شیمی کانی‌ها و شرایط فشار – دمای تبلور توده‌های گرافیت‌های حاشیه‌ای رودخانه‌ی زاینده‌رود، پهن‌های برشی شمال شهرکرد با نگرشی ویژه به حضور اپیدوت مگمایی

علي‌ضا داویدیان‌دهکرده

دانشگاه شهرکرد، دانشکده منابع طبیعی و علوم زمین

چکیده: ناحیه مورد بررسی در پهن‌های برشی شمال شهرکرد قرار دارد. در این منطقه تعداد زیادی پلی的例子 گرافیت‌های کوچک و متوسط به عنوان میان‌خورد حضور دارد که در سنگ‌های دگرگون منطقه تند نشد. این سنگ‌های کربنیک و حضور میان‌خورد

بارزید بارزید در نتیجه دگرشکلی شدید نشان می‌دهند. اغلب این پلی的例子 گرافیت‌های دارای مجموعه‌گرایانه کوارتز + فلئسپات + پلاژیوکلار + بیوتیت + هورنبلند + آلبیت + تیتانیت + مگنتیت + ایپیدوت مکاکی‌ی + آلبیت + زیرکن + گالتن در شرایط تولید یافته

ظاهری قرار دارند. ویژگی‌های بانکی و ترکیبی اپیدوت‌ها دلایل بر خاستگاه مکاکی‌ی آن‌ها دارد. این پلی的例子 گرافیت‌های دارای ایپیدوت مکاکی‌ی، با استفاده در فشار‌های سنی‌ها با تشکیل شده‌اند. زمین فشارسنجی محتوای A2 در هورنبلند مقدار فشار

73 تا 8 کیلو با (متوسط 7.2 کیلو با) را ارائه می‌دهد که با عمق حدود 28 کیلومتری پوسته همکاوا دارد. همچنین، زمین فشارسنجی

امفیبول – پلاژیوکلار دماهایی از 643 تا 711 درجه سانتی‌گراد را به دست می‌دهد. این تابعیت زمین دما – فشارسنجی با حضور

ابیدوت مکاکی‌ی در این سنگ‌های گرافیت‌های سازگار است.

واژه‌های کلیدی: گرافیت‌های دکترکشک شده، زوروسسیک میانی، زمین‌دمسنجی - زمین‌فشارسنجی، اپیدوت مکاکی‌ی، شمال شهرکرد.

مقدمه

منطقه مورد بررسی در ایستگاه چهارمحال و بختیاری، در قرار دارد و در نوشهر گرافیت‌های زمین‌دمسنجی شهرکرد به مقياس

طول‌های جغرافیایی 50 درجه و 54 دقیقه تا 56 درجه و 57 دقیقه شش با (مقدار در نوشهر) 32 درجه و 35 دقیقه می‌تواند در دسترس باشد. این منطقه در کترین‌های بین

ازنویین رود و برخی از نواحی است که به عنوان می‌توان به توده‌های گرافیت‌های برونگرد

بهازه‌های کلیدی: گرافیت‌های دکترکشک شده، زوروسسیک میانی، زمین‌دمسنجی - زمین‌فشارسنجی، اپیدوت مکاکی‌ی، شمال شهرکرد.

بهازه‌های کلیدی: گرافیت‌های دکترکشک شده، زوروسسیک میانی، زمین‌دمسنجی - زمین‌فشارسنجی، اپیدوت مکاکی‌ی، شمال شهرکرد.

به موازات رشته کوه‌های زاغ‌سی کشیده شده است و دارای

راتوری مواردی باید آن‌ها یا علی‌شان شکل‌گیری - جنوب شرقی است. در ساحل‌های سنتی - سیرجان تعداد فراوانی از توده‌های فنی

ازندی به‌خود گرافیت‌های دکترکشک یافته‌اند. زمین‌دمسنجی

توده‌های گرافیت‌های در پهنه سنتی - سیرجان تعداد فراوانی

در تکامل زانوبانی‌ها ایان یک‌یا از سرزمین‌های ایرانی است. همچنین، در کترین‌های بین

به محط‌های زاغ‌سی کشیده شده است.

