مافیک آمفیبول قرار می‌گیرد [25].

همه این واکنش‌ها بنجر به تولید آمفیبول‌های غنی از Na و Al ترکیب حجمی سنگ و استخوان [27] در شکل 15 ارتباط بین تغییرات قلبی و درجه درگچوگی بیان شده است. با افزایش درجه درگچوگی میزان غنای قلبی آمفیبول‌ها افزایش می‌یابد [28]. اکتشاف‌ها که در اثر درگچوگی پسونده Ti و Ca و Na می‌باشد. در کمتری در ساختار خود جای داده‌اند. مقدار Ti در هورنتلند در حضور ویک فاز غنی Ti نظیر رونتی، ایمنی‌ها با افزایش با افزایش درجه درگچوگی، افزایش می‌یابد [29].

از ویژگی‌های مهم هورنتلند می‌توان به جایگزینی Al با Si اشاره کرد که همراه با افزایش درجه درگچوگی است. بنابراین، این جایگزینی فاکتور مهمی در تغییر درجه درگچوگی سنگ میزبان است (شکل 16). حضور اولیه اکتشاف‌ها در یک منابعی و استخوان علاوه بر فشار و دمای متغیر ویenga می‌باشد. در این راستا، اکتشاف‌های مناسب تر در تغییرات Fe/Mg + زونتیم کمک می‌کند. همچنین احتیاطا موجب وجود با نبود اکتشاف‌ها در دو طرف خاص می‌شود. اکتشاف‌های میزبان در هورنتلند با اکتشاف‌های Fe/Mg از نظر قطعات نشان دهند. اکتشاف‌های مناسب و استخوان به‌طور گسترده‌ای Fe/Mg و Fe/Mg و در هورنتلند بالاتر در تغییرات حجمی غنی Fe/Mg با استخوان اکتشاف‌های مناسب Fe/Mg از نظر قطعات نشان دهند. اکتشاف‌های مناسب و استخوان به‌طور گسترده‌ای Fe/Mg و Fe/Mg
شرايط دگرگوني اين موضع داري اسي. در آمفيپوليتها نيژ ايلمنيت وجود دارد. به در ساختار آن Fe^{2+} 11.65 pfu گرافته است.

که بر اساس مقدار Al در ساختار هورتين، كل موجود در ساختار هورتيند، نتيج فشارسنجي (شكل 18) با ارائه کردن كه هورتيند منيزيدار يا دمای 62 و فروچرباك و فرورونيندههاي با دمای 69-659 درجه سانتي گراد در فشار 8 کيلوبار را نشان مي دهد.

دهنههای + Fe در دمای بالا و فوگاسيتیه O_{2} پایین پایدار است. اين مقدار کمتر Fe^{3+} و كریت و آمفيپولها حاوي Fe^{2+} نيژ مقدار كمتر Fe^{3+} هستند. با زمان رخ خواري انتقال شيست سيز به آمفيپوليت به فوگاسيتیه O_{2} نيژ حساس است [21].

جناکه در نمونههای مناسبات چاه پلنگ می توان مکتنت و اينمات نفت كه حاکي از دمای بالا رفتان فوگاسيتیه اکسیژن در اين موضع خواص آن را نشان مي دهد.

شکل 15 ارتباط بين تغييرات فلایيها و درجه ديگرگوني [28].

شکل 16 ارتباط بين برای هورتيند در تمايز محيط کم فشار از محيط با فشار متوسط با استفاده از خط [29] 5kb AlVI Si

Si
شکل ۱۷ میدان‌های ترکیب امفیبول‌ها در رخساردهای داگرولیت خط جداول‌های کمتری فشار بالا از فشار پایین از [۳۱] گرفته شده است [۳۲].

شکل ۱۸ باروترومسی هورنبلدها بر اساس Al کل موجود در ساختارشان [۳۳].

\[P(\pm 0.6 \text{ kbar}) = -3.01 + 4.76 \text{(Al(total))} \]

که بیشتر از میزان‌های مهم Ti در متالوانیک‌ها محصول می‌شود. با توجه به اینکه در ساختار بیوتین ارتباط مستقیم داده‌ای وجود دارد، بر اساس [۳۷] دماسنج بیوتین بر میانی و Ti موجود در ساختار این کامی‌ها در فشار ۴ کیلوپاسکال ارائه کرده است. بیوتین‌های موجود در متالوانیک‌های دمای ۶۶۵°C - ۶۸۸ از بیوتین‌های موجود در ماندارس دمای ۵۹۶ - ۵۸۵ درجه سانتی‌گراد را نشان می‌دهد (شکل ۱۹). دماسنج بیوتین‌ها، دماسنج‌های هورنبلدن - پلاژیوکلاز و فشارسنجی امفیبول‌ها بایانگر شرایط رخسارده آمپولیت برای ماندارس حالت. گاهی درصد آورانیت پلاژیوکلازهای حضر اکتینولیت درجه‌ای داگرولیت آمپولیت‌ها را به سمت رخسارده شیست سپس انتقال می‌دهد [۳۸] (شکل ۲۰).

دماسنج هورنبلدن - پلاژیوکلاژ نیز که توسط [۳۵] ارائه شده است یک دماسنج تعادلی یکه که در مورد سنگ‌های داگرولیت درجات بالاتر از شیست سبز فوئگی مقدار قابل قبول را ارائه نشان می‌دهد، این دماسنج بر مبنای وجود کوارتز در سنگ، دو واکنش زیر را پیش‌نهاد می‌کند. از آنجا که در متابالیت‌ها کوارتز آزاد یافته نیشوند، می‌توان از دماسنج براساس واکنش دوم استفاده کرد.

