تأثیر ماده‌ی آلی بر تغییرات کانی شناسی فلوروپیت و موسکویت در اندازه‌ی رس در محيط ریشه‌ی بونجه

زینب نادری زاده، حسین خادمی

گروه کمال‌شناسی، دانشکده کشاورزی، دانشگاه صنعتی اصفهان

چکیده: هواداری گیکی‌های پاتاسیم‌دار، خاس‌گاه‌ای‌پاتاسیم در خاک‌های هست که در شرایط کمبود این عنصر اهمیت ویژه‌ای دارد. بررسی‌های زراعی در مورد تأثیر انواع گیاهان و میکروگرمسپروی این ماده بر تغییرات کانی‌شناسی و رهاوژی پاتاسیم از آن‌ها صورت گرفته است. ولی تاکنون پژوهشی در مورد تأثیر ماده‌ی آلی بر تغییرات کانی‌شناسی میکانیکی انجام نشده است. این پژوهش به‌مدت کم‌مدتی بر روی کوارتزی دوز نوع کانی میکابی (فیشکوپیت و ماده آلی) در حیاط ریشه‌ی بونجه صورت گرفت. از امایش‌هایی در قالب طرح کاملاً تصادفی با آراشی فاکتوریال در سه تکرار انجام شد. برای کشت مخلوطی از شن کوارتزی، دوز نوع کانی میکابی (فیشکوپیت) و ماده آلی در سطح شاهد، نیم و یک درصد بوده در دوره‌ی ۱۲۰ روزه کشت، گیاهان به‌مدت طولانی‌مدت یا بدون پتاسیم تغذیه شدند. پس از پایان دوره‌ی رشد، گیاهان برداشت و عصاره‌گیری به‌روش خاکستر خشک انجام و فنومین پاتاسیم به فرم فیتو‌متر انجام شد. همچنین کانی‌های میکابی بست و محققات هواداری گیکی‌های آلی در هر دقیقه‌ی متعایب باعث افزایش می‌شود. با تخمین این نشان داد که در پاتاسیم‌های فیشکوپیت، حضور ماده آلی در هر دو حالت تغذیه‌ای باعث افزایش معنی‌دار مقدار کل پاتاسیم جذب‌سازه نیست که بسته به وضعیت پاتاسیم‌های آلی شده است. برای بررسی این، تغییر کانی‌شناسی فیشکوپیت را در هر دو حالت تغذیه‌ای با بسته به وضعیت پاتاسیم و همچنین تغییرات کانی‌شناسی جزمی‌گیری در موسکویت را با پاتاسیم انواع کانی میکابی انجام شده است. بطور محسوس که تغییرات کانی‌های مدیوم و غیزانه‌های ریشه‌ی، قدرت اسیدو‌رژال را افزایش داده و رهاوژی پاتاسیم را از کانی سوادی فیشکوپیت تسهیل کرده و در پایان این تبدیل کل را به‌روش کمال‌شناسی و تحقیق روش‌ها نشان داده شد. بنا براین، تأثیر ماده آلی روی تغییرات کانی‌شناسی به نوع کانی میکابی وابسته است.

واژه‌های کلیدی: رهاوژی پاتاسیم، فیشکوپیت، موسکویت، ماده آلی، ورمیکولیت، اسکلینوئید، کانی‌شناسی

مقدمه

پاتاسیم از ترکیبات اصلی پوسته‌ی زمین پوده و مقدار آن در سطح کره به طور متوسط ۲۸۵ درصد است. از نظر فرسنگی، چهارمین عنصر غذایی در سطح کره به حساب می‌آید. مقدار آن در خاک‌ها بین کمتر از ۰۱ تا ۴ درصد تغییر می‌کند و معمولاً حدود ۱ درصد است. این عملکرد حاصل از افزایش می‌شود

تناسیم از اثرات اصلی پوسته‌ی زنین پوده و مقدار آن در سطح کره به طور متوسط ۲۸۵ درصد است. از نظر فرسنگی، چهارمین عنصر غذایی در سطح کره به حساب می‌آید. مقدار آن در خاک‌ها بین کمتر از ۰۱ تا ۴ درصد تغییر می‌کند و معمولاً حدود ۱ درصد است. این عملکرد حاصل از افزایش می‌شود

تناسیم از تركيبات اصلی پوسته‌ی زمین پوده و مقدار آن در سطح کره به طور متوسط ۲۸۵ درصد است. از نظر فرسنگی، چهارمین عنصر غذایی در سطح کره به حساب می‌آید. مقدار آن در خاک‌ها بین کمتر از ۰۱ تا ۴ درصد تغییر می‌کند و معمولاً حدود ۱ درصد است. این عملکرد حاصل از افزایش می‌شود

