تئیه، شناسایی و چگونگی ساختار بلوری ترکیب هم بلور ۶-۴-بی پیریدین

۳-نیتروفثالیک اسید

امامی، احمد/ ژره دریکوندی۲/ آزاده‌آبادخچتی، بهروز نوتاش

۱-گروه شیمی، واحد خرید/ پایان، دانشگاه آزاد اسلامی، خرم‌آباد، ایران

۲-گروه شیمی، دانشگاه بهشتی، تهران، ایران

چگته: ترکیب هم‌بلور ۶-۴-بی پیریدین-۳-نیتروفثالیک اسید (۱) از واکنش ۴-بی پیریدین-۳-نیتروفثالیک اسید و کلریک کلرید (نسبت مولی: ۱:۱) در محلول حل‌ناپذیر آب متانول و در شرایط محلول تهیه شد. این ترکیب هم بلور با استفاده از روش‌های تجزیه عمقی، طیف بینی IR و پرایژ پروتکس (X) بالا بروز آن در دمای K ۲۳۰ G معکوس شد. این ترکیب در سیستم بلوری تکیه (میکروسکوپیک)، گروه فضایی P21/n و با چاپ مولکول در سلول واحد تبلور یافته است. پراپاتریا سلول ۲۸۶ به یافته از رای برای P=۲۰۲ تایت است. هوا مستقل برای ۶۰۶ است. در ساختار این ترکیب انتزاع بروهرکنش‌های ناهاری مانند پیدا کردن ژن هیدروژن قوی و ضعیف-۲ هی که ابزار مختلف را به یکدیگر وصل کرده و یک شیبکه هست جی انتزاع هی‌دروژنی را تشکیل می‌دهند.

واژه‌های کلیدی: ۳-نیتروفثالیک اسید، هم‌بلور، ساختار بلوری، شبکه انتزاعی

مقدمه

طرح‌های آمربولونیکی می‌تواند به روش مهندسی بلور و برای مانی‌پروری برای این مولکول به‌صورت ضعیف، تحت باد ایجاد شود [۱]. در میان انورها، مانند اثرات آنها پیوند هیدروژنی است [۲]. در این پژوهش، همبستگی بین دیگر شمل هالوزن [۴] و هالوزن [۴] برای رای اسکالار دی‌هی مولکول‌ها در بلور مورد استفاده قرار گرفته. مهندسی پنوم در این ساختار آمربولونیکی، دو یا چند مادهٔ اتی بی‌فرابند و مرحله‌ای است. این دو مرحله شامل ترکیب آمربولونیکی از اجزای اولیه و سپس خود آن‌ها از فضای سه بعدی می‌گردد. در هیمن راستا، ساختار ساختار جالب با شبکه‌های معین مولکولی در ابعاد مختلف مانند توانایی مولکولی، صفحه‌ای zderik@yahoo.com

*نویسنده مسئول، تلفن: ۰۹۱۲۹۱۰۴۱۲۶۸۲۳۲۱۴۰۰۰۰۰۰۰، تاریخ: ۱۴۰۰۰۰، زمان: ۱۴۰۰۰۰، پست الکترونیکی: zderik@yahoo.com
ترکیب شرکت کننده در ساختار هم بلو رادیولین سیمونت‌های یکسان (هوموسیتون) و با متقاوت (هوروسیتون) ایجاد کنند. اگر گروه‌های عاملی شرکت کننده در بره‌کشی‌ها یکسان باشد مانند اسید‌های آمین-آمینی، هوموسیتون ایجاد شده و اگر متقاوت باشد مانند اسید‌های هوروسیتون تشکیل می‌شود [15-16]. وجود دو ترکیب در کاریکی در باعث هم‌افزایی و اثر بهبودی ترکیب همکناره به تهیه در شیمی اسیدی و اثر بهبودی ترکیب همکناره به تهیه در شیمی دارویی می‌شود. این هم‌افزایی آن را در بررسی مجددی بلور نیز آشکار می‌کند. در همین راستا، نلاشتهای گستردگی نیرویی و شناسایی ترکیب‌های هم‌بلور و شناخت پیتک ماهیت نیروهای بین مولکولی متوفر در تشکیل و پایداری این سیستم‌ها انجام شده است [15-16]. در این کار پژوهشی یک ترکیب بلور از ۳-نیتروتولین اسید و ۴-پیریدین تهیه شده و انواع بهره‌کشی‌های بین مولکولی در ساختار آن مورد بررسی قرار گرفته است.