1) edenite + 4 quartz = tremolite + albite
2) edenite + albite = richterite + anorthite

پس از توجه به دماسنج هورنبلن - پلاژیوکلاز، فشار امفیبول‌های این اساس معادله زیر [۳۶] تخمین زده می‌شود. می‌توان این فشارسنج نیز، Al کل موجود در ساختار امفیبول‌های مقدار حاصل از دما- فشارسنجی در جدول ۴ ارائه شده‌اند.
جدول ۴ نتایج حاصل از دما- فشارسنجی کانی‌های آمفیبول - پلاژیوکلاز.

<table>
<thead>
<tr>
<th>نمونه</th>
<th>Ch801/1</th>
<th>Ch801/2</th>
<th>Ch801/3</th>
<th>Ch795/4</th>
<th>Ch795/5</th>
<th>Ch795/6</th>
<th>Ch795/7</th>
</tr>
</thead>
<tbody>
<tr>
<td>P1 (kb)</td>
<td>12.1</td>
<td>12.8</td>
<td>13.0</td>
<td>12.9</td>
<td>13.0</td>
<td>13.0</td>
<td>12.9</td>
</tr>
<tr>
<td>T (°C)</td>
<td>573.1</td>
<td>582.3</td>
<td>592.8</td>
<td>583.7</td>
<td>592.6</td>
<td>592.4</td>
<td>592.5</td>
</tr>
<tr>
<td>P2 (kb)</td>
<td>8.20</td>
<td>8.10</td>
<td>8.00</td>
<td>8.00</td>
<td>8.00</td>
<td>8.00</td>
<td>8.00</td>
</tr>
<tr>
<td>T (°C)</td>
<td>672.1</td>
<td>653.5</td>
<td>656.5</td>
<td>655.5</td>
<td>656.5</td>
<td>656.5</td>
<td>656.5</td>
</tr>
</tbody>
</table>

$$X(\text{Mg}) = \frac{\text{Mg/Mg + Fe}}{\text{X(Mg)}}$$

$$T = \left(\frac{\text{ln(}Ti\text{)} - a - c(X_{\text{Mg}})^3/b}{b}\right)^{0.333}$$

<table>
<thead>
<tr>
<th>متغیر</th>
<th>ضریب</th>
<th>مقادیر</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>-2.3594</td>
<td></td>
</tr>
<tr>
<td>b</td>
<td>96.4482</td>
<td></td>
</tr>
<tr>
<td>c</td>
<td>-1.7283</td>
<td></td>
</tr>
</tbody>
</table>

شکل ۱۹ دما- فشارسنجی با دمای چاه یالگ [۲۷].

شکل ۲۰ گستره‌ی رخساره‌های دگرگونی منابعی [۲۸].
برداشت
در جنوب چاه چالو، منابع‌های ملاحترکه به‌صورت تهیه‌ی
کم ارتفاع متشکل از آمفیبول‌ها، شناخت و منابع‌های
در همراهی با دگرگونی‌های پالتوزوئیک دوشاخ برونزدی‌افته‌اند.
و اکنون، شناخت و شناسایی ناگهانی از نفوذ ماگماتورها،
و دگرگونی‌ها و منابع‌های درون منابع‌های است.\[3\]

حرضح گسل‌های فرآیند منطقه منجر به ایجاد برق وارگی و
ساخته‌ای کلیه‌های بربگه در سنگ‌های شدید. دگرگونی‌های
مرحله‌ی نیز در منابع‌های خارجی‌دانه ساخته‌ای علاوه بر
دگرگونی کف افکان، دگرگونی در رخ‌های آمفیبول و
شریت سبز نیز تجزیه کرده‌اند. آمفیبول‌ها موجود در
رخ‌های آمبیول‌های افزایش قلیایی، نتیجه‌ی اولیمپیم و
بوئین‌های پایدار در این رخ‌های از آهن و نیکلیوم بیشتر
نسبت به کالی‌های مشابه در رخ‌های دیگر شیست سبز
برخوردارند. نشان دهنده شرایط سبز نشان
نظر آمبیول‌ها، ایجاد و آلیت، نتیجه دما- قلیایی کاتی-\[7\]

های آمبیول و آمبیول - پالتوزوئیک و قیمتی در شیمی‌کاتی
امبیول بینان دگرگونی پسونده در رخ‌های آمبیول‌های
شریت سبز است. میزان کاتی‌های رخ آمبیول نظر
بوئین، آلیت، فلدسپار قلیایی، هورنیلند و اسفان در متن
سنگ بین‌گره‌های قلیایی این سنگ‌ها همانند ماهیت غالب
ماگموتی‌های پالتوزوئیک در ایران است.

فقردانی
نویسنده‌گان این مقاله از دانشگاه اصفهان به خاطر حمایت‌های
مالی و از جنبه‌ای دکتر ساسان باری به دلیل داشته‌اند.
قرار دادن آنالیزهای آمبیول‌ها سپاسگزاری می‌گردد.

مراجع
[1] امینی. م. م. م. ماگموتی‌های پالتوزوئیک در ایران، سنگ‌های افزایش و
انگشت‌های سنگ‌های شناسی و گابران (1389) 471 ص.
[6] - افتاده‌اند، زمین‌شناسی‌ایران، انتشارات سازمان زمین‌شناسی و
انگشت‌های معدنی کشور (1385) 86 ص.

parameters", Institute of Precambrian Geology and Geochronology RAS. (2001?).