رشد و بررسی ترمودینامیکی تک بلورهای Se0.5ZnS0.5 به روش انتقال شیمیایی بخار

پهنام دبیرای اصل *، مجید جعفر ترشی، مصطفی فضی

چکیده: در این کار پژوهشی از مدل ترمودینامیکی برای بخار تک بلورهای ZnS0.5Se0.5 به روش CVT و با استفاده از ریک - CVT محقق. شرایط بهینه رشد در سیستم ZnS0.5Se0.5 - I - L از پیش می‌گردد. آزمایش‌های مختلف در آزمایش‌های مختلف شرایط بینی می‌شود. شرایط بهینه رشد در سیستم ZnS0.5Se0.5 - CVT با استفاده از روش‌های مختلف کنده‌بندی، در درون لوله ی بهترین شرایط در شرایط بهینه رشد بینی می‌شود.

واژه‌های کلیدی: انتقال شیمیایی فاز بخار، ZnS0.5Se0.5، دما بهینه، ریخت‌شناسی تک بلور.

مدت‌هایی در محدوده II-VI جدول تناسب اولین مواد بودن که در مقیاس‌های صنعتی برای توسعه قلم‌نامه رسانا مورد استفاده قرار گرفتند. تک بلورهای ZnS0.5Se0.5- CVT و CVT از پیش بینی مناسب برای ساخت اجزای منشتر کنده‌بند نور ای با آبی سبز بوده طوری که این بلورها در آشکارسازی‌های مد نظر آبی قابل مشاهده و همچنین برای مقاوم‌سازی نوری و آشکارسازی فتوولتاتی در مواد جاذب سلول‌های خورشیدی و دیوبدهای نوری مورد استفاده قرار می‌گیرند [11]. وفرشی تک بلورهای ZnS0.5Se0.5- CVT به‌عنوان زیر‌کلیه برای رشد لایه‌های چندپری گروه II – VI استفاده می‌شود. بلورهای زیر کلیه بخار کنده‌بند نور مورد استفاده در ساخت اجزای منشتر کنده‌بند نور می‌باشد. فشار پایین و درجه حرارت پایین پایین به‌عنوان تکینه‌های دیگر برای جیب کنده‌بند کنده‌بند نور می‌باشد. در دمای ذوب این مواد ایجاد می‌شود و نین‌تر بنا بر دمای دما به‌عنوان تکینه‌های دیگر کنده‌بند نور می‌باشد. به‌ویژه اگر از این روش‌ها، انتقال شیمیایی فاز ZnS, ZnSe است که برای رشد تک بلورهای CVT به‌کار می‌رود.

*behnamdibaie@yahoo.com
جگصول بهصورت

\[(x)\text{ZnS}_s + (1-x)\text{ZnSe}_s + I_2(g) \rightarrow \]
\[\text{ZnI}_2(g) + \frac{1}{2} \text{S}_2(g) + \frac{1}{2} (1-x) \text{Se}_2(g) \] (1)

در ناحیهٔ رشد بهصورت:

\[\text{ZnI}_2(g) + \frac{x}{2} \text{S}_2(g) + \frac{1-x}{2} \text{Se}_2(g) \leftrightarrow \]
\[\text{ZnS}_x \text{Se}_1-x (1-x)(g) + I_2(g) \] (2)

است.

فرض می‌گردد فشار بخار تناها شامل مولفه‌های
\[\text{ZnS}_s, \text{S}_s, \text{Se}_s, I_1, I \]
در لوله به‌دست از معادله‌های زیر پیروی می‌کند:

\[\text{ZnS}_s + I_2(g) \Leftrightarrow \text{ZnI}_2(g) + \frac{1}{2} \text{S}_2(g) \] (3)

\[\text{ZnSe}_s + I_2(g) \Leftrightarrow \text{ZnI}_2(g) + \frac{1}{2} \text{Se}_2(g) \] (4)

\[I_2(g) \Leftrightarrow 2I(g) \] (5)

برای واکنش‌های (3) و (4) و (5) تابع‌های واکنش بهترین از روابط زیر به‌دست می‌آید [6]:

\[\log K_3 = 8.8 - 7539T^{-1} + 8745T^{-2} - 1.19 \log T + 2.18 \times 10^{-6} T \]

\[\log K_4 = 7.64 - 58499T^{-1} - 4154T^{-2} - 0.83 \log T - 1.5 \times 10^{-4} T \]

\[\log K_5 = 4.34 - 7879T^{-1} + 4264T^{-2} + 0.33 \log T + 2 \times 10^{-5} T \] (6)

با استفاده از این معادلات تابع‌های واکنش شکل بلوپ سنتایزی که به‌عنوان
\[\Delta G_2 = x \Delta G_3 + (1-x) \Delta G_4 \Rightarrow \ln K_2 = x \ln K_3 + (1-x) \ln K_4 \]