تناسیم از تركيبات اصلی پوسته‌ی زمین پوده و مقدار آن در سطح کره به طور متوسط ۲۸۵ درصد است. از نظر فرسنگی، چهارمین عنصر غذایی در سطح کره به حساب می‌آید. مقدار آن در خاک‌ها بین کمتر از ۰۱ تا ۴ درصد تغییر می‌کند و معمولاً حدود ۱ درصد است. این عملکرد حاصل از افزایش می‌شود
غزرات های متعددی از تغییرات کلیه میکائیل در اثر
عملیات جدید رشد گیاهان و میکروگانمیسی [آریزاروخارها]
ارائه شده است. همین باعث جدال و جنگلی [9] تغییرات کلیه شامل
میکائیل سه‌جانpix فلوروبیت به عنوان تنها خاستگاه فانوسیان
منزیم و پاتسیم برای گیاه را گزارش کرده، انسامی
8 پناسیم بینای رها شده از این کاتیونهای معنی‌داری
داری افزایش تا پس از 22 روز به خسارت
هم در سبیلی در پتیکا گیاهان 20.1 درصد
دربر گذشته گزارش شده است. [9] وانگ و همکاران
ی[11] در بررسی از گنگ‌های آزادسازی نشان داده شدن یکی از
به عنوان خاستگاه تنامی پاتسیم برای گیاهان را گزارش داده، همچنین
با محلول غذایی پاتسیم تنامی ندادند. این نتیجه نشان می‌کند
دهدی‌اند از سه‌گاهی کاتیون‌های پاتسیم در همدین گردن
می‌توان از آن به عنوان گوناگانی استفاده کرد.
بتاین از نظر جستجوی پاتسیم آزادسازی از
سنتگی‌های مادی منطقه‌ای سیاچین در مدت 30 سال،
مقدار توده گیاهی از پاتسیم کل شامل شد. بنابراین
مقدار چشم‌گیری از پاتسیم کل شامل شد است. بنابراین
می‌تواند در مورد نشان‌دهنده جاده داشته
است. انتقای کاتیون از پاتسیم، شکل ظاهری و فعالیت ریشه
و قدرت استیج کردن ریزوفر [آخاک ریشه] با وسیله ریشه‌ریز

hkhademi@cc.iut.ac.ir

*نویسنده مسئول، تلفن: 39112771، توضیحات: 2011 (پیام‌های سیمپاتیک‌های

اولمی) می‌تواند با آن وجود دارد. اولمی‌ها 21 با

رشت ای کانتونیا به ویژه پاتسیم، تا زمان عکس هم

نگه داشته می‌شوند. [5] این کاتیونهای خاص استفاده در

ساخته‌های هسته‌ای می‌تواند در بی‌کایی و دوجنوم (میکائیل و

گیلیکونیت) و میکائیل سه‌جانpix (فلوروبیت و فلوروبیت) روبدی

می‌شوند [6]. کاتیونهای میکائیل به دلیل اینکه خاستگاه مهم

عناصری مثل پاتسیم، منزیم، روی و مگنزیم نشست و الزهر

ای در تغییرهای گیاهی دارد [7] برای رشد بیشتر گیاهان، پاتسیم

محلول و توابع خاک باز هم‌اکثر از اطراف آزادسازی پاتسیم

غیرنبالی در اثر هادیانگی دختر پاتسیم یا افزودن گودهای

گیشی قارچی‌نشود شود [8]. [8]
کانه‌های میکانی انجام نشده است. بنابراین این پژوهش با هدف بررسی تأثیر مقدار متغیرهای آماده می‌باشد. این انجام شد.

مواد و روش‌ها

بررسی‌های گفتگوی‌های آزمایش درمان با آرامش فاکتور و در قالب طرح کم‌کلیدی انجام گرفت. تیمار های از میان زبانی شامل دو نوع میکا (موسکوکت و فلورگنت) و شاهد، دو نوع محلول غذایی با پاتوسیم و بدن ار اوردوپیام شد. این انجام شد.

کانه‌های میکانی فلورگنت و موسکوکت از مبادی در همان مدت چند دقیقه تمایل دارند و تجربه کنند در این مدت این انجام شد. این کانه‌های میکانی که نخست به صورت پوتاهی به قطر 5 تا 10 میلی‌متر انجام شده در اندمای کوچکتر از 230 میکرون (قطر کمتر از 60 میکرون) برای آزمایش انتخاب شدند. این کانه‌ها به وسیله‌ی میکائس تهیه شده و در محلول کانه‌های توانایی برای بدن پیوندی کشته می‌شود.

گرم بود شن کوارتری نیز معدود در همان مدت چند دقیقه تمایل دارند و تجربه کانه‌های میکانی که نخست به صورت پوتاهی به قطر 5 تا 10 میلی‌متر انجام شده در اندمای کوچکتر از 230 میکرون (قطر کمتر از 60 میکرون) برای آزمایش انتخاب شدند. این کانه‌ها به وسیله‌ی میکائس تهیه شده و در محلول کانه‌های توانایی برای بدن پیوندی کشته می‌شود.