بهازه‌های کلیدی: گرافیت‌های دکترکشک شده، زوروسسیک میانی، زمین‌دمسنجی - زمین‌فشارسنجی، اپیدوت مکاکی‌ی، شمال شهرکرد.

alireza.davoudian@gmail.com

نویسنده و مراجع - تلفن: نمای: ۴۴۳۴۴۴-۲۳۴۱ (۲۵۸۱)، پست الکترونیکی:
کلی توده‌های درایای ترکیب کانی‌نشین متنوعی پیدا کرده که در تمام مراکز دامنه‌های شرایط تکیه‌الله این توده‌ها باشد امروزه با استفاده از اطلال‌های تکثیری دقیق کانی‌ها و درجه‌بندی‌های متواوستی می‌توانند دما، فشار و عمق جایگذاری‌گرایی‌های را پرآور نمایند.

منطقه مورد بررسی در فاصله 22 کیلومتری شمال غربی سامان قرار دارد و بخشی از یک مجموعه آذری، دگرگونی و درگشکلی است. این مجموعه مربوط به شمال شرقی تا شهر داران گسترش می‌یابد و اختیاری دگرگون و آذربایجان آن از نظر تقسیمات زمین‌شناسی ایران به عنوان بخشی از پهنای زمین ساخته سندج - سیرجان محصول می‌شود.

توده‌های درایای ترکیب کرده در کرانه زاینده رود نیز بخشی از این توده‌ها واقع در پهنای بریش شمال شرقی را تشکیل می‌دهند (شکل 1). سنتگه‌های متنوعی فرمول بررسی شده و تعداد زیادی توده‌های کوهی و متواوست می‌تواند که ابعاد آنها کامل‌اند متنوع است و از توده‌های نفوذی برگرتر به...

شکل 1 نقشه زمین‌شناسی منطقه مورد بررسی به عنوان بخشی از پهنای بریش شمال شرقی – اقتباس با تعیینات از 181.
شکل ۲ نفوذ توده‌های گرانیتونیدی در سنگ‌های دگرگونی - دگرگشایی منطقه مورد بررسی شامل شیست، آمفیبولیت و گنایس.

سلگ‌های گرانیتونیدی با سن زوراسیک مبنای نسبت به سنگ‌های دگرگونی و دگرگشایی شده منطقه مورد بررسی جوانتر بوده و سنگ‌های قدمی ترا قطع کرده‌اند. ولی آثار مشخص و بارزی از دگرگونی مجاورتی در سنگ‌های میزانی به جسم نمی‌خورد (شکل ۲). این سنگ‌های گرانیتونیدی گرچه به شدت دگرگشایی بوده و برگورانه واضحی را نشان می‌دهند ولی آثار و شواهدی از تاثیر یک دگرگونی شدید در آنها دیده نمی‌شود. این گرانیتونیدها دارای شواهد صحراکی و میکروسکوپی از ساختارهای پار ژیلیتیک-هستند. برگورانه و خطواره کشی به‌خوبی در این سنگ‌های گرانیتونیدی گسترش یافته و از این جهت کاملاً به‌عنوان یک گرانیتونید می‌باشد.

شکل ۳ سطح تماس بین توده‌ی گرانیتونیدی به چپ راهرو (بخش پایین تصویر) و سنگ‌های شیست به عنوان سنگ میژبان به چپ تیره (بخش بالایی عکس). نشان دهنده نفوذ توده‌ی گرانیتونیدی در شیست‌ها.
روش بررسی