بعضی تجزیه

کلیه مواد استفاده در این پژوهش با خلود تجزیه‌ای از شرکت‌های مرک و فلز‌های خردی شده و بدون هیچ خالص سازی مورد استفاده قرار گرفته‌اند. طیف‌بینی IR با استفاده از Perkin-Elmer RXI مدل (IR) طیف‌بینی مدل KBr در گسترده‌های (400-4000 cm⁻¹) با استفاده از قرص KBr ثبت شد.

![شکل 1 چکوگی تهیه ترکیب هم بلو (۴،۴'-bpy) اسید (۳-nphH₂)](attachment:image.png)
بررسی داده‌های طیفی ترکیب هم برای داده‌های پسندانه در دمای C2H8O3N3H13 تجزیه عضوی برای ایجاد فرمول تجزیه در C18O6N3H13
جدول ۱ داده‌های پیشنهادی برای ترکیب هم در C18O6N3H13

<table>
<thead>
<tr>
<th>C</th>
<th>H</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.881</td>
<td>2/34</td>
<td>1/1.43</td>
</tr>
<tr>
<td>5.882</td>
<td>2/35</td>
<td>1/1.42</td>
</tr>
</tbody>
</table>
جدول ۲ داده‌های بلورشناسی ترکیب (4,4'-bpy) (3-nphH2)

<table>
<thead>
<tr>
<th>فرمول شیمیایی</th>
<th>وزن فرمولی (گرم بر مول)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C۶H۹NO۶ C۱۸H۸N۲</td>
<td>۳۶۷.۳۱</td>
</tr>
<tr>
<td>اندازه بلور (میلی‌متر مکعب)</td>
<td>۰.۴۰۰ × ۰.۳۰۰ × ۰.۲۰۰</td>
</tr>
<tr>
<td>تک میل (مونوکلینیک)</td>
<td>سیستم بلوری</td>
</tr>
<tr>
<td>P۲۱_ح</td>
<td>گروه فضایی</td>
</tr>
<tr>
<td>(3)</td>
<td>a (Å)</td>
</tr>
<tr>
<td>۱۳۷۳۱(3)</td>
<td>b (Å)</td>
</tr>
<tr>
<td>۶۸۱۹(1)</td>
<td>c (Å)</td>
</tr>
<tr>
<td>۱۸۵۶۳(4)</td>
<td>β (°)</td>
</tr>
<tr>
<td>۱۰۹۵۶(3)</td>
<td>تعداد مولکول‌ها در سیلول واحد</td>
</tr>
<tr>
<td>۴</td>
<td>عددین (Å³)</td>
</tr>
<tr>
<td>۱.۴۹۳</td>
<td>جهگلی (g cm⁻³)</td>
</tr>
<tr>
<td>۴۹۸(2)</td>
<td>دمای کمین (K)</td>
</tr>
<tr>
<td>h, k, l -16<=h<=15, -7<=k<=8, -21<=l<=22</td>
<td>مقادیر</td>
</tr>
<tr>
<td>-۰.۶۵۲</td>
<td>R1</td>
</tr>
<tr>
<td>-۰.۹۴۴</td>
<td>WR2</td>
</tr>
<tr>
<td>-۰.۶۶۲</td>
<td>R_{int}</td>
</tr>
<tr>
<td>۴۴۰</td>
<td>تعداد پارامترهای مجزا</td>
</tr>
<tr>
<td>۷۲۱۸</td>
<td>تعداد پارامترهای کل</td>
</tr>
<tr>
<td>۲۸۶۷</td>
<td>تعداد پارامترهای غیر مستقل</td>
</tr>
<tr>
<td>۲۲۵۰</td>
<td>گستره 0 برای جمع آوری</td>
</tr>
<tr>
<td>-۰.۱۲</td>
<td>μ (mm⁻¹)</td>
</tr>
<tr>
<td>-۰.۴۲</td>
<td>Δρ_{min}</td>
</tr>
<tr>
<td>۰.۷۵</td>
<td>Δρ_{max}</td>
</tr>
</tbody>
</table>
جدول ۲ طول پیوندها (Å) و زاویه بین‌پیوندهای (°) مربوط به ترکیب (4,4'-bpy) (3-nphH₂)