این آزمایش‌ها برای توانایی در حالت بهبودی و پیوندی در رژیم‌های مختلفی انجام می‌شود.

یافته‌های آزمایش

یافته‌های آزمایش نشان داد که کانه‌های میکانی که نخست به صورت پوتاهی به قطر 5 تا 10 میلی‌متر انجام شده در اندمای کوچکتر از 230 میکرون (قطر کمتر از 60 میکرون) برای آزمایش انتخاب شدند. این کانه‌ها به وسیله‌ی میکائس تهیه شده و در محلول کانه‌های توانایی برای بدن پیوندی کشته می‌شود.

این آزمایش‌ها برای توانایی در حالت بهبودی و پیوندی در رژیم‌های مختلفی انجام می‌شود.

یافته‌های آزمایش نشان داد که کانه‌های میکانی که نخست به صورت پوتاهی به قطر 5 تا 10 میلی‌متر انجام شده در اندمای کوچکتر از 230 میکرون (قطر کمتر از 60 میکرون) برای آزمایش انتخاب شدند. این کانه‌ها به وسیله‌ی میکائس تهیه شده و در محلول کانه‌های توانایی برای بدن پیوندی کشته می‌شود.

این آزمایش‌ها برای توانایی در حالت بهبودی و پیوندی در رژیم‌های مختلفی انجام می‌شود.

یافته‌های آزمایش نشان داد که کانه‌های میکانی که نخست به صورت پوتاهی به قطر 5 تا 10 میلی‌متر انجام شده در اندمای کوچکتر از 230 میکرون (قطر کمتر از 60 میکرون) برای آزمایش انتخاب شدند. این کانه‌ها به وسیله‌ی میکائس تهیه شده و در محلول کانه‌های توانایی برای بدن پیوندی کشته می‌شود.

این آزمایش‌ها برای توانایی در حالت بهبودی و پیوندی در رژیم‌های مختلفی انجام می‌شود.

یافته‌های آزمایش نشان داد که کانه‌های میکانی که نخست به صورت پوتاهی به قطر 5 تا 10 میلی‌متر انجام شده در اندمای کوچکتر از 230 میکرون (قطر کمتر از 60 میکرون) برای آزمایش انتخاب شدند. این کانه‌ها به وسیله‌ی میکائس تهیه شده و در محلول کانه‌های توانایی برای بدن پیوندی کشته می‌شود.

این آزمایش‌ها برای توانایی در حالت بهبودی و پیوندی در رژیم‌های مختلفی انجام می‌شود.

یافته‌های آزمایش نشان داد که کانه‌های میکانی که نخست به صورت پوتاهی به قطر 5 تا 10 میلی‌متر انجام شده در اندمای کوچکتر از 230 میکرون (قطر کمتر از 60 میکرون) برای آزمایش انتخاب شدند. این کانه‌ها به وسیله‌ی میکائس تهیه شده و در محلول کانه‌های توانایی برای بدن پیوندی کشته می‌شود.

این آزمایش‌ها برای توانایی در حالت بهبودی و پیوندی در رژیم‌های مختلفی انجام می‌شود.

یافته‌های آزمایش نشان داد که کانه‌های میکانی که نخست به صورت پوتاهی به قطر 5 تا 10 میلی‌متر انجام شده در اندمای کوچکتر از 230 میکرون (قطر کمتر از 60 میکرون) برای آزمایش انتخاب شدند. این کانه‌ها به وسیله‌ی میکائس تهیه شده و در محلول کانه‌های توانایی برای بدن پیوندی کشته می‌شود.

این آزمایش‌ها برای توانایی در حالت بهبودی و پیوندی در رژیم‌های مختلفی انجام می‌شود.

یافته‌های آزمایش نشان داد که کانه‌های میکانی که نخست به صورت پوتاهی به قطر 5 تا 10 میلی‌متر انجام شده در اندمای کوچکتر از 230 میکرون (قطر کمتر از 60 میکرون) برای آزمایش انتخاب شدند. این کانه‌ها به وسیله‌ی میکائس تهیه شده و در محلول کانه‌های توانایی برای بدن پیوندی کشته می‌شود.

این آزمایش‌ها برای توانایی در حالت بهبودی و پیوندی در رژیم‌های مختلفی انجام می‌شود.

یافته‌های آزمایش نشان داد که کانه‌های میکانی که نخست به صورت پوتاهی به قطر 5 تا 10 میلی‌متر انجام شده در اندمای کوچکتر از 230 میکرون (قطر کمتر از 60 میکرون) برای آزمایش انتخاب شدند. این کانه‌ها به وسیله‌ی میکائس تهیه شده و در محلول کانه‌های توانایی برای بدن پیوندی کشته می‌شود.

این آزمایش‌ها برای توانایی در حالت بهبودی و پیوندی در رژیم‌های مختلفی انجام می‌شود.

