شیمی کانی‌های متانالیزه‌های پالئونزوئیک، شاهدی بر تغییرات دگرگونی این سنگ‌ها
(جنوب چای یلگن، شمال شرق استان اصفهان)

فرشته بیات، قدرت ترایب
گروه زمین‌شناسی، دانشگاه اصفهان
(دریافت مقاله: 1392/08/27، نسخه نهایی: 1392/05/8)

چکیده: متانالیزه‌های پالئونزوئیک زیرین جنوب چای یلگن در شمال بلک برک از زون ایران مرکزی، با گسترش محدود در همه‌های‌پایتختی که دارای پوگانتی بیش از یک میلیون سال قدمت دارد، در آنها نشانه‌های متانالیزه‌ای از پیش‌برد در طول زمان دارد. در این مطالعه قصد تشخیص متانالیزه‌های تاریخی در این منطقه و شناسایی عوامل تأثیرگذار در آنها دارد و در نهایت به کنارت‌های خاصی از سنگ‌های میоцен استان اصفهان پاییده می‌شوند.

واژه‌های کلیدی: شیمی کانی، متانالیز، پالئونزوئیک، ایران مرکزی، جهان یلگن، اصفهان

مدله و زمین‌شناسی عمومی
پالئونزوئیک، یکی از طولانی‌ترین دوران‌های زمین‌شناسی بوده که در میانه‌های هزاران به دو ربخان همه زمین‌ساخته، کالدون و هرمنن است. به این حال، سنگ‌های ماجراجوضی شیمی‌پذیر، سیال و خاصاً در نواحی محدودتر از دوران‌های دیگر زمین‌شناسی بوده و پر انتقالی و درک‌گذار کمتری داشته است. شیمی در جزییاتی مانند رنگ‌های زمین‌ساختی و رنگ‌های دگرگونی متعدد است. متانالیزه‌های مورد بررسی نخست در رخ‌سازی‌های میانالیزی و سپس در رخ‌سازی‌های سیال دستخوش دگرگونی شده‌اند.

منابع:
[1] مقدمه و زمین‌شناسی عمومی
[2] نسبت به جهان یلگن و پشت پاها، یک
[3] و سپس راه‌های خاصی می‌توانند به این منطقه امکان‌پذیر است.
[5] در ناحیه ایکر تا حوالی ساغن و پشت بامان، یک
[6] مجموعه‌ی شیمی‌پذیری درک پرونز در که همراهی از
[7] یلگن‌های گرافیتی، کوارتز، سنگ‌های متانور، مولیئات
[8] ایپیدوت شیب‌های میکانیستی و گنگ‌های داده. این مجموعه را [4] نوشته مسئول تلفن: 021(79342152، پست الکترونیکی: F.bayat@geol.ui.ac.ir

* F.bayat@geol.ui.ac.ir

Downloaded from ijcm.ir at 942-0303 on Sunday October 13th 2019
همراه با سنگ‌های پالتوزوئیک زبرین-پروتروژنیک فوقانی هستند و همه آن‌ها در رخساره شیب‌سنگ‌پوش سیر ده‌گونگ شده‌اند. این سیر بر اساس اثر آتیک – جنگل شناسی کرده است که جوان‌ترین آنها به برابر بالینگی دوشاخ است. توجه به سن نسبت داده شده به متانژیت‌های چاه بلند و تنویع واحدهای سنگی و درجات دگرگونی در این ناحیه، بررسی‌های دقیق شیمی‌ای داده‌ها، فشار سنجی و تعیین شرایط دگرگونی ضرورت می‌یابد.

روش‌های بررسی‌های محیطی و جمع‌آوری نمونه‌های لازم، مقاطع نازک – صفحی از آن‌ها و به‌سادگی سنگ شناسی صورت OLYMPUS BA-2H2 از میکروسکوب مدل گرفت. تعدادی از کلیه‌های تعریف شده ترکیب و محاسبه‌ی فرمول‌ساختار آن‌ها در دانشگاه لینمبز هانوفر آلمان، با ریز پذیرش الکترونی Cameca SX 100 - به‌سادگی شناسایی دهند. انرژی جریان 15kV و جریان 1Anالیز شدند. داده‌های حاصل از آنالیز کلیه‌ها و فرمول‌ساختار محاسبه‌شده به داده‌های کمتر از 1 آورده شدند. نتایج نميبل 202.02 اصلی و نادر خاکی تعدادی از آمیفیل‌ها توسط [11] با دستگاه LA-ICP-MS در دانشگاه لوران سوئنسن به‌کار گرفت و نتایج LA-ICP-MS آن‌ها در جدول 3 آورده شدند. مفادی این آمیفیل‌ها با عمل تصحیحات در نمودار بین‌ج卡尔‌سازی ارائه شده است.

متانژیت‌های چاه بلند شامل واحدهای سنگی آمیفیولیت، یازالت، تراکی بازالت، سنگ‌های آتشف‌سیاه و متانژیت‌های آتشف‌سیاه با ده‌گونگ شده‌اند. این سنگ‌های سبز در محله‌ی شاه‌کوه و نزدیک به سن کرتاسی و یک‌نیمه‌ی برخی سازند و سکونی می‌باشند. جنگل در ناحیه زمین‌شناسی (شکل 3) و تغییرات عوارض خیالی خوراب خور و تور سیر در شیب، متانژیت‌ها از گستره‌ای انگی چرخ در بوده و به‌صورت پراکنده، به‌همراه کم ارتقای را تشکیل داده‌اند. [10]. چینه نگاری میزان دگرگونی دوشاخ، با سن اولیه پالتوزوئیک را به‌صورت زیر معروف می‌کند:

در بخش پایینی پیشتر مرموچ و مادولومیت، کوارتز و سیلیس‌های سنتی تشکیل‌دهنده سنگ‌های پالتوزوئیک در بخش میانی و متانژیت‌های سبز در بخش فوقانی و جلو داده‌اند. [9].

دو نمونه از سنگ‌های متانژیت‌های نسبت داده شده به پالتوزوئیک زبرین با روش K-Ar در سنگ‌شناسی شدن‌که به نمونه سن معاله‌ای اردویسی (2400 میلیون سال قبیل) و دیگر سن معادل اخر تربیس (24سیلو سال قبل) را نشان داده‌اند. [11] نویسنده‌ها در پایان نقشه‌که سین جوان نمونه دوم احتمالاً به جای‌جایی‌های کم‌برنده واپسین ایستاده است. سن متانژیت‌ها در حال حاضر بسیار برکنر است. این توده‌ها

شکل 3: تقسیم زمین‌شناسی ساده شده منطقهٔ چاه بلند [3]
جدول 1: نتایج حاصل از آنالیز تنظرات کانی های منطقه جاه هنگ (wt%).