در نتیجه برای بلوپ سنتایزی \[\text{ZnS}_s \text{Se}_1-x\] خواص داشت:

\[\log K_2 = \left(1.16 - 1690T^{-1} + 12899T^{-2} - 0.36 \log T + 1.52 \times 10^{-4} T \right) x +

7.64 - 58499T^{-1} - 4154T^{-2} - 0.83 \log T - 1.5 \times 10^{-4} T \]

(7)

برای بلوپ سنتایزی \[\text{ZnS}_s \text{Se}_1-x\] تابع تغییر را می‌توان بر
\[\frac{p_2(x) S_2}{p_2} \]

نسبت فشارهای جذب مولفه‌ها بیان کرد:

\[K_2 = \frac{p_2(x) S_2}{p_2} \]

(8)

با عنصرسمی در ناحیه‌ی جسم، خواص داشت:
\[P_{ZnI_2} = \frac{x}{2} P_{ZnI_2} \]
\[P_{Se_2} = \frac{1-x}{2} P_{ZnI_2} \]

\[\frac{CRT}{M_I} = \gamma P_t + P_I + \gamma P_{ZnI_2} \]

که در این رابطه \(C \) غلظت بد اضافه شده به آمیزه.

حریم مولکولی \(M_I \) و \(I \) جرم اتمی است.

با ناشان دادن (10) در رابطه (3) خواصیم داشت:

\[P_{ZnI_2} = \left[\frac{K_1}{K_5} \frac{\frac{2}{x}}{2 \left(\frac{2}{1-x} \right)^2} \right]^{\frac{3}{2}} P_I^{\frac{3}{2}} \]

استدیالی می‌آوریم:

\[-\frac{CRT}{M_I} + [4 \frac{K_2}{K_5} (x) - \frac{x}{2} (1-x) - \frac{2}{2} P_I^2 + \frac{2}{K_5} P_I^2 + P_I = 0 \]

\[n_{t*}^* = n_{t*} + \frac{1}{V} n_{I} + n_{ZnI_2} \]

با ضرب طرفین رابطه بالا در \(RT \) و قرار دادن:

\[M_I = 2M_I \]

و خواصیم داشت:

\[\frac{CRT}{M_I} = \gamma P_I + P_I + \gamma P_{ZnI_2} \]

و در نهایت با توجه به بقای عامل انتقال در واکنش‌ها، معدله‌ی زیر را برای فشار عامل انتقال که در اینجا به فرض شده

\[\text{به حد عملی معادله‌ی (10)} \]

\[\text{و سپس از (11) و (12) به دست می‌آید.} \]

\[\text{کمیتی به نام} \alpha \text{ که نسبت بین تعداد مولکول‌های} \]

\[\text{را به تعداد کل مولکول‌های} \text{های موجود در فاز گاز ربط} \]

\[\text{می‌دهد به عنوان زیر تعریف می‌کنیم:} \]

\[\alpha = \frac{P_{ZnI_2}}{P_I} \]

\[\text{که آن را می‌توان به‌صورت نامی از دما و برای غلظت‌های} \]

\[\text{مختلف فاصله انتقال به ازای مقدار ممیزی از اختلاف دما بین} \]

\[\text{ناحیه‌ی چشم و ناحیه‌ی رشد} (T_r) \text{رسم کرد.} \]

\[\text{کمیتی} \text{به ازای} \alpha \text{را نسبت بین مولکول‌های} \]

\[\text{را به تعداد کل مولکول‌های موجود در فاز گاز ربط} \]

\[\text{می‌دهد به عنوان زیر تعریف می‌کنیم:} \]

\[\alpha = \frac{P_{ZnI_2}}{P_I} \]

\[\text{که نسبت در آهنگ انتقال از دما و در نتیجه متناسب} \]

\[\Delta \alpha = \frac{\Delta P_{ZnI_2}}{P_I} \]

\[\text{که نیز جا به جا می‌شود با توجه به اینکه در اینجا به عنوان} \]

\[\Delta P_{ZnI_2} \text{است که به دست می‌آید.} \]

\[\Delta P_{ZnI_2} \text{است که به دست می‌آید.} \]

\[\text{در دو ناحیه و در نتیجه متناسب} P_{ZnI_2} \text{در دو ناحیه و در نتیجه متناسب} \]
ویژگی‌های دارند. در شکل ۲ تغییرات غلظت عامل انتقال به ازای \(ZnSe_xS_{1-x} \) بر حسب تغییرات غلظت عامل انتقال به ازای \(x \) به حساب می‌آید. چون آن‌ها