از نمونه‌های انتخاب شده، مقاطع نازک میکروسکوپی استاندارد تهیه می‌شوند. (به ضخامت ۲۵۰ میلی‌متر) پس از صقل کاری کامل آن‌ها با یک ریز پدال‌های الکترونی وارد آلیسیتی‌های قرار دادیم. آلیسیتی‌های ریز پدال‌های الکترونی در گروه زمین‌شناسی JEOL-JX8600 داشته‌اند. سپس پدال‌های الکترونی در شرایط حساسی (LiF, PET, TAP) و زمان شمارش ۱۰ ثانیه برای اوج و ۵ ثانیه برای زمینه انجام شد. وقتی جزئیات نقطه‌ای برای یک سیستم اکسیژن عناصر اصلی به نظر می‌رسد. محاسبه آزمایش‌های که و محاسبات زمین‌شناسی و زمین‌شناسی در این مقاله از Fe۳⁺ نرم افزار PET صورت گرفته است. محاسبه مقادیر که با استفاده از آمپیلویره مناظر حاصل از ارائه شده توسط وزن فرمول پیشنهادی هلند و پتودی [۱۱] صورت گرفته است.

بحث و بررسی

سنگ‌شناسی

از نظر کاتی‌شناسی گراتینه‌های منطقه‌های مورد بررسی تنو و گسترده‌ترین نشان می‌دهند. ولی از نظر مدل بخش بزرگ این سنگ‌های از ریزکاری و فلزکاری پایدار و پلاژیوکلری تشکیل می‌دهند. فلسفید تهیه می‌شود. دیگر کاتی‌های این سنگ‌های عبارت از اپی‌آمپیلوی، آلبیت.
جدول ۱ آنتی‌ژئهای ریز پردازشی الکترونی از آمپیل‌های سنگ‌های گراویتودی منطقه‌ی مورد بررسی.