<table>
<thead>
<tr>
<th>کانی</th>
<th>تنومنه</th>
<th>SiO<sub>2</sub></th>
<th>TiO<sub>2</sub></th>
<th>Al<sub>2</sub>O<sub>3</sub></th>
<th>FeO<sup>+</sup></th>
<th>Cr<sub>2</sub>O<sub>3</sub></th>
<th>MnO</th>
<th>MgO</th>
<th>CaO</th>
<th>Na<sub>2</sub>O</th>
<th>K<sub>2</sub>O</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>آمفیبول</td>
<td>Ch 801/1</td>
<td>57.09</td>
<td>0.36</td>
<td>1.18</td>
<td>11.41</td>
<td>0.14</td>
<td>0.15</td>
<td>13.75</td>
<td>7.70</td>
<td>10.34</td>
<td>9.05</td>
<td>94.76</td>
</tr>
<tr>
<td>آمفیبول</td>
<td>Ch 801/2</td>
<td>57.20</td>
<td>0.17</td>
<td>1.01</td>
<td>11.29</td>
<td>0.27</td>
<td>0.02</td>
<td>13.53</td>
<td>7.67</td>
<td>10.13</td>
<td>9.32</td>
<td>94.98</td>
</tr>
<tr>
<td>آمفیبول</td>
<td>Ch 801/3</td>
<td>44.06</td>
<td>0.30</td>
<td>1.15</td>
<td>11.28</td>
<td>0.19</td>
<td>0.14</td>
<td>13.50</td>
<td>7.67</td>
<td>10.30</td>
<td>9.05</td>
<td>95.85</td>
</tr>
<tr>
<td>آمفیبول</td>
<td>Ch 795/4</td>
<td>42.24</td>
<td>0.25</td>
<td>0.20</td>
<td>13.56</td>
<td>0.34</td>
<td>0.14</td>
<td>16.35</td>
<td>8.24</td>
<td>11.51</td>
<td>8.18</td>
<td>96.77</td>
</tr>
<tr>
<td>آمفیبول</td>
<td>Ch 795/5</td>
<td>32.19</td>
<td>0.25</td>
<td>0.20</td>
<td>13.56</td>
<td>0.34</td>
<td>0.14</td>
<td>16.35</td>
<td>8.24</td>
<td>11.51</td>
<td>8.18</td>
<td>96.77</td>
</tr>
<tr>
<td>آمفیبول</td>
<td>Ch 795/6</td>
<td>28.78</td>
<td>0.29</td>
<td>0.20</td>
<td>13.56</td>
<td>0.34</td>
<td>0.14</td>
<td>16.35</td>
<td>8.24</td>
<td>11.51</td>
<td>8.18</td>
<td>96.77</td>
</tr>
<tr>
<td>آمفیبول</td>
<td>Ch 795/7</td>
<td>28.78</td>
<td>0.29</td>
<td>0.20</td>
<td>13.56</td>
<td>0.34</td>
<td>0.14</td>
<td>16.35</td>
<td>8.24</td>
<td>11.51</td>
<td>8.18</td>
<td>96.77</td>
</tr>
<tr>
<td>بوئینت</td>
<td>Ch 795/13</td>
<td>35.71</td>
<td>1.54</td>
<td>1.42</td>
<td>16.48</td>
<td>1.16</td>
<td>0.14</td>
<td>17.13</td>
<td>8.24</td>
<td>11.51</td>
<td>8.18</td>
<td>96.77</td>
</tr>
<tr>
<td>بوئینت</td>
<td>Ch 795/14</td>
<td>35.71</td>
<td>1.54</td>
<td>1.42</td>
<td>16.48</td>
<td>1.16</td>
<td>0.14</td>
<td>17.13</td>
<td>8.24</td>
<td>11.51</td>
<td>8.18</td>
<td>96.77</td>
</tr>
<tr>
<td>بوئینت</td>
<td>Ch 795/15</td>
<td>36.25</td>
<td>1.54</td>
<td>1.42</td>
<td>16.48</td>
<td>1.16</td>
<td>0.14</td>
<td>17.13</td>
<td>8.24</td>
<td>11.51</td>
<td>8.18</td>
<td>96.77</td>
</tr>
<tr>
<td>بوئینت</td>
<td>Ch 795/16</td>
<td>35.71</td>
<td>1.54</td>
<td>1.42</td>
<td>16.48</td>
<td>1.16</td>
<td>0.14</td>
<td>17.13</td>
<td>8.24</td>
<td>11.51</td>
<td>8.18</td>
<td>96.77</td>
</tr>
<tr>
<td>بوئینت</td>
<td>Ch 795/17</td>
<td>35.71</td>
<td>1.54</td>
<td>1.42</td>
<td>16.48</td>
<td>1.16</td>
<td>0.14</td>
<td>17.13</td>
<td>8.24</td>
<td>11.51</td>
<td>8.18</td>
<td>96.77</td>
</tr>
<tr>
<td>بوئینت</td>
<td>Ch 800/18</td>
<td>35.71</td>
<td>1.54</td>
<td>1.42</td>
<td>16.48</td>
<td>1.16</td>
<td>0.14</td>
<td>17.13</td>
<td>8.24</td>
<td>11.51</td>
<td>8.18</td>
<td>96.77</td>
</tr>
<tr>
<td>بوئینت</td>
<td>Ch 800/19</td>
<td>35.71</td>
<td>1.54</td>
<td>1.42</td>
<td>16.48</td>
<td>1.16</td>
<td>0.14</td>
<td>17.13</td>
<td>8.24</td>
<td>11.51</td>
<td>8.18</td>
<td>96.77</td>
</tr>
<tr>
<td>بوئینت</td>
<td>Ch 800/20</td>
<td>35.71</td>
<td>1.54</td>
<td>1.42</td>
<td>16.48</td>
<td>1.16</td>
<td>0.14</td>
<td>17.13</td>
<td>8.24</td>
<td>11.51</td>
<td>8.18</td>
<td>96.77</td>
</tr>
<tr>
<td>بوئینت</td>
<td>Ch 800/21</td>
<td>35.71</td>
<td>1.54</td>
<td>1.42</td>
<td>16.48</td>
<td>1.16</td>
<td>0.14</td>
<td>17.13</td>
<td>8.24</td>
<td>11.51</td>
<td>8.18</td>
<td>96.77</td>
</tr>
<tr>
<td>بوئینت</td>
<td>Ch 800/22</td>
<td>35.71</td>
<td>1.54</td>
<td>1.42</td>
<td>16.48</td>
<td>1.16</td>
<td>0.14</td>
<td>17.13</td>
<td>8.24</td>
<td>11.51</td>
<td>8.18</td>
<td>96.77</td>
</tr>
<tr>
<td>فلزسادات</td>
<td>Ch 801/23</td>
<td>87.25</td>
<td>0.47</td>
<td>0.01</td>
<td>16.48</td>
<td>0.10</td>
<td>0.08</td>
<td>17.13</td>
<td>8.24</td>
<td>11.51</td>
<td>8.18</td>
<td>96.77</td>
</tr>
<tr>
<td>فلزسادات</td>
<td>Ch 801/24</td>
<td>87.25</td>
<td>0.47</td>
<td>0.01</td>
<td>16.48</td>
<td>0.10</td>
<td>0.08</td>
<td>17.13</td>
<td>8.24</td>
<td>11.51</td>
<td>8.18</td>
<td>96.77</td>
</tr>
<tr>
<td>فلزسادات</td>
<td>Ch 795/25</td>
<td>89.14</td>
<td>0.13</td>
<td>0.01</td>
<td>16.48</td>
<td>0.10</td>
<td>0.08</td>
<td>17.13</td>
<td>8.24</td>
<td>11.51</td>
<td>8.18</td>
<td>96.77</td>
</tr>
<tr>
<td>تاکیو</td>
<td>Ch 795/26</td>
<td>82.98</td>
<td>0.07</td>
<td>0.01</td>
<td>16.48</td>
<td>0.10</td>
<td>0.08</td>
<td>17.13</td>
<td>8.24</td>
<td>11.51</td>
<td>8.18</td>
<td>96.77</td>
</tr>
<tr>
<td>اینت</td>
<td>Ch 800/37</td>
<td>82.98</td>
<td>0.07</td>
<td>0.01</td>
<td>16.48</td>
<td>0.10</td>
<td>0.08</td>
<td>17.13</td>
<td>8.24</td>
<td>11.51</td>
<td>8.18</td>
<td>96.77</td>
</tr>
<tr>
<td>مگنتیت</td>
<td>Ch 800/39</td>
<td>82.98</td>
<td>0.07</td>
<td>0.01</td>
<td>16.48</td>
<td>0.10</td>
<td>0.08</td>
<td>17.13</td>
<td>8.24</td>
<td>11.51</td>
<td>8.18</td>
<td>96.77</td>
</tr>
<tr>
<td>اینت</td>
<td>Ch 801/40</td>
<td>82.98</td>
<td>0.07</td>
<td>0.01</td>
<td>16.48</td>
<td>0.10</td>
<td>0.08</td>
<td>17.13</td>
<td>8.24</td>
<td>11.51</td>
<td>8.18</td>
<td>96.77</td>
</tr>
</tbody>
</table>

