بررسی شیمی کانی کلریت به عنوان روشی در زمین دماسنجی دگرگانی گرمانی در نهشته
سولفیدی قزل داش خوی، شمال باختری ایران

الی امامی‌پور ۱۵، ابرق رضا ۴

۱- گروه مهندسی معدن دانشگاه رامیه
۲- گروه زمین شناسی دانشگاه شهید بهشتی

(دریافت مقاله: ۸۸/۱۰/۲۸، نسخه نهایی: ۸۸/۱۰/۲۸)

چکیده: کانی‌های گروه کلریت درای دامنه گسترده‌ای از ترکیب شیمیایی هستند که با تابی از شرایط فیزیکوchemیایی تبلور ان‌ها است. بدین مherent جامد (جانشینی کاتیونی) در شیشه بلوری کلریت به‌صورت موقتی آمیزی در تغییر دما های تبلور این کانی در محیط‌های گوناگون زمین شناسی همچون نهشته‌های معدنی، دگرسنجی‌های گرمانی، دگرگانی‌های گرمانی در یک باین و دیاژنیک توسط بخشی از پژوهشگران به‌کار رفته است. در این پژوهش، از روش زمین دماسنجی کانی کلریت در تغییر دما گرمانی و کانی‌های نهشت به‌کار گرفته شده‌است. سولفیدی ناحیه قزل داش شمال باختر شهرستان خوی استفاده شده است. این کار، نمونه‌برداری سطحی و عمقی (از مغزه‌های حفاری) انجام گرفت و پس از بررسی‌های سنجش‌گری (میکروسکوپی) و کانی‌شناسی به روش پرتو ایکس (XRD)، تعداد ۱۱ بلوک کلریت که به بخش‌های مختلف سیستم دگرگانی وابسته، انتخاب و تجزیه شیمیایی نطفه‌ای با دستگاه ریوکاپالترونی روز آن‌ها انجام گرفت. فرمول ساختاری کلریت‌های انضمی بر مبنای تعداد ۱۴ اکسیژن محاسبه شد. کلریت‌های دلای تغییرات ترکیبی و جانشینی‌های انتی مخصوصی هستند که با تابی از دما تبلور آن‌هاست. تشکیل کلریت‌های موجود در بخش‌های گوناگون سلاده‌ها کانادار در گستره‌های دمایی ۳۷۸-۴۳۸ درجه سانتی‌گراد و برای کلریت‌های موجود در سلاده‌ها دگرگانی به کانه ۲۰۱۲-۲۰۱۶ درجه سانتی‌گراد روي داده است. کلریت‌های با دما بالا محتوی Si کمترین نسبت به کلریت‌های متنبل شده در دماهای پایین دارد.

واژه‌های کلیدی: کلریت، زمین دماسنجی، جانشینی ان‌تم، دگرگانی، کانه‌زایی، سولفیدی، قزل داش، خوی

مقدمه

فرمول عمومی کلریت‌ها به‌صورت

\[
(Mg, Fe^{2+}, Fe^{3+}, Mn, Al)_6 ((Si, Al)_4 O_{10}) (OH)_8
\]

است. رخ‌دادن اصلی این کانی‌ها در سلاده‌ها دگرگانی ناحیه‌ای با دمای پایین تا متوسط و نیاز به عنوان فراورده دگرگان‌کاهی فرمونیزین هم‌جنس
یکی از مشترکان ایران و ترکیه می‌باشد. بندهای باد شده از جنوب به کمکی به‌هم‌ریخته در کنار بندهای نیروی این ترکیه
(افوایی‌ها در محوطه نارس) و از سوی شمال به خودش هم به‌طور نیز شناخته شده‌اند (افوایی‌ها در محوطه نیاز اصلی‌ها). به‌عنوان دوک همگامی در میان
سگ تیکه دهنده این مجموعه افوایی‌ها شامل سگ-
های اولارماریفیک (هارپوزویتی، دیونیت، اندکی پیردکستنی و
سرپاپاپت), گابری، داکیه‌های رودخانه‌ای مقدار کمی
پلاژوگرانت، داکیه‌های صفحه‌ای. داده‌های تغذیه و آنالیز
یاب ساختمانی این سلول‌های نوگری مورد نظر در زمین-
دمشکی کلریت از طریق تدابیر قصد شده‌است. این
فلوئور باید از یک تابع تیست تا بزرگ شده است(ات). پژوهشی
اجتماعی توزیع پژوهشگان دیگر در حوضه‌های زمین-
شناسی گواهی‌گذاری دان برا این است که زمین‌پرفری و نموپز
اصلح شده T-Al(IV) که شناسایی (1988) ارائه کرد است.
می‌تواند به گونه‌ای موفقیت آمیز وی با احتمال بروز تغییراتی
دبی تبلور کلریت در مواردی همچون بررسی نزد نهشته-
های معدنی، دگرگونی‌های با درجهٔ پایین، دگرگونی‌ها و
دبایان به کار رود(۶)
در این یک پژوهشی، در یک ناحیه محدود منطقه‌ای در نظر
گرفته که نشته‌های سلول‌های نوگری مورد نظر دسته‌بندی شده.
پژوهش کاتیون نشته‌های سلول‌های نوگری مورد نظر (پرتو ایکس
نامر و پرتو ایکس) (۱۵) نمونه. مورد بررسی قرار گرفت. تعداد ۱۱ بلویر
کلریت درشت دان روی این نشته‌های نارس نمود. نمود. نمودرد پرتو ایکس
بای تجربه شیمیایی نظر امکان‌پذیر است. در نظر
گرفته در زمین‌پرفری این ناحیه، در نظر