<table>
<thead>
<tr>
<th>label</th>
<th>Am2_21</th>
<th>Am2_13</th>
<th>Am2_8</th>
<th>Am2_2</th>
<th>Am3_9</th>
<th>Am3_7</th>
<th>Am3_5</th>
<th>Am1_12</th>
<th>Am1_8</th>
<th>Am1_6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Si</td>
<td>85815</td>
<td>58730</td>
<td>53553</td>
<td>5791</td>
<td>5791</td>
<td>5791</td>
<td>5791</td>
<td>5791</td>
<td>5791</td>
<td>5791</td>
</tr>
<tr>
<td>Ti</td>
<td>0.2</td>
<td>0.08</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>Al</td>
<td>5.885</td>
<td>0.32</td>
<td>0.16</td>
<td>0.09</td>
<td>0.09</td>
<td>0.09</td>
<td>0.09</td>
<td>0.09</td>
<td>0.09</td>
<td>0.09</td>
</tr>
<tr>
<td>Cr</td>
<td>0.004</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>Fe²⁺</td>
<td>1.275</td>
<td>0.09</td>
<td>0.06</td>
<td>0.06</td>
<td>0.06</td>
<td>0.06</td>
<td>0.06</td>
<td>0.06</td>
<td>0.06</td>
<td>0.06</td>
</tr>
<tr>
<td>Fe³⁺</td>
<td>2.312</td>
<td>0.16</td>
<td>0.12</td>
<td>0.09</td>
<td>0.09</td>
<td>0.09</td>
<td>0.09</td>
<td>0.09</td>
<td>0.09</td>
<td>0.09</td>
</tr>
<tr>
<td>Mn</td>
<td>0.118</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>Mg</td>
<td>0.054</td>
<td>0.004</td>
<td>0.001</td>
<td>0.001</td>
<td>0.001</td>
<td>0.001</td>
<td>0.001</td>
<td>0.001</td>
<td>0.001</td>
<td>0.001</td>
</tr>
<tr>
<td>Ca</td>
<td>1.8</td>
<td>0.10</td>
<td>0.08</td>
<td>0.06</td>
<td>0.06</td>
<td>0.06</td>
<td>0.06</td>
<td>0.06</td>
<td>0.06</td>
<td>0.06</td>
</tr>
<tr>
<td>Na</td>
<td>0.985</td>
<td>0.06</td>
<td>0.05</td>
<td>0.04</td>
<td>0.04</td>
<td>0.04</td>
<td>0.04</td>
<td>0.04</td>
<td>0.04</td>
<td>0.04</td>
</tr>
<tr>
<td>K</td>
<td>0.394</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
</tr>
<tr>
<td>Cl</td>
<td>0.394</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
</tr>
<tr>
<td>sum_cat</td>
<td>15988</td>
</tr>
<tr>
<td>Al(IV)</td>
<td>0.580</td>
<td>0.334</td>
<td>0.228</td>
<td>0.228</td>
<td>0.228</td>
<td>0.228</td>
<td>0.228</td>
<td>0.228</td>
<td>0.228</td>
<td>0.228</td>
</tr>
<tr>
<td>Al(VI)</td>
<td>0.237</td>
<td>0.137</td>
<td>0.092</td>
<td>0.092</td>
<td>0.092</td>
<td>0.092</td>
<td>0.092</td>
<td>0.092</td>
<td>0.092</td>
<td>0.092</td>
</tr>
<tr>
<td>Mg/(Mg+Fe³⁺)Mg</td>
<td>0.151</td>
<td>0.090</td>
<td>0.065</td>
<td>0.065</td>
<td>0.065</td>
<td>0.065</td>
<td>0.065</td>
<td>0.065</td>
<td>0.065</td>
<td>0.065</td>
</tr>
<tr>
<td>Fe²⁺</td>
<td>0.780</td>
<td>0.474</td>
<td>0.312</td>
<td>0.312</td>
<td>0.312</td>
<td>0.312</td>
<td>0.312</td>
<td>0.312</td>
<td>0.312</td>
<td>0.312</td>
</tr>
<tr>
<td>XNaA</td>
<td>0.039</td>
<td>0.024</td>
<td>0.017</td>
<td>0.017</td>
<td>0.017</td>
<td>0.017</td>
<td>0.017</td>
<td>0.017</td>
<td>0.017</td>
<td>0.017</td>
</tr>
<tr>
<td>XKA</td>
<td>0.22</td>
<td>0.143</td>
<td>0.095</td>
<td>0.095</td>
<td>0.095</td>
<td>0.095</td>
<td>0.095</td>
<td>0.095</td>
<td>0.095</td>
<td>0.095</td>
</tr>
<tr>
<td>XVacA</td>
<td>0.22</td>
<td>0.143</td>
<td>0.095</td>
<td>0.095</td>
<td>0.095</td>
<td>0.095</td>
<td>0.095</td>
<td>0.095</td>
<td>0.095</td>
<td>0.095</td>
</tr>
<tr>
<td>XCaM4</td>
<td>0.3</td>
<td>0.2</td>
<td>0.16</td>
<td>0.16</td>
<td>0.16</td>
<td>0.16</td>
<td>0.16</td>
<td>0.16</td>
<td>0.16</td>
<td>0.16</td>
</tr>
<tr>
<td>XNaM4</td>
<td>0.037</td>
<td>0.025</td>
<td>0.017</td>
<td>0.017</td>
<td>0.017</td>
<td>0.017</td>
<td>0.017</td>
<td>0.017</td>
<td>0.017</td>
<td>0.017</td>
</tr>
<tr>
<td>XMgM3</td>
<td>0.037</td>
<td>0.025</td>
<td>0.017</td>
<td>0.017</td>
<td>0.017</td>
<td>0.017</td>
<td>0.017</td>
<td>0.017</td>
<td>0.017</td>
<td>0.017</td>
</tr>
<tr>
<td>XFeM3</td>
<td>0.037</td>
<td>0.025</td>
<td>0.017</td>
<td>0.017</td>
<td>0.017</td>
<td>0.017</td>
<td>0.017</td>
<td>0.017</td>
<td>0.017</td>
<td>0.017</td>
</tr>
<tr>
<td>XFeM2</td>
<td>0.037</td>
<td>0.025</td>
<td>0.017</td>
<td>0.017</td>
<td>0.017</td>
<td>0.017</td>
<td>0.017</td>
<td>0.017</td>
<td>0.017</td>
<td>0.017</td>
</tr>
<tr>
<td>XA1M2</td>
<td>0.184</td>
<td>0.124</td>
<td>0.096</td>
<td>0.096</td>
<td>0.096</td>
<td>0.096</td>
<td>0.096</td>
<td>0.096</td>
<td>0.096</td>
<td>0.096</td>
</tr>
<tr>
<td>XFe3M2</td>
<td>0.037</td>
<td>0.025</td>
<td>0.017</td>
<td>0.017</td>
<td>0.017</td>
<td>0.017</td>
<td>0.017</td>
<td>0.017</td>
<td>0.017</td>
<td>0.017</td>
</tr>
<tr>
<td>XSiT1</td>
<td>0.124</td>
<td>0.096</td>
<td>0.096</td>
<td>0.096</td>
<td>0.096</td>
<td>0.096</td>
<td>0.096</td>
<td>0.096</td>
<td>0.096</td>
<td>0.096</td>
</tr>
<tr>
<td>XAIT1</td>
<td>0.037</td>
<td>0.025</td>
<td>0.017</td>
<td>0.017</td>
<td>0.017</td>
<td>0.017</td>
<td>0.017</td>
<td>0.017</td>
<td>0.017</td>
<td>0.017</td>
</tr>
</tbody>
</table>

