کانی شناسی، زئوپیاموس و سنگ‌زایی اسکارن منطقه‌ی زرو (شمال غربی استان یزد)

محمدرضا مکیزاده

1-دانشکده علوم زمین، دانشگاه شهید بهشتی
2-گروه زئوپیاموسی و سنگ‌زایی، دانشگاه علوم تحقیقاتی، تهران
3-دانشکده علوم زمین، دانشگاه تهران

چکیده: اسکارن زرو در شمال غربی استان یزد در کمیند مکانیای سنگ‌روکنی ایران مرکزی قرار دارد. گسترده سنگ‌روکنی این منطقه، سنگ‌های آشامدی ازون همراه با توده‌های نفوذی گرانیتی‌ای است. سنگ‌های سپسیcant یافت (کرالتی زیرین) در غرب منطقه‌ی زرو، میزان سنگ‌روکنی و موله زانی با کناره‌ای سنگ‌های القا به دور از توده‌های نفوذی هستند. کلیه پروکسی، گرانه، ایلویت، وزووایت، ترموپلیت، ایپودوت، کالکتریت، مگنتیت، کلسیت و کوارتز از مجموعه‌ی سنگ‌های مارمولکی شده هستند. روابط بارانی‌تکینگ این کالیها یک خاصیت جنگل‌دار را دارا می‌باشد که به نظر می‌رسد که در ناحیه‌ی جانشینی را نشان می‌دهد. شکل‌های ایلویتی با واکنش نرم اکسید درست می‌شود

Andradite + Fe(OH)₂ + CO₂ = ilvaite + magnetite + quartz + calcite + H₂
Hedenbergite + magnetite + Fe(OH)₂ = ilvaite

کاتیا هائل اولیه اسکارن زرو در دمای 200°C شکل‌گیرتیده است. دو گروه دیگر از دمای محتمال تقریبی 270°C در فرآیندهای اصلی اسکارن شده هستند.

واژه‌های کلیدی: اسکارن، زرو، مرکزی، پروکسی، گرانه، ایلویتی، مگنتیت.

زمین شناسی منطقه مورد مطالعه

برای بررسی نهش زمین‌شناختی آباده [1] و برداشت‌های صحرایی، قدمت‌های واحدهای سنگ‌شناسی واپسین به بالیونیکی (4) از فرآیندهای اصلی در منطقه مشکی، به ساختاری زمین‌ساختگی کاوش‌یون (دلفیت) راهنمای کلیدی شناخته شده‌اند. شکل 1. ساختار تخریبی سخت‌ناک‌ترین منطقه از منطقه‌ی سنگ‌روکنی نفوذی را نشان می‌دهد. در ناحیه‌ی این منطقه اکسید ساختاری می‌باشد که به نظر می‌رسد که در ناحیه‌ی جانشینی را نشان می‌دهد. شکل‌های ایلویتی با واکنش نرم اکسید درست می‌شود.
برداشت‌های صحرایی

از دیدگاه‌های صحرایی نخست توپه‌ها، پرپکس سبز زیتونی برنگ است که در نظر اول جلو توجه می‌کند. این توپه‌ها به شکل رنگ‌های سنگی می‌باشند. کپاس‌ها کراتاس با بی‌پویا، مجدد و مرمیتا قطع شده‌اند. در کنار سیستم شیمی‌تر بخش‌هایی از سنگ میزان مرمی شده می‌شود که به شکل ادخالی زیرگی در نزدیکی توپه‌ها و پرپکس (نوع هدف‌بندی) درگیر هستند. همه‌گروه‌های هدف‌بندی‌ها با سنگ دیواره نیز در برخی موارد مشابه پرپکس گرفته شده‌اند.

پرپکس‌ها با بلوپاری (Comb texture) فرمول عمومی (Ca_{Fe^{2+}Fe^{3+}SiO_3} (OH) بافت پرپکس در زمینه‌های کلیسی و نیز کورتکه‌های تاکری بافت پرپکس‌ها بافت پاری در موارد محدودی حضور دارد. تجزیه‌پنکس‌ها در کائیت‌های بین‌کورتکه‌های نیز وجود دارد. در کائیت‌ها و در راستای کلیه‌های پرپکس‌ها دیده می‌شود. در این گونه دارایی‌های پرپکس‌ها به‌صورت بلوری کشیده تاپیاتری همراه کورتکه و کلیسیت دیده می‌شود. همگون تاکری شده‌های سیرالار از SiO_2 سبب شده است که فضای خالی بین پرپکس‌ها با کورتکه پر شود و در دیواره‌های پرپکس‌ها را موج‌شده است. در این گونه موارد پارسال‌های پرپکس‌ها بافت شیبی (ghost texture) دیده می‌شود.