شکل 4: تصاویر صحرایی مربوط به مناطقی که متعلق به جاه هنگ (A) دایک‌های آمفیبولیتی، دیبازی و متاگابروتو در بین مناطق تکنولوژی‌های فولیاسیون دار (B) مانندتکنیک‌ها بحورت مروکت و دارای برگدریگی هستند.
جدول ۲
تغییر فرمول‌سازی‌های مطلق دهنده متابولیت‌های چاه بلند

<table>
<thead>
<tr>
<th>نمونه</th>
<th>کاتی</th>
<th>Si</th>
<th>Ti</th>
<th>Al²⁺</th>
<th>Al³⁺</th>
<th>Fe³⁺</th>
<th>Fe²⁺</th>
<th>Cr</th>
<th>Mn</th>
<th>Mg</th>
<th>Ca</th>
<th>Na</th>
<th>K</th>
<th>Sum cat</th>
<th>Oxygen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ch 801/1</td>
<td>آکسیتانیت</td>
<td>0.24</td>
<td>0.14</td>
<td>0.67</td>
<td>0.32</td>
<td>0.12</td>
<td>0.07</td>
<td>0.19</td>
<td>0.22</td>
<td>0.27</td>
<td>0.19</td>
<td>0.19</td>
<td>0.18</td>
<td>0.22</td>
<td></td>
</tr>
<tr>
<td>Ch 801/2</td>
<td>آکسیتانیت</td>
<td>0.25</td>
<td>0.14</td>
<td>0.67</td>
<td>0.32</td>
<td>0.12</td>
<td>0.07</td>
<td>0.19</td>
<td>0.22</td>
<td>0.27</td>
<td>0.19</td>
<td>0.19</td>
<td>0.18</td>
<td>0.22</td>
<td></td>
</tr>
<tr>
<td>Ch 801/3</td>
<td>میزیوهربند</td>
<td>0.30</td>
<td>0.20</td>
<td>0.75</td>
<td>0.25</td>
<td>0.13</td>
<td>0.08</td>
<td>0.20</td>
<td>0.25</td>
<td>0.30</td>
<td>0.20</td>
<td>0.20</td>
<td>0.19</td>
<td>0.25</td>
<td></td>
</tr>
<tr>
<td>Ch 795/4</td>
<td>فورچومیوس</td>
<td>0.33</td>
<td>0.23</td>
<td>0.78</td>
<td>0.22</td>
<td>0.15</td>
<td>0.09</td>
<td>0.23</td>
<td>0.28</td>
<td>0.33</td>
<td>0.23</td>
<td>0.23</td>
<td>0.22</td>
<td>0.28</td>
<td></td>
</tr>
<tr>
<td>Ch 795/5</td>
<td>جرماک هوربند</td>
<td>0.34</td>
<td>0.24</td>
<td>0.79</td>
<td>0.21</td>
<td>0.15</td>
<td>0.09</td>
<td>0.24</td>
<td>0.29</td>
<td>0.34</td>
<td>0.24</td>
<td>0.24</td>
<td>0.23</td>
<td>0.29</td>
<td></td>
</tr>
<tr>
<td>Ch 795/6</td>
<td>جرماک هوربند</td>
<td>0.34</td>
<td>0.24</td>
<td>0.79</td>
<td>0.21</td>
<td>0.15</td>
<td>0.09</td>
<td>0.24</td>
<td>0.29</td>
<td>0.34</td>
<td>0.24</td>
<td>0.24</td>
<td>0.23</td>
<td>0.29</td>
<td></td>
</tr>
<tr>
<td>Ch 795/7</td>
<td>107.2</td>
<td></td>
</tr>
</tbody>
</table>

جدول ۳
نتایج آنالیز تغییرات آمپیلوی‌ها (wt%) [11]

<table>
<thead>
<tr>
<th>نمونه</th>
<th>کاتی</th>
<th>SiO₂</th>
<th>TiO₂</th>
<th>Al₂O₃</th>
<th>FeO³⁺</th>
<th>Cr₂O₃</th>
<th>MnO</th>
<th>MgO</th>
<th>CaO</th>
<th>Na₂O</th>
<th>K₂O</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ch 5a1</td>
<td>آمپیلوی</td>
<td>0.23</td>
<td>0.16</td>
<td>0.63</td>
<td>0.33</td>
<td>0.14</td>
<td>0.08</td>
<td>0.21</td>
<td>0.26</td>
<td>0.29</td>
<td>0.20</td>
<td>0.21</td>
</tr>
<tr>
<td>Ch 5a2</td>
<td>آمپیلوی</td>
<td>0.23</td>
<td>0.16</td>
<td>0.63</td>
<td>0.33</td>
<td>0.14</td>
<td>0.08</td>
<td>0.21</td>
<td>0.26</td>
<td>0.29</td>
<td>0.20</td>
<td>0.21</td>
</tr>
<tr>
<td>Ch 5a3</td>
<td>آمپیلوی</td>
<td>0.24</td>
<td>0.17</td>
<td>0.63</td>
<td>0.34</td>
<td>0.14</td>
<td>0.09</td>
<td>0.22</td>
<td>0.27</td>
<td>0.30</td>
<td>0.20</td>
<td>0.22</td>
</tr>
<tr>
<td>Ch 5b1</td>
<td>آمپیلوی</td>
<td>0.24</td>
<td>0.17</td>
<td>0.63</td>
<td>0.34</td>
<td>0.14</td>
<td>0.09</td>
<td>0.22</td>
<td>0.27</td>
<td>0.30</td>
<td>0.20</td>
<td>0.22</td>
</tr>
<tr>
<td>Ch 5b2</td>
<td>آمپیلوی</td>
<td>0.24</td>
<td>0.17</td>
<td>0.63</td>
<td>0.34</td>
<td>0.14</td>
<td>0.09</td>
<td>0.22</td>
<td>0.27</td>
<td>0.30</td>
<td>0.20</td>
<td>0.22</td>
</tr>
<tr>
<td>Ch 5c1</td>
<td>آمپیلوی</td>
<td>0.24</td>
<td>0.17</td>
<td>0.63</td>
<td>0.34</td>
<td>0.14</td>
<td>0.09</td>
<td>0.22</td>
<td>0.27</td>
<td>0.30</td>
<td>0.20</td>
<td>0.22</td>
</tr>
<tr>
<td>Ch 5c2</td>
<td>آمپیلوی</td>
<td>0.24</td>
<td>0.17</td>
<td>0.63</td>
<td>0.34</td>
<td>0.14</td>
<td>0.09</td>
<td>0.22</td>
<td>0.27</td>
<td>0.30</td>
<td>0.20</td>
<td>0.22</td>
</tr>
</tbody>
</table>