نتایج بونهای بر مبنای 13 اتم آکسیژن محاسبه شده.
امفیپتله‌های گرانیتونیده‌ها نشان دهنده این است که هیچ
قرابتی بین این امفیپتله‌های ماگمایی با امفیپتله‌های دگرگونی
وانته به امفیپتله‌های منطقه با Mg# بیش از ۰.۵ [۱]
وجود ندارد.
بلورهای امفیپتله در کنار بلورهای بیوتیت، کاتیاه اصلی
سازنده برگورده میولونیتی در این سنگ‌های گرانیتونیده
دگرگنا شده‌اند، حضور بلورهای امفیپتله در برگورده سنگ
می‌گردد این سنگ‌ها با این امفیپتله‌ها
ماگمایی هستند و یا دگرگونی؟ اهمیت این موضوع بخصوص
در زمین دماسنجی و زمین فشارسنجی امفیپتله برای تعیین
شرايط تبلور توده‌گرانیتی‌بی‌بی‌روش می‌شود. بر
ارای هدیه توسط اساس نمودار Liک [۱۳] تمامی نقاط آنالیز شده از امفیپتله‌های مورد بررسی
در گستره‌ای امفیپتله‌های ماگمایی (آذرین) قرار می‌گیرند
(شکل ۴).

AlІV/AlІVI در نمودار AlІIV نسبت به AlІVI در نمودار
در بلورهای امفیپتله مورد بررسی بین ۱۴۱ تا ۱۴۱.۵ بوده و این
نسبت در تمامی امفیپتله‌ها بیش از ۲.۵ است، بنابراین در
فلزرو آمفیپتله‌های آذرین قرار می‌گیرند (شکل ۷).

Calcite amphiboles

(\(\text{Na+K})_{\geq 0.5}, \text{Ti}<0.5\)

<table>
<thead>
<tr>
<th>Mg / (Mg + Fe²⁺)</th>
<th>0.0</th>
<th>0.5</th>
<th>1.0</th>
<th>1.5</th>
<th>2.0</th>
<th>2.5</th>
<th>3.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Si</td>
<td>4.5</td>
<td>5.0</td>
<td>5.5</td>
<td>6.0</td>
<td>6.5</td>
<td>7.0</td>
<td>7.5</td>
</tr>
</tbody>
</table>

- edenite
- pargasite / magnesiо-hastingsite
- magnesiо-sadanagite
- ferropargasite / hastingsite
- sadanagite
- ferro-edenite

شکل ۵

نمای موقعیت بلورهای امفیپتله انتحالی از گرانیتونیدهای شمال شرکتی روی نمودار تقسیم‌بندی امفیپتله‌های کلسیک (افتیاد از
لیک و همکاران، [۱۳]).
شکل ۶: ترکیب بلورهای امپیبولوز از توده‌های گراتونیدی حاشیه زاینده رود که تمامی نقاط در گسترده‌ی آذرین قرار می‌گیرند، نمودار افتباس از لیک [۱۴۶].