شکل 1: نقشه زمین‌شناسی منطقه‌ای زرود رانا و نمایش موقعیت اسکارن با میزان 1/25000، برگرفته از [۱].
گارنت‌ها پیشرو همسانگرد و توده‌ای هستند و به رنگ زرد عضای خالی گارنت‌ها (شکل 2 پ) و نیز به شکل مستقل در PPL دیده می‌شوند. گارنت‌های ناهمسانگرد با عامل‌های پیچیده بیشتر نیمه شکل دارند تا تمام شکل دارند. این گارنت‌ها در همراهی با پیروکسن‌های دگرسان شده پرکنده شکاف‌ها همراه کوارتز - کلسیت و با درحال جانشینی پیروکسن‌ها دیده می‌شود (شکل 3 پ). جانشینی گارنت‌ها در پیروکسن‌های منشوری شبه‌سالم (Pseudomorph) به صورت سه‌گوشی (relicts) در مورد لاس‌های پیروکسن و گارنت دیده می‌شود. پیچای پیروکسن و گارنت (relicts) به شکل ادخال درون ایلوانت، این بدنه‌ها به وضوح نشان می‌دهند. جانشینی تدریجی ایلوانت در راستای رنگ‌ها و شکستگی‌های پیروکسن‌ها می‌تواند شکل 2 پ. منطقه‌بندی پیروکسن، گارنت، کوارتز، ایلوانت، پی. بلورهای منشوری ایلوانت.
شکل ۳. گزارش‌های ماده شکل‌دادن، ناهماهنگی و دارای ساخت منطقه‌ای در میان پیرکس‌های دیگر سان. PPL، ب. کانشینی ایاولنیت در PPL، ب. پرشگی فضایی بین گزارش‌ها ایاولنیت ت حمایت ایاولنیت با کینت و گزارش در میان ناهماهنگی اسکان‌ها، مسیرهای خاک‌سرایی توده‌ای قرار دارند و مسیرها چون قطعی اسکارین‌ها را در پرگفته‌اند. این مسیرها با گزارش‌های کانشینی سایه‌پا کنندهٔ کانی‌سازی فلز مشخص هستند. بافت گراتولاستیک از کلسیت به تنها ی و با در همراهی با گزارش در آن‌ها فراوان است. گزارش‌های این مسیرها که کاملاً یک‌سره و همسان‌گرندند، در همراهی با، وپرکیس‌تی نیز دیده شده‌اند که بافت نامتقارن مشخص می‌شوند. ترمولتیت و کلیسیت از دیگر کانی‌های این مسیرها هستند. ابتدایی در زنده بودن کلیسیت و در همراهی با گزارش‌ها دیده می‌شود و نشان می‌رسد که از جنبه‌های گزارش‌ها حامل شدید.

برای تعیین نوع پیرکس‌های آزمایش کیفی (EDS) استفاده شد (جدول 1). با توجه به نتایج این آزمایش‌ها پیرکس‌ن به روشی برپایه‌های طبقه‌بندی مبنای متغیرهای Q3 (شکل 5) عمدتاً پیرکس‌های گیبسیت به صورت (Quad) Q3 (فصل می‌باشد و از نو شدیده‌ترین هستند [4].