جدول ۴

<table>
<thead>
<tr>
<th>نمونه</th>
<th>کاتی</th>
<th>Si</th>
<th>Ti</th>
<th>Al²⁺</th>
<th>Al³⁺</th>
<th>Fe³⁺</th>
<th>Fe²⁺</th>
<th>Cr</th>
<th>Mn</th>
<th>Mg</th>
<th>Ca</th>
<th>Na</th>
<th>K</th>
<th>Sum cat</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ch 5a1</td>
<td>میزیوهربند</td>
<td>0.23</td>
<td>0.16</td>
<td>0.63</td>
<td>0.33</td>
<td>0.14</td>
<td>0.08</td>
<td>0.21</td>
<td>0.26</td>
<td>0.29</td>
<td>0.20</td>
<td>0.21</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ch 5a2</td>
<td>میزیوهربند</td>
<td>0.23</td>
<td>0.16</td>
<td>0.63</td>
<td>0.33</td>
<td>0.14</td>
<td>0.08</td>
<td>0.21</td>
<td>0.26</td>
<td>0.29</td>
<td>0.20</td>
<td>0.21</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ch 5a3</td>
<td>میزیوهربند</td>
<td>0.24</td>
<td>0.17</td>
<td>0.63</td>
<td>0.34</td>
<td>0.14</td>
<td>0.09</td>
<td>0.22</td>
<td>0.27</td>
<td>0.30</td>
<td>0.20</td>
<td>0.22</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ch 5b1</td>
<td>میزیوهربند</td>
<td>0.24</td>
<td>0.17</td>
<td>0.63</td>
<td>0.34</td>
<td>0.14</td>
<td>0.09</td>
<td>0.22</td>
<td>0.27</td>
<td>0.30</td>
<td>0.20</td>
<td>0.22</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ch 5b2</td>
<td>میزیوهربند</td>
<td>0.24</td>
<td>0.17</td>
<td>0.63</td>
<td>0.34</td>
<td>0.14</td>
<td>0.09</td>
<td>0.22</td>
<td>0.27</td>
<td>0.30</td>
<td>0.20</td>
<td>0.22</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ch 5c1</td>
<td>میزیوهربند</td>
<td>0.24</td>
<td>0.17</td>
<td>0.63</td>
<td>0.34</td>
<td>0.14</td>
<td>0.09</td>
<td>0.22</td>
<td>0.27</td>
<td>0.30</td>
<td>0.20</td>
<td>0.22</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ch 5c2</td>
<td>میزیوهربند</td>
<td>0.24</td>
<td>0.17</td>
<td>0.63</td>
<td>0.34</td>
<td>0.14</td>
<td>0.09</td>
<td>0.22</td>
<td>0.27</td>
<td>0.30</td>
<td>0.20</td>
<td>0.22</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
جدول ۳ - عناصر نادراً امفیبولی (۱)

<table>
<thead>
<tr>
<th>تونومه</th>
<th>Ch5a1</th>
<th>Ch5a2</th>
<th>Ch5a3</th>
<th>Ch5b1</th>
<th>Ch5b2</th>
<th>Ch5c1</th>
<th>Ch5c2</th>
</tr>
</thead>
<tbody>
<tr>
<td>La</td>
<td>۲۲.۱۶</td>
<td>۳۳.۱۱</td>
<td>۲۹.۲</td>
<td>۲۱.۳۷</td>
<td>۱۸.۵۸</td>
<td>۲۷.۳۴</td>
<td>۱۹.۵۲</td>
</tr>
<tr>
<td>Ce</td>
<td>۴۵.۲۲</td>
<td>۴۱.۳۸</td>
<td>۳۸.۸۳</td>
<td>۵۵.۵۷</td>
<td>۵۸.۸۸</td>
<td>۵۹.۴۲</td>
<td>۵۷.۵۲</td>
</tr>
<tr>
<td>Pr</td>
<td>۹.۵۶</td>
<td>۱۱.۸۹</td>
<td>۱۲.۷۱</td>
<td>۹.۸۴</td>
<td>۸.۵۳</td>
<td>۹.۶۸</td>
<td>۸.۱۸</td>
</tr>
<tr>
<td>Nd</td>
<td>۶۸.۴۰</td>
<td>۶۸.۵۸</td>
<td>۶۸.۵۵</td>
<td>۶۸.۵۸</td>
<td>۶۸.۵۸</td>
<td>۶۸.۵۸</td>
<td>۶۸.۵۸</td>
</tr>
<tr>
<td>Sm</td>
<td>۱۵.۱۶</td>
<td>۱۸.۷۵</td>
<td>۲۳.۴۴</td>
<td>۱۵۵.۵۵</td>
<td>۱۵۵.۵۵</td>
<td>۱۵۵.۵۵</td>
<td>۱۵۵.۵۵</td>
</tr>
<tr>
<td>Eu</td>
<td>۹.۴۹</td>
<td>۹.۴۹</td>
<td>۹.۴۹</td>
<td>۹.۴۹</td>
<td>۹.۴۹</td>
<td>۹.۴۹</td>
<td>۹.۴۹</td>
</tr>
<tr>
<td>Gd</td>
<td>۱۱.۱۸</td>
<td>۱۱.۱۸</td>
<td>۱۱.۱۸</td>
<td>۱۱.۱۸</td>
<td>۱۱.۱۸</td>
<td>۱۱.۱۸</td>
<td>۱۱.۱۸</td>
</tr>
<tr>
<td>Dy</td>
<td>۳.۲۳</td>
<td>۳.۲۳</td>
<td>۳.۲۳</td>
<td>۳.۲۳</td>
<td>۳.۲۳</td>
<td>۳.۲۳</td>
<td>۳.۲۳</td>
</tr>
<tr>
<td>Ho</td>
<td>۸۹.۱۴</td>
<td>۸۹.۱۴</td>
<td>۸۹.۱۴</td>
<td>۸۹.۱۴</td>
<td>۸۹.۱۴</td>
<td>۸۹.۱۴</td>
<td>۸۹.۱۴</td>
</tr>
<tr>
<td>Er</td>
<td>۳.۱۸</td>
<td>۳.۱۸</td>
<td>۳.۱۸</td>
<td>۳.۱۸</td>
<td>۳.۱۸</td>
<td>۳.۱۸</td>
<td>۳.۱۸</td>
</tr>
<tr>
<td>Tm</td>
<td>۱۱.۱۸</td>
<td>۱۱.۱۸</td>
<td>۱۱.۱۸</td>
<td>۱۱.۱۸</td>
<td>۱۱.۱۸</td>
<td>۱۱.۱۸</td>
<td>۱۱.۱۸</td>
</tr>
<tr>
<td>Yb</td>
<td>۸.۴۸</td>
<td>۸.۴۸</td>
<td>۸.۴۸</td>
<td>۸.۴۸</td>
<td>۸.۴۸</td>
<td>۸.۴۸</td>
<td>۸.۴۸</td>
</tr>
<tr>
<td>Lu</td>
<td>۸.۷۲</td>
<td>۸.۷۲</td>
<td>۸.۷۲</td>
<td>۸.۷۲</td>
<td>۸.۷۲</td>
<td>۸.۷۲</td>
<td>۸.۷۲</td>
</tr>
</tbody>
</table>