انتحابی با استفاده از ریزکاسو الکترونی (Microprob) در سازمان زمین‌شناسی و اکتشافات معدنی

شکل 1 موقعیت جغرافیایی و نقشه زمین‌شناسی محدوده معدنی قزل داش خوی. در نقشه سمت راست موقعیت گسترده افوپیت خوی (شمال باختری) کشور و مرز ایران و ترکیه و منطقه قزل داش (مریع توبیر) نشان داده شده است. و در نقشه سمت چپ نز سه منطقه زمین‌شناسی منطقه قزل داش آمده است.

جدول 1 نتایج تجزیه شیمیایی نقطه‌ای (به روش ریز پردازش)، محاسبه فرمول ساختار بلوری و دمای تبلور کلرید‌های انتحابی از منطقه‌های درگرسان و کاندزای قزل داش خوی.

<table>
<thead>
<tr>
<th>Sample No</th>
<th>16/1</th>
<th>16/2</th>
<th>23/1</th>
<th>23/2</th>
<th>6/2</th>
<th>6/3</th>
<th>BH1-4</th>
<th>BH3-4</th>
<th>BH3-3</th>
<th>261</th>
<th>262</th>
</tr>
</thead>
<tbody>
<tr>
<td>Al2O3</td>
<td>19.23</td>
<td>20.32</td>
<td>19.75</td>
<td>19.76</td>
<td>19.1</td>
<td>19.3</td>
<td>19.8</td>
<td>19.8</td>
<td>19.8</td>
<td>19.5</td>
<td>19.3</td>
</tr>
<tr>
<td>FeO</td>
<td>18.96</td>
<td>18.97</td>
<td>18.98</td>
<td>18.96</td>
<td>18.93</td>
<td>18.93</td>
<td>19.4</td>
<td>19.4</td>
<td>19.4</td>
<td>19.5</td>
<td>19.5</td>
</tr>
<tr>
<td>MnO</td>
<td>0.58</td>
</tr>
<tr>
<td>MgO</td>
<td>18.19</td>
<td>18.37</td>
<td>18.76</td>
<td>18.77</td>
<td>18.75</td>
<td>18.76</td>
<td>19.6</td>
<td>19.6</td>
<td>19.6</td>
<td>16.5</td>
<td>16.5</td>
</tr>
<tr>
<td>CaO</td>
<td>0.15</td>
</tr>
<tr>
<td>Na2O</td>
<td>-</td>
</tr>
<tr>
<td>K2O</td>
<td>-</td>
</tr>
<tr>
<td>Total</td>
<td>88.13</td>
</tr>
<tr>
<td>Si (IV)</td>
<td>2.8</td>
</tr>
<tr>
<td>Al</td>
<td>2.65</td>
</tr>
<tr>
<td>Al (IV)</td>
<td>1.18</td>
</tr>
<tr>
<td>T Site</td>
<td>2</td>
</tr>
<tr>
<td>Al(VI)</td>
<td>1.77</td>
</tr>
<tr>
<td>Fe2+</td>
<td>1.68</td>
</tr>
<tr>
<td>Mn2+</td>
<td>0.05</td>
</tr>
<tr>
<td>Mg</td>
<td>3.81</td>
</tr>
</tbody>
</table>
بحث و بررسی