![50μm](image1.png)

![50μm](image2.png)

شکل ۴. گزارش‌های ماده شکل‌دادن، ناهماهنگی و دارای ساخت منطقه‌ای در میان پیرکس‌های دیگر سان. PPL، B. کانشینی ایاولنیت

جدول 1. داده‌های رنگ پردارش الکترونی از پیرکس‌های اسکارین زر

<table>
<thead>
<tr>
<th>لیبل (٪)</th>
<th>3-Z</th>
<th>5-Z</th>
<th>7-Z</th>
<th>8-Z</th>
<th>14-Z</th>
<th>15-Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO2</td>
<td>49.1</td>
<td>44.7</td>
<td>41.6</td>
<td>39.9</td>
<td>45.1</td>
<td>48.4</td>
</tr>
<tr>
<td>TiO2</td>
<td>0.01</td>
<td>0.1</td>
<td>0.5</td>
<td>0.7</td>
<td>0.2</td>
<td>0.1</td>
</tr>
<tr>
<td>Al2O3</td>
<td>0.1</td>
<td>0.0</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>Cr2O3</td>
<td>0.01</td>
<td>0.5</td>
<td>1.8</td>
<td>1.8</td>
<td>1.8</td>
<td>1.8</td>
</tr>
<tr>
<td>FeO</td>
<td>2.3</td>
<td>5.3</td>
<td>4.1</td>
<td>4.1</td>
<td>4.1</td>
<td>4.1</td>
</tr>
<tr>
<td>MgO</td>
<td>4.1</td>
<td>5.1</td>
<td>3.7</td>
<td>3.7</td>
<td>3.7</td>
<td>3.7</td>
</tr>
<tr>
<td>CaO</td>
<td>2.3</td>
<td>3.4</td>
<td>2.7</td>
<td>2.7</td>
<td>2.7</td>
<td>2.7</td>
</tr>
<tr>
<td>Na2O</td>
<td>0.3</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>K2O</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
</tr>
<tr>
<td>Total</td>
<td>99.1</td>
<td>99.1</td>
<td>99.1</td>
<td>99.1</td>
<td>99.1</td>
<td>99.1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>لیبل (ppm)</th>
<th>کانسین (کیلو گزارش)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Si</td>
<td>2195</td>
</tr>
<tr>
<td>Ti</td>
<td>56</td>
</tr>
<tr>
<td>Al</td>
<td>208</td>
</tr>
<tr>
<td>Fe2+</td>
<td>2.5</td>
</tr>
<tr>
<td>Mn</td>
<td>0.1</td>
</tr>
<tr>
<td>Mg</td>
<td>0.5</td>
</tr>
</tbody>
</table>

کانسین ها با بهره شش سینیز
پریابه داده‌های تجزیه پیروکسنهای زرو (۴).

<table>
<thead>
<tr>
<th>Ca</th>
<th>۰/۸</th>
<th>۱/۱۷</th>
<th>۱/۲</th>
<th>۱/۰۲</th>
<th>۱/۰۲</th>
<th>۱/۰۰</th>
</tr>
</thead>
<tbody>
<tr>
<td>Na</td>
<td>۰/۰۰</td>
<td>۰/۰۰</td>
<td>۰/۰۰</td>
<td>۰/۰۰</td>
<td>۰/۰۰</td>
<td>۰/۰۰</td>
</tr>
</tbody>
</table>

جدله ۱۸، شماره ۲، تابستان ۱۳۸۹

گزارت
پریابه داده‌های تجزیه EDS و تجزیه WDS کارت‌ها و محاسبه‌های انجام شده بر روی همبستگی کاتیون‌ها و ادخال‌های در گروه کارت‌ها با منطقه‌بندی نوسانی در اسکارن‌ها، نشان داده است که دامای ترکیب مرکز هسته و حاشیه در پریابه کارت‌شناسی به یکدیگر نزدیک است. چنین یافته ای در همگام رشد کارت‌ها باشد [۴]. در مورد شکل‌گیری کارت‌های حاوی منطقه‌بندی علت زیب را می- توان بیان کرد:

(الف) پریابه کارت‌های بزرگی به هرکدام کارت‌های مستمر و ضریبی (palsic fault movements) این بین نیاز است سبب تغییر در هر دوی فشار بر سطح کارت‌های هرمی‌شنود. این تغییرات دوراهی احتمالی منحنی با جوشش و باعث فشار کارت‌های هرمی و بهبودی در ابتدا اندک (۸) تغییرات اندازه‌بندی (oscillatory) نوسانی با نشان می‌دهد. این نشان می‌دهد به‌طور می‌رسد که