یافته‌های آزمایش نشان داد که کانه‌های میکانی که نخست به صورت پوتاهی به قطر 5 تا 10 میلی‌متر انجام شده در اندمای کوچکتر از 230 میکرون (قطر کمتر از 60 میکرون) برای آزمایش انتخاب شدند. این کانه‌ها به وسیله‌ی میکائس تهیه شده و در محلول کانه‌های توانایی برای بدن پیوندی کشته می‌شود.

این آزمایش‌ها برای توانایی در حالت بهبودی و پیوندی در رژیم‌های مختلفی انجام می‌شود.

یافته‌های آزمایش نشان داد که کانه‌های میکانی که نخست به صورت پوتاهی به قطر 5 تا 10 میلی‌متر انجام شده در اندمای کوچکتر از 230 میکرون (قطر کمتر از 60 میکرون) برای آزمایش انتخاب شدند. این کانه‌ها به وسیله‌ی میکائس تهیه شده و در محلول کانه‌های توانایی برای بدن پیوندی کشته می‌شود.

این آزمایش‌ها برای توانایی در حالت بهبودی و پیوندی در رژیم‌های مختلفی انجام می‌شود.
سوزاندن تر، کلدل و خاکستر خشک [۲۵] اندوزه‌گیری شد (جدول ۱). کوکوپیت یک فرآورده تجاری است که پس از برداشته پوست سیاه برای مصرف در بهره‌برداری ناریگل و حذف فیبرهای بلند و متوسط از جدول ۱ مقدار کربن نیتروژن و دیده شده با کلید آمونیوم استفاده شده در آزمایش (بر حسب درصد) میلی‌آمر و ولتز ۴۰ کیلوولت در دانشگاه بریتانیش کلمبیایی شمالی کانادا مورد بررسی کاتیون‌های قرار گرفتند. برای بررسی تغییرات نسبی کاتیون‌ها از نسبت شدت قله‌های شاخص آن استفاده شد و متوسط سه تکرار در هر تیمار ملاک اریازی قرار گرفت. با بهره‌گیری یافته شد تا نمونه‌ها و آنان‌ها آن‌ها با دستگاه بیشتر سنج پروکریک در شرایط کامل‌ال‌نشأه‌ای انجام شود.

داده‌های دست آمده از آزمایش با نرم‌افزارهای SAS و SPSS نیز با آزمون LSD در سطح ۵ درصد صورت گرفت. همچنین Origin نسخه نگاشته‌های هفت نمونه‌ها نیز با پارامتر ۷ تهیه شدند.

نتایج و بحث
نتایج تجزیه‌های شن کوارتزی و کاتیون‌های میکاپی پیش از آزمایش
از نتایج تجزیه‌های شن کوارتزی و کاتیون‌های میکاپی پیش از آزمایش ترتیب‌گذاری نشان داد که مقدار ۳۰ درصد مقدار شش میکاپی به کنترل بر حسب درصد مقدار کاتیون‌های مناسب در جدول ۲ آمده است. کمتر از آن در هر نمونه‌ها به نظر می‌رسد به عنوان پرگندندگی گلدان‌ها در آزمایش، بین تغییرات مناسب داشته باشد. بنابراین نتایج این جدول مقدار پایدار بر حسب KdO موجود در موسکوکت و مقادیر آن در فلکوپیت. همچنین مقدار الومینیم بر حسب دو اکسید الومینیم مقداری است که دو میزان آن از سه موقعیت لایه‌های جوی و کاتیون‌های که با وسیله الومینیم اشغال شده است را تایید می‌کند.

<table>
<thead>
<tr>
<th>C</th>
<th>N</th>
<th>K</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>8</td>
<td>8</td>
</tr>
</tbody>
</table>

نیاز به دقت در انتقال ایزویژن، برای آن‌ها کمی کالیوریال، نمونه‌هایی از نمایه‌گذاری گلدان با بیشترین تغییرات ریشه بی‌عنوان ناحیه‌ای و یک غبار ریشه‌ای گیاهی در هوا - خشک شدن و برای جدا کردن کاتیون‌های است در شن کوارتزی، از الک ۳۰۰ استفاده شد. همچنین برای حذف مادی آیی نمونه‌ها، از آب اکسیژن ۳۰۰ درصد استفاده شد. با این حال مراحل کاتیون‌های میکاپی با فراورده‌های حاصل از این کاملاً بسته جو کیفیت را نیز با استفاده از یک مرکز گریز جدا شد. دو نمونه ی ۴۰ دلاری گرمی را به منزیم و یا پتانسیم اشباع شدند و هر کدام از آن‌ها را روی استاده‌های شیمیایی به مساحت ۲ × ۴ سانتی‌متر مربع به استفاده یکین شد. علائم‌برای برای آزمایش‌های بررسی ۴ پروتئین، پروتئین، ۴ اشباع با منزیم و گلیسرول و ۱۰۰ محض با دمای ۵۵ درجه سلسیوس استاده‌های اشباع شده با پتانسیم نیز نهایی شد. استاده‌های نهایی شده با پراکن دنیا برای اینکه به به‌کارگیری برای ۲۰ AXS مدل Bruker نوع
آشوب با پتاسیم بدون تغییر مانده است. بنابراین نمونه موسکویت استفاده شده یک کانی نسبتاً خالص است. در نمونه اشوب با منیزیم کانی استفاده شده به عنوان فلوگوبیت علاوه بر قله رده‌های (200) و (002) کانی میکائی قلمه بسیار ضعیف 0/4 نانومتر نیز قابل مشاهده است (شکل 1-B). که نسبت شدت قله 1/4 نانومتر به 1 نانومتر 0/6 است (جدول 3). حضور این قله نشان دهنده وجود تناخلصی وریکولیت است. این کانی با کلریت که به دلیل حذف قله 1/4 نانومتر در تیمار اشوب با پتاسیم تناخلصی کلریت در نمونه وجود ندارد. باقی مانده این قله در تیمار اشوب با منیزیم و گلیسول نشان می‌دهد که تناخلصی به وریکولیت وابسته است.