سنج شناختی

و Behdehaye Drgorgohine ناحیه‌ی چه بنبش متشکل از متالوکاتیک، متادیاباز، متابلوکار و امفیبولیت است که به صورت پراکندگی با گستره‌ی کم که طول آن‌ها حدود ۲۰ کیلومتر و به عرض مداوم متره به دنبال به یک کیلومتر مس رشد هماز با دارگونه‌های متداول شاهد می‌شوند. ارتباط آن‌ها با سنگ‌های پیروان در بعضی‌ها و به‌صورت گسل است. متادیابازها در اثر فعالیت‌های شدید زمین‌ساخی، در منطقه، با ساختار خودتراش و گیری و دگرگونی با نسبت مختلف شده‌اند. بنابراین عناصر متادیاباز و متادیابازها در بالا در ساختار متالوکاتیک نفوذ کرده‌اند. بنابراین به‌نظر می‌رسد که پی در پی‌نار در میان‌ها نیز این‌سانگ‌ها تشکیل شده‌اند (شکل ۴).

آمفیبولیت

در سنگ‌های دستی در دو جزئی امفیبولیت به‌صورت مشوری و در جزئی امفیبولیت به‌صورت مشوری پراکنده، امفیبولیت و پراکنده‌هایی راه‌اندازی خود از گروه‌های امفیبولیت به‌شمار می‌رود، به این معنی است که این آمفیبولیت‌ها در دو گروه اسمی و اسمنی‌تر از امفیبولیت تشکیل دهند. چاپ‌ها و (C)، مشابه می‌باشد (شکل ۴). در سنگ‌های گراتولسیک، پویا، کلیولوستیک و لبیدولوستیک است. امفیبولیت‌ها در ساختار مشوری و سنج‌های دستی به‌صورت متادیاباز و متادیاباز مشابه‌هایی از امفیبولیت‌ها مشابه‌هایی در دو گروه مشابه منطقه‌ای و بدون هیچ گونه حاشیه‌ای و چاپ‌های مشابه‌های می‌شوند. در جزئی‌هایی که در روند آمفیبولیت‌های مشوری نیز ادخال‌هایی از اسمنی امفیبولیت‌های

سنج شناختی

و Behdehaye Drgorgohine ناحیه‌ی چه بنبش متشکل از متالوکاتیک، متادیاباز، متابلوکار و امفیبولیت است که به صورت پراکندگی با گستره‌ی کم که طول آن‌ها حدود ۲۰ کیلومتر و به عرض مداوم متره به دنبال به یک کیلومتر مس رشد هماز با دارگونه‌های متداول شاهد می‌شوند. ارتباط آن‌ها با سنگ‌های پیروان در بعضی‌ها و به‌صورت گسل است. متادیابازها در اثر فعالیت‌های شدید زمین‌ساخی، در منطقه، با ساختار خودتراش و گیری و دگرگونی با نسبت مختلف شده‌اند. بنابراین عناصر متادیاباز و متادیابازها در بالا در ساختار متالوکاتیک نفوذ کرده‌اند. بنابراین به‌نظر می‌رسد که پی در پی‌نار در میان‌ها نیز این‌سانگ‌ها تشکیل شده‌اند (شکل ۴).

آمفیبولیت

در سنگ‌های دستی در دو جزئی امفیبولیت به‌صورت مشوری و در جزئی امفیبولیت به‌صورت مشوری پراکنده، امفیبولیت و پراکنده‌هایی راه‌اندازی خود از گروه‌های امفیبولیت به‌شمار می‌رود، به این معنی است که این آمفیبولیت‌ها در دو گروه اسمی و اسمنی‌تر از امفیبولیت تشکیل دهند. چاپ‌ها و (C)، مشابه می‌باشد (شکل ۴). در سنگ‌های گراتولسیک، پویا، کلیولوستیک و لبیدولوستیک است. امفیبولیت‌ها در ساختار مشوری و سنج‌های دستی به‌صورت متادیاباز و متادیاباز مشابه‌هایی از امفیبولیت‌ها مشابه‌هایی در دو گروه مشابه منطقه‌ای و بدون هیچ گونه حاشیه‌ای و چاپ‌های مشابه‌های می‌شوند. در جزئی‌هایی که در روند آمفیبولیت‌های مشوری نیز ادخال‌هایی از اسمنی امفیبولیت‌های
شیمی کانی‌های منتاژیت‌های پالژوتوپیک، شاهد بر ...

۴۹

جلد ۱۸، شماره ۱۵، بهار ۱۳۸۹

بی‌پیش‌بازت

در برخی نمونه‌ها که بسیار ریز بلورند، حفره‌های پر شده با کلسیت و کوارتز و جهت یافتن کانی‌ها مشاهده می‌شود. بافت مهم این سنگ‌ها، عبارتند از پورفیرولاستیک، تراکینی و بادامی (شکل ۳D). زمینه‌های ریز بلوار آن‌ها از کانی‌های ورق‌های بیوتیت و سلادونیت، فلدنیت، اپیدوت، آمفیبول و کدر تشکیل شده است. بلوهای بیوتیت و سلادونیت روی حفره‌های کلسیتی و متعدال قرار گرفته‌اند که احتمالاً بیانگر تشکیل بیوتیت‌های هم‌زمان با زمین‌ساختی است. شواهد درک‌گونی کف اقیانوسی به‌صورت اسپینالیت شدن پلاژیکلاز‌ها در برخی نمونه‌ها به‌صورت کانی‌های فرومینیت و سوسورینیت شدن پلاژیکلاز‌ها به چسب می‌خورد. پرآمدن بروز از فلدنیت‌ها حاضری‌های جهانی و جودار که احتمالاً ناشی از سرد شدن سریع پلاژیکلاز‌ها و با تأثیری ناشی‌ده درک‌گونی است. بخش ۵

های این سنگ‌ها کانی‌های بیوتیت به‌صورت اپیدوت‌های خاص (شکل A) سمت‌گیری کردند.