(ب) شکل‌گیری سولول‌های هم‌فاز (convection cells) از گردش آب‌های جوی در پریابه نوده‌های نفوذی و ترکیب مرکز به و باعث اندازه‌بندی در جوشش قابلیت ایجاد شده هنگام آب‌های ساژی نمونه ارتباط داشته باشد.
این آب‌ها در سامانه‌های گرمایی می‌توانند باعث تغییرات در
ویژگی‌های فیزیکی-شیمیایی شاره‌های Eh و pH دما، آن
سامانه‌ها شود. از اینجا که این آب‌های بی‌گاه مسئله‌ای از شرایط

شکل 6 تبدیل توزیع ترکیب تجزیه‌های ریز پردازش الکترونی، گارتن‌های انرژی، و مقایسه آنها با ترکیب گارتن‌های اسکانر بر نمودارهای مختلفی

جدول 2 داده‌های تجزیه ریز پردازش الکترونی، گارتن و محاسبه‌ی فرمول ساختاری براساس 24 آکسیژن

<table>
<thead>
<tr>
<th>Label (%)</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO$_2$</td>
<td>27.2</td>
<td>25.3</td>
<td>25.5</td>
<td>26.3</td>
<td>26.3</td>
<td>25.4</td>
</tr>
<tr>
<td>TiO$_2$</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
</tr>
<tr>
<td>Al$_2$O$_3$</td>
<td>1.10</td>
<td>1.03</td>
<td>1.03</td>
<td>1.03</td>
<td>1.03</td>
<td>1.03</td>
</tr>
<tr>
<td>FeO</td>
<td>28.1</td>
<td>22.4</td>
<td>19.4</td>
<td>23.5</td>
<td>23.5</td>
<td>28.7</td>
</tr>
<tr>
<td>MnO</td>
<td>0.44</td>
<td>0.44</td>
<td>0.44</td>
<td>0.44</td>
<td>0.44</td>
<td>0.44</td>
</tr>
<tr>
<td>MgO</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
</tr>
<tr>
<td>CaO</td>
<td>34.5</td>
<td>34.8</td>
<td>34.8</td>
<td>34.8</td>
<td>34.8</td>
<td>34.8</td>
</tr>
<tr>
<td>Total</td>
<td>99.8</td>
<td>99.7</td>
<td>99.9</td>
<td>99.9</td>
<td>99.9</td>
<td>99.8</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Label (ppm)</th>
<th>Ca</th>
<th>Ti</th>
<th>Al</th>
<th>Fe$_2^+$</th>
<th>Mn</th>
<th>Mg</th>
<th>Ca</th>
</tr>
</thead>
<tbody>
<tr>
<td>Si</td>
<td>6.28</td>
<td>6.28</td>
<td>6.28</td>
<td>6.28</td>
<td>6.28</td>
<td>6.28</td>
<td>6.28</td>
</tr>
<tr>
<td>Ti</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>Al</td>
<td>0.23</td>
<td>0.23</td>
<td>0.23</td>
<td>0.23</td>
<td>0.23</td>
<td>0.23</td>
<td>0.23</td>
</tr>
<tr>
<td>Fe$_2^+$</td>
<td>2.18</td>
<td>2.18</td>
<td>2.18</td>
<td>2.18</td>
<td>2.18</td>
<td>2.18</td>
<td>2.18</td>
</tr>
<tr>
<td>Mn</td>
<td>0.05</td>
<td>0.05</td>
<td>0.05</td>
<td>0.05</td>
<td>0.05</td>
<td>0.05</td>
<td>0.05</td>
</tr>
<tr>
<td>Mg</td>
<td>0.05</td>
<td>0.05</td>
<td>0.05</td>
<td>0.05</td>
<td>0.05</td>
<td>0.05</td>
<td>0.05</td>
</tr>
<tr>
<td>Ca</td>
<td>6.60</td>
<td>6.60</td>
<td>6.60</td>
<td>6.60</td>
<td>6.60</td>
<td>6.60</td>
<td>6.60</td>
</tr>
</tbody>
</table>
طرح ۷ تصویر BSE نمونه گارنت در زمینه‌ی کانی‌های سیلیکاتی دیگر با ساختار متنوع‌های ضعیف.

طرح ۸ اگری متناهی بندی نوسانی در گارنت‌های زرو، ریز برداری اکثریت الکترونی روبه‌روی از راست (هضو) به چپ (حاشه) انجام گرفته است.