جدول 2 تجزیه عنصری کانی‌های میکائی و شن کوارتزی استفاده شده در آزمایش به وسیله فلورسانس پترو ایکس (بر حسب درصد) [23] (Loss on ignition)

<table>
<thead>
<tr>
<th></th>
<th>Total LOI*</th>
<th>TiO2</th>
<th>P2O5</th>
<th>MnO</th>
<th>Fe2O3</th>
<th>CaO</th>
<th>K2O</th>
<th>SiO2</th>
<th>Al2O3</th>
<th>MgO</th>
<th>Na2O</th>
</tr>
</thead>
<tbody>
<tr>
<td>موسکویت</td>
<td>0.84</td>
<td>0.08</td>
<td>0.33</td>
<td>0.24</td>
<td>0.22</td>
<td>0.12</td>
<td>0.09</td>
<td>0.34</td>
<td>0.24</td>
<td>0.99</td>
<td>0.46</td>
</tr>
<tr>
<td>فلوگوبیت</td>
<td>0.45</td>
<td>0.32</td>
<td>0.09</td>
<td>0.01</td>
<td>0.00</td>
<td>0.00</td>
<td>0.01</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>شن کوارتزی</td>
<td>0.00</td>
</tr>
</tbody>
</table>

کاهش وزن در دمای بالا (B)
کانی شناسی به رسن می‌تواند باشد که در پایان آزمایش
کانی شناسی به رسن محیط ریشه حاوی فلوبیوت
پردازش تا یک اینک نمونه‌های اشاع از مسیر پیست‌های
کشت درای فلوبیوت، تغییرات کانی شناسی این کنی
سیطی را در هر سطح ماده‌ای و در شرایط تغذیه‌ای
پیش‌بینی و بدون پیش‌بینی نشان می‌دهد (شکل 2). در نمونه‌های
اشاع از مسیر پیست‌های کشت درای فلوبیوت
علاوه به فلوبیوت، ۱۴ نانومتر و ۱ نانومتر کاهش می‌یابد.
قهره ۱۴ نانومتر به شدت دو میلی‌متر مانند مشاهده شده.
شرایطی که ماده‌ای به محیط کشت گیاهان اضافه نشده
و گیاهان مراحل تغذیه‌ای با پیش‌بینی نشان می‌دهند، شدت قهره
۱ نانومتر به شدت این کنی در نمونه‌های فلوبیوت بیش
از کشت، افزایش یافته است. ولی نسبت شدت قهره
۱/۴ نانومتر به شدت این کنی در نمونه‌های فلوبیوت پیش
از شرایطی که ماده‌ای به محیط کشت گیاهان اضافه
نشده، و گیاهان در مراحل تغذیه‌ای با پیش‌بینی
نشان می‌دهد (جدول ۳). در شرایطی که ماده در
کشت درای فلوبیوت، مراحل تغذیه‌ای با پیش‌بینی
نشده، نسبت به شدت درای فلوبیوت، مشابه سطح
نیم درصد ماده‌ای که نشان نداده است. ولی افزودن یک درصد
کشت درای فلوبیوت، مشابه سطح نیم درصد ماده‌ای
با ۰/۰۵ نسبت به سطح معنی‌داری (p < 0/۵) شدت قهره
۱/۴ نانومتر به ۱/۴ نانومتر در مقایسه با به رسن کشتی که هنگ
گونه ماده‌ای در دریافت نکرده بودن، افزایش دیده و تقریباً
۵/۱۸ برای شده است. در مورد جدید پیش‌بینی با سیستم‌های
های نیز همین نتیجه به دست آمد و در بستریه‌های دارای
فلوبیوت شرایط تغذیه با محیط غذایی حاوی پیش‌بینی، بین سطح
نیم و یک درصد ماده‌ای از لحاظ میزان پیش‌بینی
به وسیله یگاهان اختلاف معنی‌داری مشاهده نشد (شکل ۳).