انتقال وابسته به دمای و نمی‌توان دما را با دقت بالایی ثابت نمی‌شود. با کمک نمونه‌های دما در داده‌های گرمایی مرکزی مقدار می‌تواند با ویژگی‌های دمای پیشنهاد شده باشد. چنان چه علی‌رغم نقاط نزدیک به قله‌ای این

\[C = 1.5, 2.5, 5, 10 \]

\[\Delta \alpha \]
روش کار

مجموعاً 2.5 گرم از مواد چند بلوری از قبل سنتز (خریداری شده از شرکت Merck) /

نشده شده نامناسب قرار می‌دهیم (شکل 2) و نمودار دمایی نشان دهنده این است که لوله‌ی کوارتز دیفرن دنده است که لوله‌ی کوارتز دیفرن دنده است.

چشم‌های ناحیه‌ی رشد قرار گرفته است. در آغاز فرآیند ناحیه‌ی رشد در دمای بالاتر ناحیه‌ی چشم‌های قرار می‌گیرد این یک کوارتزیم‌دان دیفرن وارد و به مدت 12 ساعت برقرار می‌شود تا ریز و آلودگی‌های ناحیه‌ی رشد تخت شده و این ناحیه کامل‌اً تمیز شود. سپس کوارتزیم‌دانی را تغییر داده به طوری که ناحیه‌ی رشد بلو در دمای بالاتر و ناحیه‌ی چشم‌های دمای بالاتر قرار گیرد و فرآیند رشد برای مدت 12 روز ادامه می‌پاید. دمای رشد بر اساس روش برای انتخاب شده است که نوسان‌های دمایی در طول لوله کمترین اثر را در اختلال انتقال مواد از ناحیه‌ی چشم‌های ناحیه‌ی رشد داشته باشد. پس از یکان فرانین رشد، کوره را با

روش کار

مجموعاً 2.5 گرم از مواد چند بلوری از قبل سنتز (خریداری شده از شرکت Merck) /

نشده شده نامناسب قرار می‌دهیم (شکل 2) و نمودار دمایی نشان دهنده این است که لوله‌ی کوارتز دیفرن دنده است.

چشم‌های ناحیه‌ی رشد قرار گرفته است. در آغاز فرآیند ناحیه‌ی رشد در دمای بالاتر ناحیه‌ی چشم‌های قرار می‌گیرد این یک کوارتزیم‌دان دیفرن وارد و به مدت 12 ساعت برقرار می‌شود تا ریز و آلودگی‌های ناحیه‌ی رشد تخت شده و این ناحیه کامل‌اً تمیز شود. سپس کوارتزیم‌دانی را تغییر داده به طوری که ناحیه‌ی رشد بلو در دمای بالاتر و ناحیه‌ی چشم‌های دمای بالاتر قرار گیرد و فرآیند رشد برای مدت 12 روز ادامه می‌پاید. دمای رشد بر اساس روش برای انتخاب شده است که نوسان‌های دمایی در طول لوله کمترین اثر را در اختلال انتقال مواد از ناحیه‌ی چشم‌های ناحیه‌ی رشد داشته باشد. پس از یکان فرانین رشد، کوره را با
پیشرفت کرده است. (شکل 7) الگوی پیش‌تر ایکس برای تک بلور رشد یافته \(\text{ZnS}_0.5\text{Se}_{0.5} \) را نشان می‌دهد که دارای پیشرفت مکمی بوده و برای شرایط خوبی با مقادیر گرایش شده دارد[1]. نتایج نشان می‌دهند که بدون نیاز به انجام آزمایش‌هایی که مسئول صرف‌های زمانی و وقت زیاد است، می‌توان با محاسبه دمای بهینه رشد و انجام آزمایش‌هایی در شرایط بهینه، بلورها را به‌کمک یکی به‌کمک رشد داد[9].

بوده و تعداد این بلورها زیاد و صفحات ناقص بلوری در آنها مشاهده شد. (شکل 5) با تک بلور رشد یافته \(\text{ZnS}_0.5\text{Se}_{0.5} \) شرایط غیر بهینه (دمای \(183^\circ \text{C} \)) نشان می‌دهد. این بلورها دارای سطح کامل نشده‌ای هستند و از نظر ساختار بلوری ناقص است که حاکی از ناپایداری رشد است. در (شکل 4) پس بلور رشد یافته \(\text{ZnS}_{0.5}\text{Se}_{0.5} \) را در شرایط غیر بهینه در دمای \(183^\circ \text{C} \) را نشان می‌دهد که رشد با سازوکار تابعیتی

\[\text{883}^\circ \text{C} \]

شکل 4 تک بلور \(\text{ZnS}_0.5\text{Se}_{0.5} \) رشد یافته در دمای بهینه (883°C).