ایلونیت
پروره‌های منشوری سیاه رنگ ایلونیت در زرو، شاخه‌ای این کانی کمیاب هستند که اولین دسته‌بندی به آن در ایران مرکزی با سراسر ایران (!) است. برای شناسایی این کانی از تجزیه‌های دستگاهی کمک گرفته شد. برای سنگ‌های X تفسیر گام بردار این کانی وجود این الکترونیت در اسکارک زرو است. چنانکه در دیده می‌شود (طرح ۸) الگوی پراش نمونه خالص ایلونیت شامل با نمونه پرانت سه‌گانه دارد. برای بررسی بیشتر این کانی از جداسازی لنزی (EDS) به وسیله EPMA کمک گرفته. در مورد سه‌گانه EDS برای انتخاب بهترین سیسیم مناسب است. تجزیه و تصویر نمونه ایلونیت توده‌ای با ادخال تحلیل فنی پیروکسین در آن دیده می‌شود (طرح ۸). هم این این تجزیه‌ها نزدیک به ترکیب شیمیایی آرمانی ایلونیت و پیروکسین

![Diagram Image]

سایر Mutual Identification: Double

Central laboratory of the University of Tehran X-ray Lab

(–) 14-0007

Double CaSiO₃, Na₂O, Fe₂O₃, K₂O, MgO

Intensity (Counts)

0 20 40 60 80 100 120 140 160 180 200

(–)
شکل ۹: الگوی برخی برتو X نمونه ای، اولویت خالص و مقایسه آن با نمونه مرجع.
جدول ۳ داده‌های ریز پردازشی از دو نمونه ایلوئید زرو (۱ و ۲) و مقایسه آن با نمونه‌ای ایلوئید کنار Cu-Au ایگاراپه باهیا، برزیل [۹] (Core، Rime)

<table>
<thead>
<tr>
<th>Label (%)</th>
<th>Core</th>
<th>Rime</th>
<th>۱</th>
<th>۲</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO₂</td>
<td>۳۹.۲</td>
<td>۳۹.۲</td>
<td>۲۸.۹</td>
<td>۲۸.۹</td>
</tr>
<tr>
<td>TiO₂</td>
<td>۰.۸</td>
<td>۰.۸</td>
<td>۰.۸</td>
<td>۰.۸</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>۰.۱</td>
<td>۰.۱</td>
<td>۰.۷</td>
<td>۰.۷</td>
</tr>
<tr>
<td>FeO</td>
<td>۵۳.۹</td>
<td>۵۳.۹</td>
<td>۴۹.۳</td>
<td>۴۹.۳</td>
</tr>
<tr>
<td>MgO</td>
<td>۱۱.۱</td>
<td>۱۱.۱</td>
<td>۸.۸</td>
<td>۸.۸</td>
</tr>
<tr>
<td>CaO</td>
<td>۱۳۷.۳</td>
<td>۱۳۷.۳</td>
<td>۱۳۹</td>
<td>۱۳۹</td>
</tr>
<tr>
<td>MnO</td>
<td>۰.۹</td>
<td>۰.۹</td>
<td>۲.۸</td>
<td>۲.۸</td>
</tr>
<tr>
<td>Na₂O</td>
<td>۰.۱</td>
<td>۰.۱</td>
<td>۰.۱</td>
<td>۰.۱</td>
</tr>
<tr>
<td>K₂O</td>
<td>۰.۱</td>
<td>۰.۱</td>
<td>۰.۱</td>
<td>۰.۱</td>
</tr>
<tr>
<td>Total</td>
<td>۱۰۹.۶</td>
<td>۱۰۹.۶</td>
<td>۹۵.۶</td>
<td>۹۵.۶</td>
</tr>
</tbody>
</table>