مطلب: مانند شکل ۱، پردازش به رسن ایکس تیلوری‌ها اشاع از مسیر پیست
کشت درای فلوبیوت، نتایج یافته که در شيپ
پیش‌بینی و بدون پیش‌بینی نشان می‌دهد (شکل 2). در نمونه‌های
اشاع از مسیر پیست‌های کشت درای فلوبیوت
علاوه به فلوبیوت، ۱۴ نانومتر و ۱ نانومتر کاهش می‌یابد.
قهره ۱۴ نانومتر به شدت دو میلی‌متر مانند مشاهده شده.
شرایطی که ماده‌ای به محیط کشت گیاهان اضافه
نشده، و گیاهان در مراحل تغذیه‌ای با پیش‌بینی
نشان می‌دهد (جدول ۳). در شرایطی که ماده در
کشت درای فلوبیوت، مراحل تغذیه‌ای با پیش‌بینی
نشده، نسبت به شدت درای فلوبیوت، مشابه سطح
نیم درصد ماده‌ای که نشان نداده است. ولی افزودن یک درصد
کشت درای فلوبیوت، مشابه سطح نیم درصد ماده‌ای
با ۰/۰۵ نسبت به سطح معنی‌داری (p < 0/۵) شدت قهره
۱/۴ نانومتر به ۱/۴ نانومتر در مقایسه با به رسن کشتی که هنگ
گونه ماده‌ای در دریافت نکرده بودن، افزایش دیده و تقریباً
۵/۱۸ برای شده است. در مورد جدید پیش‌بینی با سیستم‌های
های نیز همین نتیجه به دست آمد و در بستریه‌های دارای
فلوبیوت شرایط تغذیه با محیط غذایی حاوی پیش‌بینی، بین سطح
نیم و یک درصد ماده‌ای از لحاظ میزان پیش‌بینی
به وسیله یگاهان اختلاف معنی‌داری مشاهده نشد (شکل ۳).
تأثیر ماده آلی بر تغییرات کانی شناسی فلوگوپیت

علاقه‌براندها در هر دو حالت تغییرهای حضور ماده آلی در
بسترها داور فلوگوپیت باعث افزایش وزن خشک گیاهان
نسبت به حالتی که بسترها بدون ماده آلی بودند جدا
شده. در شرایط تغییرهای بیش از کانی سه‌گانه
فلوگوپیت خاصیت دیگری برای زمان
نیاز تکانی به دست آورده است. کانی فلوگوپیت تحت تأثیر
فعالیت‌های الی‌کروز[اخوان ریشه] بیمار و تجزیه ماده
آلی هوا‌برده شده و کانی‌های جدیدی در مهیج کشت تغییر
شد است. در نتیجه این تغییرات با پیوسته بودن ریشه نیز
بسترها کشته که با مخلوط غذایی بدون پاسیم تغییرهای
شد بودند. شدت الی‌کروز 1.4 نانومتر نسبت به مخلوط فلوگوپیت
پیش از کشت افزایه‌ای است (شکل 2). از انجا که گیاهان
کشته‌شد در این بستر، غیر از کانی فلوگوپیت هنچ‌زادن
دیگری برای تأمین نیاز پاسیمی خود نداشتند، باریک‌ترین جذب
پاسیم به سیستم ریشه‌های گیاهان، اغلب‌تر در ناحیه ریزوسفر کشیده است. همچنین ریشه‌های
گیاه اسیده‌ای آلی ترشح کرده و از طریق H20 تولیدی باعث
تغییر شکل ان کانی شده‌اند. در شرایطی که گیاهان با محلول
غذایی بدون پاسیم تغییرهای شدند با افزودن نیم درصد ماده
آلی به مهیج کشت داور کانی فلوگوپیت هنچ‌زادن می‌شود.
گاهی، نسبت شدت قله 1.4 نانومتر به 1 نانومتر به
دایر نسبت به بسترها بدون ماده آلی افزایش یافته و از
27 به 138 (تقربین 5 برای راست) سیستم است (جدول 3). بین
تمامی تیمارها بیشترین نسبت شدت قله 1.4 نانومتر به 1

![Graph](https://example.com/graph.png)
شکل ۲ پرانتز کروتو ایکس تیمارهای اشتباع از منیزیم بخش رس نمونه فلوجوپیت قبل از آرایش (Control) و پس از کشت مربوط به دو وضعیت تغذیه‌ای با پتانسیم (+K) و بدون پتانسیم (-K) و سطح بدن ماده آیی (OM)، تیم درصد ماده آیی (+0.5%OM (K)) و ۱ درصد ماده آیی (+1%OM (K))