نیز در راستای عمود بر تنش‌ها کشیده شده‌اند. علاوه بر این دارای تنوغ کانی شناسي و بافتی هستند (شکل ۶).

- منتابازت

علاء و بر ساختار جریانی سنگ اولیه، در اثر درک‌گونی ناحیه‌ای و عمل عوارض تغییرات جهت‌دار در نمونه‌های منتقل و بروزگویی کاملاً واضح و در مقطع نارک تعدادی نفوذکردن و جهت‌پذیری کانی‌ها (شکل ۳C) را می‌توان مشاهده کرد. از بافت‌های اصلی منتابازت‌ها بازالت‌ها می‌توان، پورفیرولاستیک و جریانی را نام برد (شکل ۲B).

در شکل B (شکل ۵) تصاویر میکروسکوپی از منتابازت‌های ناحیه‌ای چه یکپک A: منتابازت با بافت به دانی نویل (نمونه ۷۹۹۵) منتاژیت‌پویه است. C: پلاژیکلاز و آمفیبول از شبکه‌های اصلی آمفیبول‌ها به شمار می‌روند. D: آمفیبول‌های تشکیل‌دهنده‌های اصلی آمفیبول‌های شماره ۸۰۱۷ منتاژیت‌بوده‌ای با بافت پویه کیلوسیستیک (نمونه ۸۰۱۷).
نمودار ۶

<table>
<thead>
<tr>
<th>نام مینرال</th>
<th>اختصار مینرال</th>
</tr>
</thead>
<tbody>
<tr>
<td>بیوتیت</td>
<td>بیت</td>
</tr>
<tr>
<td>فلدسپار</td>
<td>Fld</td>
</tr>
<tr>
<td>مسکوفیت</td>
<td>Ms</td>
</tr>
<tr>
<td>امفاویلیت</td>
<td>Amp</td>
</tr>
<tr>
<td>هورنبلند</td>
<td>Hbl</td>
</tr>
<tr>
<td>شپر</td>
<td>Sph</td>
</tr>
<tr>
<td>پلاگیوکلایژ</td>
<td>Pl</td>
</tr>
<tr>
<td>لیوکسین</td>
<td>Lux</td>
</tr>
</tbody>
</table>

#### نام مینرال	اختصار مینرال
Biotite | Bt
Feldspar | Fld
Muscovite | Ms
Amphibole | Amp
Chlorite | Chi
Calcite | Cal
Albite | Alb
آمیفیپول

آمیفیپول از کانی‌های مهم تشکیل دهنده بخش زیرگویی این سنگ‌ها محصول می‌شود. اهمیت این کانی در نوع ترکیب آن با شرایط مختلف در گرگونی نیم‌می‌یابد. ترکیب این کانی از نوع آمیفیپول‌های کلسیک است (شکل 7).

در متابولیسم آمیفیپول، ترکیب فروچرماکیت هورنبلند و جرماکیت هورنبلند دارند. درصورتی که ترکیب آمیفیپول‌های منشوری حاصل از گرگونی پسروده پتروویکن‌های موجود در آمیفیپول‌های اکتینولیت است و آمیفیپول‌های اسزوئی موجود در فلدسپارها و کوارتز اکتینولیت‌ها از نوع منیزیهوئنرلند است (شکل 8). آمیفیپول‌هایی که از مخلوطتین متمرکز کننده در سنگ‌های گرگونی و آذری‌نیان REE در آمیفیپول‌های کلسیک در آمیفیپول‌های کلسیک گرگونی بررسی نشده است. آمیفیپول‌های کلسیک با مقدار زیاد می‌توانند به اندازه‌های معنی‌داری از شاخص‌ها نشان کند که عناصر کبیور قادراً در REE نماد می‌شوند. به علاوه تعدادی از شاخص‌ها نشان می‌دهد که REE و عنصر کبیور قادر به قرارگرفتن در مکان‌های منفرد در آمیفیپول‌ها هستند. مقدار کل عنصر ترکیب خاکی در آمیفیپول‌های آلیاس شده به‌طور مشخص وابسته به درجه گرگونی هستند. مقدار عنصر نادر خاکی در آمیفیپول-ها به‌طور کل به کاهش می‌دهد. کاهش می‌یابد [15]. فشار تأثیری روی فراوانی و توزیع آنها در آمیفیپول‌ها ندارد [16]. این برای آمیفیپول‌های با ترکیب منیزیهوئنرلند مقدار قابل‌توجهی از عنصر نادر خاکی را نسبت به آمیفیپول‌های با ترکیب اکتینولیت - هورنبلند در ساختار جای داده‌اند. آمیفیپول‌ها از عنصر نادر سیک و متوسط غنی شده‌اند (شکل 9).

شکل 7 آمیفیپول‌های منیزیهوئنرلند، ترکیب کلسیک دارند [17].

شکل 8 تنوع ترکیب آمیفیپول‌های منیزیهوئنرلند [18].
فلسفه‌ی بیوتیت این کانی بیشتر در منتاکانیک‌ها یافت می‌شود و در واحدهای بایزیت و دایگنیت، منتاکانیک‌ها و آمفیبولیت از فراوانی آن کاسته می‌شود. بیوتیت‌ها با جدید رنگ‌های و به صورت ریز‌تر می‌توانند در راستای شکستگی‌های فلز‌سازی و در زمین‌های سنگ حضور دارند. تحقیق بیوتیت‌ها موجود در دایگنیت‌ها منتاکانیک‌ها و بیوتیت‌های موجود در منتاکانیک‌ها متوقف است. این بیوتیت‌ها نیز در شرایط دگرگو‌ی کف درا، کروی و دگرگونی سیر نرم‌تر در تراکی بلند‌نمایش‌ها یافت می‌شوند. در تحقیق پلاژیوکلازها با توصیف شرایط دگرگویی کف درا و تیز در درخوری، در این نمودنها کشور و نیز دگرگونی سیر نرم‌تر در تراکی بلند‌نمایش‌ها یافت می‌شوند.

فدلسیار

۹ نمودن عناصر نادر خاکی در آمفیبول‌ها که نسبت به گوشته‌ی اولیه بهنجر شده است، مقداری بهنجر شده از [۹۱] است. مقداری مربوط به آنالیز آمفیبول‌ها برگرفته از [۱۱۱] است.

شکل ۹ نمودن عناصر نادر خاکی در آمفیبول‌ها که نسبت به گوشته‌ی اولیه بهنجر شده است، مقداری بهنجر شده از [۹۱] است. مقداری مربوط به آنالیز آمفیبول‌ها برگرفته از [۱۱۱] است.

شکل ۹ نمودن عناصر نادر خاکی در آمفیبول‌ها که نسبت به گوشته‌ی اولیه بهنجر شده است، مقداری بهنجر شده از [۹۱] است. مقداری مربوط به آنالیز آمفیبول‌ها برگرفته از [۱۱۱] است.

شکل ۹ نمودن عناصر نادر خاکی در آمفیبول‌ها که نسبت به گوشته‌ی اولیه بهنجر شده است، مقداری بهنجر شده از [۹۱] است. مقداری مربوط به آنالیز آمفیبول‌ها برگرفته از [۱۱۱] است.