کاتانیون بر پایه ۸.۵ اکسیژن

<table>
<thead>
<tr>
<th>Catanion</th>
<th>۱</th>
<th>۲</th>
<th>۳</th>
<th>۴</th>
</tr>
</thead>
<tbody>
<tr>
<td>Si</td>
<td>۱.۹۸</td>
<td>۲.۰۱</td>
<td>۲.۰۸</td>
<td>۲.۰۹</td>
</tr>
<tr>
<td>Ti</td>
<td>۰.۰۰</td>
<td>۰.۰۰</td>
<td>۰.۰۰</td>
<td>۰.۰۰</td>
</tr>
<tr>
<td>Al</td>
<td>۰.۰۰</td>
<td>۰.۰۰</td>
<td>۰.۰۰</td>
<td>۰.۰۰</td>
</tr>
<tr>
<td>Fe²⁺</td>
<td>۲.۹۶</td>
<td>۲.۹۶</td>
<td>۲.۹۵</td>
<td>۲.۸۲</td>
</tr>
<tr>
<td>Mg</td>
<td>۰.۰۱</td>
<td>۰.۰۱</td>
<td>۰.۰۰</td>
<td>۰.۰۰</td>
</tr>
<tr>
<td>Ca</td>
<td>۱.۰۰</td>
<td>۱.۰۰</td>
<td>۱.۰۰</td>
<td>۱.۰۰</td>
</tr>
<tr>
<td>Mn</td>
<td>۱.۰۷</td>
<td>۱.۰۷</td>
<td>۱.۰۷</td>
<td>۱.۰۷</td>
</tr>
<tr>
<td>Na</td>
<td>۰.۰۰</td>
<td>۰.۰۰</td>
<td>۰.۰۰</td>
<td>۰.۰۰</td>
</tr>
<tr>
<td>K</td>
<td>۰.۰۰</td>
<td>۰.۰۰</td>
<td>۰.۰۰</td>
<td>۰.۰۰</td>
</tr>
</tbody>
</table>

سکور استودنت: ۳.۰۰

![Diagram](chart.png)
و اکتشاف‌های دگرگونی و سنگ‌زایی

بر اساس قوانین فاز، حصول تداخل در سنگ‌های دگرگون در نقاط
یعنی در بالاترین شرایط دگرگونی امکان پذیر است، لذا در اینجا با توجه به فاکتورهایی که بر اثر شرایط تداخل در
دگرگونی منطقه مورد بررسی قرار داده شد، فرمول که در اوج
FeO$_4$ و SiO$_2$ در سنگ‌های آهکی تبادلی پیدا شده‌اند اکتشاف
در هنگامی که می‌تواند اکتشاف در اسکارن‌های

dگرگونی شده است، در

\[
\begin{align*}
4\text{Fe}^2\text{CaSi}_2\text{O}_5 + 2\text{H}^+ + 2\text{CO}_2 + 2\text{O}_2 &= \text{Cu} + 2\text{Fe}^3\text{SiO}_4 + 2\text{H}_2\text{O}
\end{align*}
\]

cاکتشاف‌های دگرگونی و سنگ‌زایی

بر اساس قوانین فاز، حصول تداخل در سنگ‌های دگرگون در
نقاط یعنی در بالاترین شرایط دگرگونی امکان پذیر است. لذا در اینجا با توجه به فاکتورهایی که بر اثر شرایط تداخل در
دگرگونی منطقه مورد بررسی قرار داده شد، فرمول که در اوج
FeO$_4$ و SiO$_2$ در سنگ‌های آهکی تبادلی پیدا شده‌اند اکتشاف
در هنگامی که می‌تواند اکتشاف در اسکارن‌های
dگرگونی شده است، در

\[
\begin{align*}
4\text{Fe}^2\text{CaSi}_2\text{O}_5 + 2\text{H}^+ + 2\text{CO}_2 + 2\text{O}_2 &= \text{Cu} + 2\text{Fe}^3\text{SiO}_4 + 2\text{H}_2\text{O}
\end{align*}
\]

Magnetite + Calcite + Quartz + H$_2$O = Ilvaite + CO$_2$ + O$_2$

بررسی‌های خودکار نشان‌دهنده اسکارن‌های زراعی نفسی می‌دهد
که شکل‌گیری اکتشاف‌های بی‌پیروکسنت‌ها با بررسی‌های
سنگ‌نگار در زمان انجام شده است، جدول‌گذاری کم و کیف
این و اکتشاف توسط گردش پیچش‌های اسکارن‌های مختلف
نیز پیش‌بینی شده است:

\[
\begin{align*}
4\text{Fe}^2\text{CaSi}_2\text{O}_5 + 2\text{H}^+ + 2\text{CO}_2 + 2\text{O}_2 &= \text{Cu} + 2\text{Fe}^3\text{SiO}_4 + 2\text{H}_2\text{O}
\end{align*}
\]