شکل ۳ کل پتانسیم جذب شده توسط بوته در دو وضعیت تغذیه‌ای با پتانسیم (+K) و بدون پتانسیم (-K) میانگین های دارای حرف مشترک در سطح ۵ درصد نتایج معنی‌دار ندارند

فلههای ۱/۴ نانومتر و ۱/۲ نانومتر در تیمار اشتباع با این‌گونه نمونه‌های بازین به پیش‌روی کشت دارای فلوجوپیت در هر دو حالات تغذیه‌ای مشاهده شد (شکل ۴ و ۵) که در نمونه‌های بازین به پیش‌روی کشت جز در تیمارهای دارای ماده آیی که به محلول غذا کبدان در سطح تغذیه شده بودند، قله ۱/۴ نانومتر با تیمار فلوجوپیت بالا ماده و بخشی از کلیک نیز از ۱/۲ نانومتر مناسب شد. قله ۱/۴ نانومتر حاکی از تشکیل کانال‌گذاری در این پیش‌روی کشت است. همچنین حضور فلوجوپیت رده‌های دوم (۱/۴ نانومتر)، سوم (۰/۲ نانومتر)، چهارم (۰/۴ نانومتر) و پنجم (۱/۲ نانومتر) کلیت در نمونه‌های اشتباع با منیزیم اگر نشان می‌گذارد (شکل ۴ و ۵) پیش‌روی کشت دارای آیی در هر دو حالات تغذیه‌ای (محلول غذایی با پتانسیم و بدون پتانسیم) نشان می‌دهد که علاوه بر کانال اسکینت، کالیکل تیم کسید در اثر
گزارشی مبنی بر تشکیل کاتیون کلریت شده ارائه نشده است. به نظر می‌رسد تشکیل پروسایت (Mg(OH)₂) در محیط کشت گیاه در اثر انتقال کاتیون منیزیم‌دار فلوکوپیت و ورود آن در لایه‌های سیلیکات‌های صفحه‌ای 2:1 منش اصلی تشکیل پروسایت و کلریت بیشتری نیز در محیط به‌وجود آمد است. ناکونن

کلریت نیز از پروسایت به‌وجود آمده است. ناکونن

در بخش نخست پرتو ایکس تیمارهای اشباع از منیزیم (Mg), اشکال از منیزیم و ایکس کلیکول (Mg-Eg) در محیط کشت گیاه (Control) و پس از کشت در سطح بدون مشا (Control) +1%OM-Mg (0.33nm), +0.5%OM-Mg (0.354nm) و 1 درصد مشا آلی (OM) در شرایط غذایی با محلول غذایی به باستیم.

در بخش نخست پرتو ایکس تیمارهای اشکال از منیزیم (Mg), اشکال از منیزیم و ایکس کلیکول (Mg-Eg) بر روی بخش رس نمونه فلوکوپیت قبل از شرایط غذایی با محلول غذایی به باستیم.
هنرینمجر و جلالدی[9] پس از روز کشت و ورمیکولینی
شدت فوق لوکوئیدی اثر هاها و هرمانی چشمشگیر
پاسیم بین لایه‌ای نکته در ریزسرفر را گزارش
کرده. به دلیل ناهنجاری‌هایی که در موارد ریزسر
به یاد می‌آید در لوکوئیدی به سیستم کالیونهای
به انرژی ورودی والر می‌باشت مثل کلین مایکلین شده و باعث تشکیل
شکل‌مانندی ریزسرفر آشکارشده نشده است. هرمانی[13] در
مارحتی، تغییرات میکا و گلرزی و تشکیل کانه‌های
منشته‌شده و ورمیکولین و استکمات را نشان داد. "حیرت و
همکاران [13] نیز در یکی از بررسی‌های خود تشکیل
شکت شدید و رای گزار، در شرایط که هیچ گونه کود
پاسیمی به محیط کشت اضافه نشده بود، قرار گرفت.
در شرایط غذایی بدون پاسیم با انورژی ماده آیی به
بسترخانه را کلیانگل کلیه 14 و 16
نمونه‌برداری تیمار اشکاب در ابتدا گلیکوژ ممکن
حتی کلیه 14 نمونه و باقی مانده کلیه 14 نمونه
در تیمار گلیسول نشان می‌دهد که درک خارجی دیگر است. است
کننده کانه‌های میکا و گلرزی و تشکیل کانه‌های
علاوه بر این، ماده آیی در شرایط غذایی بدون
پاسیم گاه گیر از کلیانگل کلیه 14 نمونه
تأیید کننده نشده است. است. حضور ماده آیی در
بسترخانه کشت حاجی لوکوئیدی باعث افزایش معنی‌دار
نسبت شماره‌های درد ناگری کردن به

کانی گاه بخش اولین مهم و اساسی
برای تغییر بروز افزایش رس میکرو
برد نگاشت پترونی مشاهده داشته می‌باشد. این می‌باشد
و است. با توجه به اینکه بیشتر
۱۰ نمونه و باقی مانده کلیه 14 نمونه
با توجه به اینکه بیشتر
شکت شدید و رای گزار، در شرایط که هیچ گونه کود
پاسیمی به محیط کشت اضافه نشده بود، قرار گرفت.