شکل ۹ نمودن عناصر نادر خاکی در آمفیبول‌ها که نسبت به گوشته‌ی اولیه بهنجر شده است، مقداری بهنجر شده از [۹۱] است. مقداری مربوط به آنالیز آمفیبول‌ها برگرفته از [۱۱۱] است.

شکل ۹ نمودن عناصر نادر خاکی در آمفیبول‌ها که نسبت به گوشته‌ی اولیه بهنجر شده است، مقداری بهنجر شده از [۹۱] است. مقداری مربوط به آنالیز آمفیبول‌ها برگرفته از [۱۱۱] است.

شکل ۹ نمودن عناصر نادر خاکی در آمفیبول‌ها که نسبت به گوشته‌ی اولیه بهنجر شده است، مقداری بهنجر شده از [۹۱] است. مقداری مربوط به آنالیز آمفیبول‌ها برگرفته از [۱۱۱] است.

شکل ۹ نمودن عناصر نادر خاکی در آمفیبول‌ها که نسبت به گوشته‌ی اولیه بهنجر شده است، مقداری بهنجر شده از [۹۱] است. مقداری مربوط به آنالیز آمفیبول‌ها برگرفته از [۱۱۱] است.

شکل ۹ نمودن عناصر نادر خاکی در آمفیبول‌ها که نسبت به گوشته‌ی اولیه بهنجر شده است، مقداری بهنجر شده از [۹۱] است. مقداری مربوط به آنالیز آمفیبول‌ها برگرفته از [۱۱۱] است.

شکل ۹ نمودن عناصر نادر خاکی در آمفیبول‌ها که نسبت به گوشته‌ی اولیه بهنجر شده است، مقداری بهنجر شده از [۹۱] است. مقداری مربوط به آنالیز آمفیبول‌ها برگرفته از [۱۱۱] است.

شکل ۹ نمودن عناصر نادر خاکی در آمفیبول‌ها که نسبت به گوشته‌ی اولیه بهنجر شده است، مقداری بهنجر شده از [۹۱] است. مقداری مربوط به آنالیز آمفیبول‌ها برگرفته از [۱۱۱] است.
شکل 11 بیونیت‌ها در گسترده‌ی منیزیم‌دار قرار می‌گیرند [20].

شکل 12 تعبین ترکیب بیونیت‌های جاه پلنگ [21].

بحث

شرايط درگوهي

بر اساس شواهد کاني شناسی تغييرات درگوهي پيشورندگه در رخسارهي آمفيبوليت و سپس درگوهي پسرونه از رخسارهي
آمفیبول‌ها به‌طور عمومی به‌طور متوسط مشاهده می‌شوند. با توجه به این نظریه، ترکیب P-T احتمالی پیشنهادی در هورنبلند ناشناخته می‌باشد. در نتیجه بسیاری مقدار خاص از افزایش درجه دگرگونی زیاد می‌شود. بپیشین تغییر ترکیب آمفیبول‌های کلسیک در سنگ‌های دگرگونی میان درجه (علیه بر تغییرات) که جدایی تغییر شده‌بی‌میاهست. آمفیبول‌های کلسیک با درجه پایین (رخساره شیبست سیر) با راه وسیع‌تری (Na, Al) به‌صورت Na2MgSi2O6 + H2O → CaMg5Si8O22(OH)2 + 3CaO + 2SiO2

و در آمفیبول‌ها، کلسیپتروکلسیک آزمایش اولیه به آفت نشان داده می‌شود. در قالب کلسیپتروکلسیکی می‌توان مخازن‌هورنبلند بصرات گیاهی و درنفرزاس بالا و اکتینولیت با بیرفرزاس ضعیف مشاهده کرد. این افت‌ها ریز دانه و پیش‌بینی شکل اسفن‌هایی وجود دارد.[22] واکنش زیر (واکنش 1) را برای تشکیل آمفیبول از دیوپید در شرایط

dگرگونی پسونده بی‌میاهست.

5CaMgSi2O6 + H2O → CaMg5Si8O22(OH)2 + 3CaO + 2SiO2

واکنش 1

Diopside + Water → Amphibole + CaO + Silica

و نهایتاً در اسفن درون اکتینولیت‌ها را می‌توان حاصل واکنش دیوپید و فازه‌ای تیتان در نتیجه واکنش 2 (زاورا نمونه‌های مورد بررسی غی از ترکیبات تیتان نظر لکوکسین، ایلینت) اسفن و روتوی هستند و درون ساختار آمفیبول‌های دگرگونی کمتر از 0.05pfu تئوریوم چای گرفته است (شکل 13).

Na0.3Ca1.8Na0.2(Fe, Mg)3.4Al1.6Si6.3Al1.7O22(OH)2

واکنش‌های متناسب بی‌میاهست که افزایش در ترکیبات اندیت و چرماکیت در آمفیبول با افزایش درجه دگرگونی را به شرح زیر توضیح می‌دهند:

Tremolite + albite = edenite + quartz
Tremolite + chlorite + zoisite = tschermakite + H2O

\[\text{شکل 13 آمفیبول‌های منابعی از نوع دگرگونی هستند [25]}. \]
تگی آمیفیلون‌های منابعی بین دو قطب کلسیک آمیفیلون و مافیک آمیفیلون قرار می‌گیرد [۲۵].

فناوری‌هایی سببت این و بسمت رخساره‌ای آمیفیلونی به که هم‌هی این و آنتگ‌ها منجر به تولید آمیفیلون‌های غنی از Na و Al می‌شوند. به طور دقيق این و آنتگ‌ها غالباً به دما، فشار و تركیب حجمی سنگ و استتند [۲۷]. در شکل ۱۵، ارتباط بین تغیرات قلبی و درجه‌ی دگرگونی بین شده است. با افزایش درجه‌ی دگرگونی میزان عنصر قلبی‌ای آمیفیلون‌ها افزایش می‌یابد [۲۸]. آنتگ‌یون‌ها که در اثر دگرگونی پرسونه Ti و Ca از ویژگی‌های مهم هوئین‌نده می‌توان به گاکشی Al با Si اشاره کرد که همراه با افزایش درجه‌ی دگرگونی است. بنا براین، این ایگزنت‌های فاکتور مهمی در تعیین درجه‌ی دگرگونی سنگ می‌باشند است (شکل ۱۶). حضور اولیه‌ی آنتگ‌یون‌در یک منابع وابسته به تعداد فاکتور، علاوه بر فشار و دمای است. مقادیر بالای فشار و گرنت نسبت به CO۲ به پایداری کلیپ و گرانی سنت به Fe/Mg اکتشیت ضریب کمک می‌کند. همچنین اکتشیت Fe/Mg از احتمالاً موجب وجود با نبودن آنتگ‌یون‌در یک دما و فشار حجمی غنی از Fe و در دمای‌های بالاتر در تکپی‌های حجمی غنی از Fe نیز حتماً می‌گیرد. اکتشیت با پایداری در Mg از نمود. اکتشیت در دمای‌های بالاتر در تکپی‌های حجمی غنی از Fe و در دمای‌های بالاتر در تکپی‌های حجمی غنی از Fe نیز حتماً می‌گیرد. اکتشیت با پایداری
شرايط درگوئي است. در آمفيپولیته‌ها نیز ایمنیت وجود دارد که در ساختار آن Fe$^{2+}$ جای گرفته است. [24] بر اساس مقدار Al کل موجود در ساختار هورنلند، نتایج فشارسنجی (شکل 18) این ارائه کردند که هورنلند منزیلیار يا دمای 262 و فروچربیک و فروهورنلند‌های با دمای 649-659 درجه سانتی‌گراد در فشار 8 کیلوبار را نشان می‌دهد.