Magnetite + Calcite + Quartz + H$_2$O = Ilvaite + CO$_2$ + O$_2$

بررسی‌های خودکار نشان‌دهنده اسکارن‌های زراعی نفسی می‌دهد
که شکل‌گیری اکتشاف‌های بی‌پیروکسنت‌ها با بررسی‌های
سنگ‌نگار در زمان انجام شده است، جدول‌گذاری کم و کیف
این و اکتشاف توسط گردش پیچش‌های اسکارن‌های مختلف
نیز پیش‌بینی شده است:

\[
\begin{align*}
4\text{Fe}^2\text{CaSi}_2\text{O}_5 + 2\text{H}^+ + 2\text{CO}_2 + 2\text{O}_2 &= \text{Cu} + 2\text{Fe}^3\text{SiO}_4 + 2\text{H}_2\text{O}
\end{align*}
\]

Magnetite + Calcite + Quartz + H$_2$O = Ilvaite + CO$_2$ + O$_2$

بررسی‌های خودکار نشان‌دهنده اسکارن‌های زراعی نفسی می‌دهد
که شکل‌گیری اکتشاف‌های بی‌پیروکسنت‌ها با بررسی‌های
سنگ‌نگار در زمان انجام شده است، جدول‌گذاری کم و کیف
این و اکتشاف توسط گردش پیچش‌های اسکارن‌های مختلف
نیز پیش‌بینی شده است:

\[
\begin{align*}
4\text{Fe}^2\text{CaSi}_2\text{O}_5 + 2\text{H}^+ + 2\text{CO}_2 + 2\text{O}_2 &= \text{Cu} + 2\text{Fe}^3\text{SiO}_4 + 2\text{H}_2\text{O}
\end{align*}
\]
Ca-Fe- Si-C-O-H برای تعیین شرایط احتمالی P-T-X می‌توان سالانه، خرج هیدنزیت به یافته مکنیت در شرایط اکسبیشیت تر ضمن افزایش دما پیشنهاد کرده است:

\[
\text{CaFe}_2^3{\left[\text{SiO}_4\right]}_3 + 2.5 \text{Fe (OH)}_2 + 2\text{CO}_2 = \text{CaFe}_2^4\text{Fe}^3(\text{SiO}_4)_2(\text{OH})
\]

ایلولایت

بر اساس یک بررسی، ورود دما به موقعیت کانی ایلولایت در نمونه‌های اسکاری یافته به نظر می‌رسد که پیش‌بینی ایلولایت به به‌حاوه کردن، گارانت نیز بوده است. لذا واکنش زیر را می‌توان پیشنهاد کرد:

\[
\text{CaFe}_2^3{\left[\text{SiO}_4\right]}_3 + 0.5\text{Fe}^2\text{Fe}^3_2^3\text{O}_4 + (0.5 \text{Fe(OH)})_2 = \text{CaFe}_2^4\text{Fe}^3(\text{SiO}_4)_2(\text{OH})
\]

کلیسیت کوارتز

واکنش‌های انجم داده به محله‌های پیشرونه اسکاری (تشکیل پیروکسن و گارانت) به وجود آنها است. واکنش‌های بالا از نوع کربن‌زدایی (Decarbonation) (شرکت XCO) کرده است. این گونه که مشاهده شده برخی از واکنش‌های کوارتز مصرف کرده‌اند. از طرفی در پر، های میکروکوپی به وسیله تجزیه پیروکسن‌ها به کلیسیت و کوارتز به صورت دیگر نشده است. البته واکنش‌های زیر CO به خوبی انجم دانی می‌کنند و واکنش‌های تجاری ژر تجزیه پیروکسن‌ها به سازه‌های اولیه (آن گونه که در بررسی‌های میکروکوپی دیده می‌شود) قابل تصور است.

\[
6\text{CaFeSi}_5\text{O}_8 + 6\text{CO}_2 + \text{O}_2 = 2\text{Fe}_2\text{O}_3 + \text{CaCO}_3 + 12\text{SiO}_2
\]

کوارتز
مرمرهای مجاور اسکارن‌های زرو دارای مجموعه‌های غالب ترموپلیت + گارنت + وزوپاپتیت + کلسیت + کوارتز هستند.