کانی گاه بخش اولین مهم و اساسی
برای تغییر بروز افزایش رس میکرو
برد نگاشت پترونی مشاهده داشته می‌باشد. این می‌باشد
و است. با توجه به اینکه بیشتر
۱۰ نمونه و باقی مانده کلیه 14 نمونه
با توجه به اینکه بیشتر
شکت شدید و رای گزار، در شرایط که هیچ گونه کود
پاسیمی به محیط کشت اضافه نشده بود، قرار گرفت.
با گیاهان کشت شده در بستر حاوی موسکووت تشخیص گرفته شدند. در شرایط تغذیه‌ای بدون پتاسیم، حضور ماده‌ای الی نیز تنمایش ایست راه‌اندازی پتاسیم غیربادی با از کاهش دهی موسکووت تشکیل می‌گردد. با بستر حاوی موسکووت در شرایطی که گیاهان با محول غذایی بدن پتاسیم تغذیه شده‌اند، از نظر میزان جذب پتاسیم تنظیم گردید.

شکل 6 پردازش نگاتور بر روی ایکس تیمارهای اشباع از منیزیم در بستر حاوی موسکووت قبل از آزمایش (Control) و پس از کشت مربوط به دو وضعیت تغذیه‌ای با پتاسیم (+K) و بدون پتاسیم (-K) و سه سطح بدون ماده الی (OM(-))، 0.5% (OM(+))، 1% (OM(+)) و 1 درصد ماده الی (OM(+))

نوروزی و خامدی [14] در شرایط کمبود پتاسیم در ریزوسفر آخک و ریشه‌های پونجه، وریکولولینیا گل کردن و تغییر شکل موسکووت و عدم تغییر شکل موسکووت را گزارش کرده‌اند. مجله‌ی وید (10) در محیط کشت گیاهان و در شرایط همزینی با فآرت میکروژیا، تغییر کانالهای جذبی در کاني موسکووت مشاهده شد. در موسکووت به دلیل ایجاد موقعیت هیدروکسیلی سه‌انی به وقایع سیلیکات، مایل به و فلاش پروتوپتون و پاتامز زادن این، پتاسیم کمتر دفع می‌شود و آزادسازی پتاسیم از انی کانال سخت‌تر از یک کانال سخت‌تر است. ترتیب زادن پتاسیم از کانال‌های خاک در شرایطی که پتاسیم خاک کاهش می‌یابد به صورت میکروژیا سه‌انی می‌کاهی موجب پاتامز است. [27]

رابطه تغییرات کانال شناسی و کل پتاسیم جذب‌شده نمودار همبستگی بین نسبت شدت قلمی 14 نانومتر به 1 نانومتر در تیمارهای اشباع از منیزیم و کل پتاسیم جذب‌شده.
تظاهره به اهمیت پتاسیم غیربادی در تأمین نیاز گیاه در خاک‌های بانایی با تغییرات پتاسیم باید نوع کاندیه پتاسیم دار و میزان رهاسایی پتاسیم آن الگو توسعه کود مورد توجه خاص قرار گیرد. همچنین با افزودن کود آلی به این خاک‌ها می‌توان علاوه بر ایجاد شرایط نوری و شیمیایی مناسب در خاک، رهاسایی پتاسیم غیربادی کاندیه را تا حدودی تسهیل کرد. به علاوه، به نظر می‌رسد که احتمالیت از کاندیه رسی و ریویکلاست، سرمایشی و حتی کربنات در خاک‌ها به ویژه در خاک‌های با مواد آلی بالا حاصل تسهیل‌نیاز بیولوژیکی کاندیه میکروآی و بیشتر سیبگاههای سیاهی باشد.

تجزیه ماده‌ای آلی در محیط رشد گیاه توانسته است شرایط مناسبی برای هوادیدگی کاندیه و آزادسازی پتاسیم غیربادی آن را فراهم کرده و تغییرات کاندیه شناسی چشم‌گیری در کاندیه ایجاد کند. البته این تأثیر کاملاً به نوع کاندیه میکروآی و استنشاقی است. به طوری که کاندیه میکروآی ماده‌ای آلی در ریویکلاست [آکسی ریویکلاست] گیاه به خوبی توانسته پتاسیم غیربادی خود را آزاد کند و به کاندیه رسی دیگر تسهیل‌نشود. ولی در مورد کاندیه دوجانی موسکوئیت که مقاوم به هوادیدگی است حتی حضور ماده‌ای آلی در بستر کشت هم باعث تسهیل هوادیدگی و آزادسازی پتاسیم غیربادی در آن نشده است و هیچ تغییری در این کاندیه مشاهده نمی‌شود. با

![نمودار (الف)](image1)

![نمودار (ب)](image2)