مahiت کانادزایی و دگرسانی سنج میزان

پالاترین بخش اولی سیستم لیوئوسیت خوی را سنگ‌های آتش‌شانسی و یاری‌ربایی می‌سازد که از گستره‌های با رشد و تعداد بالا در ناحیه قلب داشت. این سنگ‌ها که ساخت

صفحه‌ی-توانایی دارند، در بارگذاری مناطق کانادزایی بروداری

در خود هستند. بررسی‌های انجام شده نشان داد که ترتیب

سنگ‌شانسی این سنگ‌ها در گستره‌ی بارالت و اندرزی بارالتی

بوده و از نظر زیست‌شناختی از نوع تولید‌های با پناسی کم

(k LT) به‌صورت شمای سنج‌های اکسی‌هی و شیلی

پلاژیک به گونه‌ای هم شیب بر روی آن‌ها قرار می‌گیرد (شکل 3). در آن میان آن دو ترکیب و شیلی یک‌و‌یک

آتش‌شانسی-رسوی است. مجموعه‌ی این واحدهای سنگی

شیبی در حدود ۴۵-۶۰ درجه به‌صورت شمال دارند (شکل 4). مناطق

کانادزایی در به‌نظرات فاکتورهایی، هم‌اکنون به دلیل

پرورش فراوانی هیدروکسیدهای این‌سان، منطقه‌های گوسن به

رگ‌های فراوانی حالت دیده می‌شود و به‌خوبی قابل شناسایی

است. (شکل 3).
شکل ۲ بررسی شیمی کانی کلریت به عنوان روشن در ...
بادامک‌ها اغلب به وسیله کلریت، اپیدوت، کوارتز و به ندرت کلریت بر شدیدان. در بادامک‌ها اناری از کالی‌های مافیک اولیه باقی نمانده است. فنوریستهای پلاژیوکلاز در پیشتر موارد دگرسان شدیدان ولی بخش‌هایی نسبتا سالم هنوز به جای می‌ماند. خورند فرآیند اپیدوت به از کلریت است و در مواردی به شیب از ۵۰ درجه سنگ را ایجاد تشکیل می‌دهد. دگرسان سنگ میزبانی از نوع فراگیر است، به طوری که هم سنگ (میکروپیت‌ها و فنوریسته‌ها) و هم حفره‌ها و رگه‌های آن با کالی‌های حاصل از دگرسان اشغال شده. بررسی‌های کامیشنی با روش پرتو ایکس (XRD) نیز کیفیت آن است که دگرسان‌های درونی‌تر از کالریتری است و کالریتری کلریت، اپیدوت، کوارتز، آلیت و پرتو کلسیت، تنها اصلی موجود در سنگ‌های میزبانان کالریتری سه‌بعدی (جدول ۲ و شکل ۱) به نظر می‌رسد که دگرسان پلاژیوکلاز نمی‌باشد. کلریتری در حضور مراهمی Na از پلاژیوکلاز سدیک به شکلی به پلاژیوکلاز در حضور Fe به کلریتری اپیدوت و کلسیت دیوریت و دگرسان‌های پروکسن در Mg حضور محلول مراهمی Na به کلسیت و سلیسیت از خراشده‌های اصلی در دگرسان سنگ میزبان‌های سه‌بعدی.

از نظر تکاوی‌ها و فرآیندهای زنده‌تر داشته و رخدادهای کانژنایی و دگرسان سنگ میزبان همچنین با هم و طی تکاوی‌ها فرآیندهای پروکسیمیی غربال‌برگی یا به دیگر سه‌بعدی از این رو دمای بیشتر کلریتری به عواملی از فنوریسته‌های دگرسانی سنگ میزبانی می‌تواند بیانگر دمای دگرسانی‌های اصلی و دهنده‌گری کانژنای سونوفیزیونی باشد.