به نظر می‌رسد که مولکول ترین تشکیل ترموپلیت و اکنون زیر باشد (۱۱).

$$5CaMg(CO_3)_2 + 8SiO_2 + H_2O \rightarrow$$

$$Ca_2MgSi_2O_5(OH)_2 + 3CaCO_3 + 7CO_2$$

بخار و فری (۱۱) با دو اکنون تشکیل ترموپلیت را به‌های دیوپسید و تاکل معرفی کرده‌اند. از آنجا که در مقاطع ممرما آثاری با پابلانه ی تجزیه نشده‌اند یا از این کالی‌ها به دیده نشد، باعث توجه به شواه‌های موکرونکوپی بی‌دوره شد. در نتیجه، گزارش ورود مجموعه به‌صورت مستقل و نیز جانشینه‌ای محدود ترموپلیت دیده شده است. با فرض تأمین Al مورد نیاز با پیش‌های ساختاری آنورتیت (نیترات) و یا کولینیدی در شاره می‌توان واکنش زیر را پیشنهاد کرد. وجود شش ترموپلیت (ghost texture)

این واکنش است:

$$Ca_3Mg_2Si_2O_7(OH)_2 + CaAl_2Si_2O_8(aq) + 4H_2O +$$

$$\text{آنورتیت + ترموپلیت}$$

$$Ca(Al, Fe)_2SiO_5 + 7SiO_2 + = Fe_2O_3$$

$$\text{گارنت}$$

$$5Mg(OH)_2 + \frac{1}{2}O_2$$

شکل کی گزارش وزوپاپتیت در این مجموعه از طریق مستقل در زمینه ممرما و نیز به به‌های گارنت‌ها (جانشینی) رخ داده است:

![Figure 1](image1.png)

![Figure 2](image2.png)
bracht
برداشت
دوهمی اسکارن که به دلایل ذکر شده اهداف ساختاری و تغذیه، از دیدگاه صحرایی قبل اهمیت است.
برخلاف اسکارن‌های کلاسیک مشاهده شده (حدوداً در ایران)
مشاهداتی از اینگونه جایگری اسکارن در نقطه‌ای به نام مانگاسیسته سنوزرویک ایران مربوطی شامل شعله‌های اصلی اسفنج (کامو - میمی) تیزی دارند که داده شده است. در این منطقه گزاره گریزی- گیمینتی به روشی در محل و در زمینه‌های مناطق خرد شده گلسال و کل حفره‌های آمیکی کرتاسه گرفته‌است. به طوری که بس از نفوذ شاره‌ها و کانی‌های سازه ساخته شده سنگ‌های آبی اولیه هنوز در توده‌ای اسکارن دیده می‌شود.

بربایه داده‌های کانی‌شناسی اسکارن از روی نیز یک اسکارن جنگ زادی است. دنیاله تشکیل‌کننده‌ها در اسکارن و مرمرهای زر و را می‌توان نشان داد. چنان‌که دیده می‌شود در این تأثیر شاره (گما پیربند) نخست پروپکسی‌ها تشکیل شده‌اند و در گما بعد کانی‌های پایین‌تر، کانی‌های پایین‌تر که به‌های آنها و یا به‌طور هم‌ارز کاهش دما در گم‌گردن پس رونده پاره‌زنده آبی زدای همره با کاهش دما در گام دگرگونی پس رونده پاره‌زنده آبی آبادار یا پدیده‌ای است.

 específico

nym‌سنگ‌های این مقاله از حمایت‌های مالی دانشگاه شهید بهشتی و دانشگاه شیراز برای این کار پژوهشی تشکیل می‌کنند. همچنین لازم است از سازمان‌های دانشگاه فنی کالسپوه (دانشگاه فنی کالسپوه) نماید و در دانشگاه‌های دانشگاه فنی کالسپوه (دانشگاه فنی کالسپوه) در EDS

مراجع

[1] عمیدی س. م، «نقشه زمین‌شناسی/آباده-می‌دباغی» 1384/07/02

[15] بوخر، کورت و فری، مارتین، 1994، ترجمه سنتی‌های دکتر مول، ترجمه ویزا، محمد و صادقیان محمود، 1379، انتشارات دانشگاه تهران.