[نگاره 15] 15 ارتباط بین تغییرات فلایی‌ها و درجه دگرگوئی [28].

[نگاره 16] 16 ارتباط بین Al و Si برای هورنلند در تمايز محيط کم فشار از محيط با فشار متوسط با استفاده از خط 5kb [29].
شکل 17 میدان های ترکیب آمفیپولها در رختارهای دارگنی. خط جداکننده گسترش فشار بالا از فشار پایین از [32] گرفته شده است [33].

شکل 18 بارونتری هورنبلدی-پلاژیوکلازی بین تقریباً 480-570°C درجه سانتی‌گراد را نشان می‌دهد (شکل 19). دمای دماسنج‌های بیشتر از دمای جدول 19 نشان می‌دهد. دماسنج‌های هورنبلد-پلاژیوکلاز و فشارسنجی آمفیپولها بین تقریباً 480-570°C جدول 19 نشان می‌دهد. دماسنج‌های بیشتر از دمای 480°C دارای سطح‌محوری درجه‌بندی آمفیپولها را به دست می‌رسند. دماسنج‌های 480°C دارای سطح‌محوری درجه‌بندی آمفیپولها را به دست می‌رسند.

dm = edenite + 4 quartz = tremolite + albite

dm = edenite + albite = richterite + anorthite

P(+/- 0.6 kbar) = -3.01 + 4.76 Al(total)

cالی بیونیت از میزان‌های معمول Ti در مژوالکلیک‌ها محوسب می‌شود. جایگیری این عنصر در ساختار بیونیت ارتباط مستقیم با دما دارد. این اساس [37] دمای بیونیت بر مبنای Ti و موجود در ساختار این کانی را در فشار 4 کیلوبار از 665°C کرده است. بیونیت‌های موجود در مژوالکلیک‌ها دمای 665°C درجه سانتی‌گراد را نشان می‌دهند (شکل 19). دماسنج‌های بیشتر از دمای جدول 19 نشان می‌دهد. دماسنج‌های بیشتر از دمای 480°C دارای سطح‌محوری درجه‌بندی آمفیپولها را به دست می‌رسند. دماسنج‌های 480°C دارای سطح‌محوری درجه‌بندی آمفیپولها را به دست می‌رسند.
جدول 4 نتایج حاصل از دما- فشارسنجی کانی‌های آمیپیولا- پلاژیکلاز.

<table>
<thead>
<tr>
<th>نمونه</th>
<th>Ch801/1</th>
<th>Ch801/2</th>
<th>Ch801/3</th>
<th>Ch795/4</th>
<th>Ch795/5</th>
<th>Ch795/6</th>
<th>Ch795/7</th>
</tr>
</thead>
<tbody>
<tr>
<td>*P1 (kb)</td>
<td>0.16</td>
<td>0.24</td>
<td>0.37</td>
<td>0.48</td>
<td>0.55</td>
<td>0.68</td>
<td>0.74</td>
</tr>
<tr>
<td>*T (°C)</td>
<td>576.1</td>
<td>568.2</td>
<td>515.6</td>
<td>570.8</td>
<td>558.7</td>
<td>594.7</td>
<td>590.5</td>
</tr>
<tr>
<td>*P2 (kb)</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>*T (°C)</td>
<td>63.04</td>
<td>63.1</td>
<td>354.75</td>
<td>445.5</td>
<td>555.1</td>
<td>599.2</td>
<td>662.0</td>
</tr>
</tbody>
</table>

\[X(\text{Mg}) = \frac{\text{Mg}}{\text{Mg} + \text{Fe}} \]

\[T = \left\{ \left[\ln(Ti) - a - c(X_{\text{Mg}})^3 \right]/b \right\}^{0.333} \]

<table>
<thead>
<tr>
<th>ضریب</th>
<th>مقدار</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>-2.3594</td>
</tr>
<tr>
<td>b</td>
<td>9.6 - 4,4542</td>
</tr>
<tr>
<td>c</td>
<td>-1.7283</td>
</tr>
</tbody>
</table>

شکل 19 دماسنجی بینوتیهای جاه پلنگ [27].

شکل 20 گروه‌های رکساردهای دگرگونی متابیت [38].
برداشت
در جنبه‌های چهار چاه بلند، منابعی با درصد نسبی تهیه‌های کم ارتفاع مشکل از آمفیبولیت، سنگ‌پتول، سنگ‌پتول و منابعی در درون‌های با دکتری‌های پالتوزوئیک دو‌تا، پری‌بفانتی، سنگ‌پتول و منابعی، سنگ‌پتول و منابعی به دستاوردسته‌ها بوده است.
حوزه اصلی فرآیند در منطقه منجر به اچ‌دی‌بگ وارگی و سمتشی کاوالی‌های برونگان در سنگ‌های پالتوزوئیک. دکتری‌های جنوب مرحله نیز در منابعی با فاصله منابعی علاوه بر دکتری‌های کف ابیانوسی، دکتری‌های ریختاره آمفیبولیت و شیست نیز تولدر در حال آمپاره، آمفیبولیت‌های موجود در ریختاره آمفیبولیت از عناصر قلیایی، نیکلیت و اولوریت و بیوتیت‌های پایدار در این ریختاره از آهن و نیکلیت بیشتر نسبت به کاوالی‌های مشابه در ریختاره شیست این بروخوردارند. حوزه کاوالی‌های شاخه‌ای شیست نیز دکتری‌های ابتدایی، ابتدایی و ابتکاری، نایج دما- فلزرسانی کاوالی، کاوالی آمفیبول و آمفیبول – پالتوزوئیک و تغییر در شیمی کاوالی بایناری دکتری‌های پوسته‌های ریختاره آمفیبولیت‌های شیست بسی. است. قرانی‌کاوالی‌های دارای عناصر قلیایی نظیر بیوتیت، آلیبیت، فلزمانی قلیایی، هورنیت‌نت و اسفن در متن سنگ بانگ‌های کاوالی‌ای این سنگ‌ها همانند ماهیت غالب مکانیسم‌های پالتوزوئیک در ایران است.

قرندرایی
نویسندهان این مقاله از دانشگاه اصفهان به خاطر حمایت‌های مالی و از جبهه دکتر ساسان باقری به دلیل در اختیار قرار دادن آنالیزهای آمفیبولیت‌ها، سپاسگزاری می‌کنند.

مراجع
[1] امانتی م.، مکانیسم‌های پالتوزوئیک در ایران، سازمان زمین‌شناسی و انتخابات مدکش گستر، (1389) 621 ص.

parameters", Institute of Precambrian Geology and Geochronology RAS. (2001?).