<table>
<thead>
<tr>
<th>پیوند (Å)</th>
<th>طول پیوند (Å)</th>
<th>زاویه بین‌پیوند (°)</th>
</tr>
</thead>
<tbody>
<tr>
<td>O₁—N₃</td>
<td>1.318(2)</td>
<td>115(5)</td>
</tr>
<tr>
<td>O₂—N₃</td>
<td>1.310(2)</td>
<td>106(5)</td>
</tr>
<tr>
<td>O₃—C₁₃</td>
<td>1.350(4)</td>
<td>116.2(6)</td>
</tr>
<tr>
<td>O₄—C₁₃</td>
<td>1.350(A)</td>
<td>115.3(7)</td>
</tr>
<tr>
<td>O₄—H₄A</td>
<td>1.22(A)</td>
<td>122.8(6)</td>
</tr>
<tr>
<td>O₅—C₁₅</td>
<td>1.348(4)</td>
<td>118.8(6)</td>
</tr>
<tr>
<td>O₆—C₁₅</td>
<td>1.348(6)</td>
<td>118.5(5)</td>
</tr>
<tr>
<td>O₆—H₆A</td>
<td>1.22(A)</td>
<td>122.8(6)</td>
</tr>
<tr>
<td>N₁—C₃</td>
<td>1.344(A)</td>
<td>122(1)</td>
</tr>
<tr>
<td>N₁—C₂</td>
<td>1.344(6)</td>
<td>122(1)</td>
</tr>
<tr>
<td>N₂—C₈</td>
<td>1.295(A)</td>
<td></td>
</tr>
<tr>
<td>N₂—C₉</td>
<td>1.295(A)</td>
<td></td>
</tr>
</tbody>
</table>

جدول ۴ پیوندهای هیدروژنی در ترکیب همبول (3-nphH₂) (4,4'-bpy)

<table>
<thead>
<tr>
<th>X–H–A</th>
<th>X–H</th>
<th>H–A</th>
<th>X–A</th>
<th>X–H–A</th>
</tr>
</thead>
<tbody>
<tr>
<td>O₄—H₄A–N₂</td>
<td>1.01(8)</td>
<td>1.87(8)</td>
<td>3.482(9)</td>
<td>150(1)</td>
</tr>
<tr>
<td>O₆—H₆A–N₁¹</td>
<td>0.83(A)</td>
<td>1.87(8)</td>
<td>3.482(9)</td>
<td>150(1)</td>
</tr>
<tr>
<td>C₁—H₁A–O₃¹</td>
<td>0.83</td>
<td>2.45</td>
<td>3.38-3(9)</td>
<td>177</td>
</tr>
<tr>
<td>C₇—H₇–O₃ ¹</td>
<td>0.83</td>
<td>2.53</td>
<td>3.513(9)</td>
<td>181</td>
</tr>
<tr>
<td>C₉—H₉–O₅ ¹</td>
<td>0.83</td>
<td>2.30</td>
<td>3.244(11)</td>
<td>171</td>
</tr>
<tr>
<td>C₁₈—H₁₈–O₁¹</td>
<td>0.83</td>
<td>2.55</td>
<td>3.473(9)</td>
<td>171</td>
</tr>
</tbody>
</table>

(i) x, -1+y, 1+z; (ii) 1-x, -y, 1-z; (iii) 3.2-x, 1.2+y, 3.2-z; 2-x, 2+y, 2-z

شکل ۳ تشکیل همو و هترو ساینتون های پیوند هیدروژنی در ترکیب همبول (3-nphH₂) (4,4'-bpy).

شکل ۴ نمایش شبکه‌های متخلف دو بعدی که با استفاده از پیوندهای هیدروژنی C–H···O و N–H···O تکمیل شدهاند.

[17] Xengale S. J., GrohganX H., RaXes T., Löbmann K., "Recent advances in coamorphous Xrug formulations" AXvanceX Xrug Xelixery evies 100 (2016) 116–125

[22] ReXXy X. S., OveXinnikov Y. E., Shishkin O. V., "Supramolecular synths in crystal engineering. 3. SoliX state architecture anX synthon robustness in some 2,3-Xicyano-5,6-Xichloro-1,4-Xialkoxynbenzenes", Journal of American Chemical Society. 118 (1996) 4085-4089