بررسی سنگ‌های کانژنای زیرین‌برای میزبان کانژنایی گویای آن است که این سنگ‌ها تحت تأثیر گرانی‌ها دگرسان شده و کالریتری اولیه سازنده آنها به مجموعه‌ای از کالریتری دگرسان تبدیل شده. بافت این سنگ‌ها از نوع پروکسیمی میکروفیزیونی، گلوبوموبیوزیونی جیبی و در مواردی بررسی است. از ویژگی‌های بارز این سنگ‌ها حضور فراوان اپیدوت، کلسیت و پیالت‌ها به صورت دهانه‌ای پیشکل، در برگ کننده‌ای مجموعه در زمین‌های بال‌کارا نگرچه و بال‌کاراکاره اولیه است (شکل‌های ۳-۸ فاصله). وجود رگه‌های کلسیت و کوارتز گویای پیدا شدن آنها در بخش مرحله‌ای نخی است. زمین‌های بیشتر این سنگ‌ها ریز بلواری و ریز دانه‌ای است و در بیشتر سنگ‌های اپیدوت، کلسیت و کوارتز دسترسی به این نتایج آثاری از فنوریسته و کالریتری مافیک اولیه برای مانده است.
جدول ۲ ترکیب کانی-شناختی نمونه‌های انتخابی از سنگ‌های دگرگون و کان‌دار منطقه قزل‌دشت خوی به روش بررسی پرتو مجهول (XRD).

<table>
<thead>
<tr>
<th>شماره نمونه</th>
<th>کانی‌های فرمی</th>
<th>کانی‌های اصلی</th>
</tr>
</thead>
<tbody>
<tr>
<td>BH1-XR-03</td>
<td>اپیدوت، کلسیت</td>
<td>کوارتز، کلریت، آلبیت</td>
</tr>
<tr>
<td>BH1-XR-05</td>
<td>کوارتز، اپیدوت، آلبیت</td>
<td>کلریت، اپیدوت، آلبیت</td>
</tr>
<tr>
<td>BH1-XR-09</td>
<td>کوارتز، پیریت، کلسیت، سرسبیت</td>
<td>کلریت، اپیدوت، آلبیت</td>
</tr>
<tr>
<td>BH2-XR-03</td>
<td>کوارتز، پیریت، کلسیت</td>
<td>کوارتز، کلریت، آلبیت</td>
</tr>
<tr>
<td>BH2-XR-05</td>
<td>کوارتز، پیریت، کلسیت</td>
<td>کوارتز، کلریت، آلبیت</td>
</tr>
<tr>
<td>BH2-XR-07</td>
<td>کوارتز، پیریت، کلسیت</td>
<td>کوارتز، کلریت، آلبیت</td>
</tr>
<tr>
<td>BH3-XR-03</td>
<td>کوارتز، پیریت، کلسیت</td>
<td>کوارتز، کلریت، آلبیت</td>
</tr>
<tr>
<td>P1-XR-03</td>
<td>مالاکیت</td>
<td>کوارتز، اپیدوت، پیریت</td>
</tr>
<tr>
<td>P2-XR-01</td>
<td>کوارتز، کلریت، اپیدوت</td>
<td>کوارتز، کلریت، آلبیت</td>
</tr>
<tr>
<td>T5-XR-04</td>
<td>مالاکیت</td>
<td>کوارتز، کلریت، آلبیت</td>
</tr>
<tr>
<td>KH-XR-11</td>
<td>پورتن، سرسبیت</td>
<td>کوارتز، پیریت، اپیدوت</td>
</tr>
</tbody>
</table>

شکل ۵ تصاویر میکروسکوپی از سنگ‌های انتخابی دگرگان؛ کلریت به صورت ریزه‌ای در سنگ با بانده میکروپورفوری (الف)، آمیگودال‌های پرشته با کلریت و کوارتز (ب)، کوارتز و کلریت، اپیدوت، کلسیت و کوارتز به صورت پراکنده در متن سنگ دگرگان با بانده پورفوری (ج)، کوارتز، کلریت، کلسیت و پورتن به صورت پرکندگی آمیگودال‌های (د). علائم اختصاری کلریت (Chl)، اپیدوت (Pl)، کلسیت (Cal) و پورتن (Epi) (Q) در بالای نور اغلبیت.

XRD
شیمی کاتیل کلریته‌های انتخابی
فرمول ساختاری کلریته‌های انزیمی بمبین تعداد 14 اکسیژن محاسبه‌شده است. برای این کار، نسبت‌های مولکولی هر فرمول درصد وزنی درصدی آنها بدست آمده و سپس به‌طور نسبی نسبت‌های کاتیونی و تعداد اکسیژن مربوط به هر اکسیژن محاسبه شد. با در نظر گرفتن این نسبت‌ها و بر مبنای تعداد 14 اکسیژن نتایج کاتیونی وضعیت کادمی از کلریته‌ها بدست آمد. سرانجام، مقدار Al موجود در جایگاه‌های چارچوبی (Al(IV)) محاسبه شد.

شکل 6. طرح برخی ایکس واینته به‌کار آمده در نمونه‌های برداشته از منطقه‌های دگرگونی با مجموعه کاتها شناسی بیدوت، آبتی، کارنتر، کلینوکر، کلیسیت و بیپریت.

شیمی‌کاتیل کلریته‌های انتخابی

فرمول ساختاری کلریته‌های انزیمی بمبین تعداد 14 اکسیژن محاسبه‌شده است. برای این کار، نسبت‌های مولکولی هر فرمول درصد وزنی درصدی آنها بدست آمده و سپس به‌طور نسبی نسبت‌های کاتیونی و تعداد اکسیژن مربوط به هر اکسیژن محاسبه شد. با در نظر گرفتن این نسبت‌ها و بر مبنای تعداد 14 اکسیژن نتایج کاتیونی وضعیت کادمی از کلریته‌ها بدست آمد. سرانجام، مقدار Al موجود در جایگاه‌های چارچوبی (Al(IV)) محاسبه شد.

شکل 6. طرح برخی ایکس واینته به‌کار آمده در نمونه‌های برداشته از منطقه‌های دگرگونی با مجموعه کاتها شناسی بیدوت، آبتی، کارنتر، کلینوکر، کلیسیت و بیپریت.
درک ترکیب طبیعی کانی می‌تواند دلایل تشکیل آن را مشخص کند.

برای مثال، مقدار Ti موجود در مگنتیت (بهم و بچه‌های جامد) به عنوان تابعی از دما از روی تجزیه‌های آزمایش‌گاهی مشخص شده است. در رابطه با جانشینی‌های اتمی صورت گرفته در کلریت‌ها نیز مقدار Al(IV) با افزایش دما به‌طور منظم افزایش می‌یابد و این رویارویی برای ترکیب کلریت‌های طبیعی برشته‌ای است. این ترکیب دلایل تشکیل (تبلور) کلریت‌ها بیشتر بوده است. مقادیری داده‌های دامنه به‌دست آمده از این روش با داده‌های حاصل از روش‌های دیگر از جمله اندازه‌گیری مستقیم دما در حوضه‌های زمین‌گری، درسی‌های زمین‌گری در گروه ساخته‌های دیگر برای خویش را بین آنها نشان داده است. به‌طور کلی خطا محاسبه شده کمتر از ۱۰ درجه سانتی‌گراد بوده است [۴].

شکل ۷ نمودار پراکنش SiO۲ نسبت به Al۲O۳ علاوه بر خش داربستی (دیوژنر نوری) کانستگ سولفیدی با استنشای مجار (مربع نیکل) سنگ میزان دگرسان در فاصله دورتر از منطقه کاندید (دیوژنر نوری).

شکل ۸ ترکیب کلریت‌های بررسی شده در نمودار ارائه شده توسط [۱۰]؛ علاوه بر زیست‌پذیر (f)، پیونگلیت (p)، دیورانت (d) و کانکولکر (c).

دمای تبلور کلریت‌ها

یکی از عواملی که رخداد جانشینی اتمی بین کاتیون‌های مختلف را تعیین می‌کند، دمای رخداد جانشینی است. بطور کلی در دمای بالاتر، تاکثیف جانشینی اتمی بیشتر است، زیرا در این دمای، انتشاره‌های گریی یا (کل ساختار) بخش‌های بوده و اندازه‌های مختلف اتمی موجود بزرگتر است. به‌نابراین در یک ساختار خاص، دردماهای بالاتر انتظار تغییرات ترکیبی بیشتری می‌روید تا در دمای‌های بالاتر. خاصیت افزایش جانشینی اتمی در دمای بالا، سبب افزایش پراکنش تغییرات اتمی در زمان‌های دمای دمای شکل کننده فراهم می‌آورد که خود روش‌ها را در بررسی های زمینی-دمسنجی تشکیل می‌دهد. اگر درجه جانشینی اتمی برای یک کانی خاص در دمایهای گوناگون تغییر شده باشد...
معادلهٔ زیر رابطهٔ پسربه‌ی آرائه شده در اثر کلریت‌ها را نشان می‌دهد:

\[T = 321.9772 + 61.9229 \text{ Al(IV)} \]

(۱)

دارای شادارهای سیستم‌های زمین گروه‌های با دگرگونی‌های با درجه پایین است. از آنجا که ارتباط بین مقادیر در آل (IV) با جایگاه چارچوبی ساختار بلوری کلریت و دما تبلور آن