شکل ۷: ترکیب بلورهای امپیبولوز از توده‌های گراتونیدی حاشیه زاینده رود روي نمودار آذرین قرار می‌گیرند، نمودار افتباس از فلیت و بارنت [۱۵۱].

فلدسیات پتاسیم-آنالیزه‌ای (ترکیبی) الکترونی این بلورها آشکار می‌شود (جدول ۲) که محصولات انتخابی فلدسیات پتاسیم بیشترین بوده و میزان آن بین ۰۹، ۱۰ درصد بوده و هموگنین میزان آلپین این فلدسیات هنی به میزان قابل توجهی کم است و از ۲۱ درصد تغییر می‌کند. بنابراین محتوای انتخابی فلدسیات پتاسیم این سنگ‌های گراتونیدی کاملاً با بوده و ۱۲ تا ۱۵ درصد است (شکل ۸). فلدسیات‌های پتاسیم مورد بررسی در گسترده‌ی ترکیب فلورهای $\text{Ab}_{2.9} \text{Or}_{6.8} \text{An}_{0.1}$ و $\text{Ab}_{1.4} \text{Or}_{9.5}$ مورد بررسی در گسترده‌ی ترکیب

مولتیپلازیکالوز: برخی از آنتخابی آنالیزه‌ای رز پردازشی الکترونی روي پلازیکالوزهای نمونه سنگ‌های گراتونیدی
جدول ۲ آنالیزهای ریز پردازشی الکترونی کانی‌های فلدسبات یاسمن و بلازپولکلز از توده‌های گرانیتولیدی حاشیه‌ای رودخانه رایندرود، پهنه، برکش شمال شهرکرد.

<table>
<thead>
<tr>
<th>label</th>
<th>G1_19</th>
<th>G1_20</th>
<th>G1_21</th>
<th>G1_22</th>
<th>G1_16</th>
<th>G1_17</th>
<th>G1_22</th>
<th>G2_10</th>
<th>G2_22</th>
</tr>
</thead>
<tbody>
<tr>
<td>mineral</td>
<td>kf</td>
<td>kf</td>
<td>kf</td>
<td>kf</td>
<td>plag</td>
<td>plag</td>
<td>plag</td>
<td>plag</td>
<td>plag</td>
</tr>
<tr>
<td>SiO₂</td>
<td>63.81</td>
<td>64.77</td>
<td>63.14</td>
<td>63.77</td>
<td>63.16</td>
<td>55.60</td>
<td>64.32</td>
<td>56.18</td>
<td></td>
</tr>
<tr>
<td>TiO₂</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>18.42</td>
<td>18.22</td>
<td>17.99</td>
<td>18.16</td>
<td>20.16</td>
<td>21.51</td>
<td>20.35</td>
<td>23.21</td>
<td></td>
</tr>
<tr>
<td>Cr₂O₃</td>
<td>0.11</td>
<td>0.10</td>
<td>0.11</td>
<td>0.15</td>
<td>0.13</td>
<td>0.12</td>
<td>0.16</td>
<td>0.20</td>
<td></td>
</tr>
<tr>
<td>FeO</td>
<td>0.51</td>
<td>0.50</td>
<td>0.47</td>
<td>0.62</td>
<td>0.68</td>
<td>0.63</td>
<td>0.62</td>
<td>0.62</td>
<td></td>
</tr>
<tr>
<td>Fe₂O₃</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>CaO</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>MgO</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>MnO</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>Na₂O</td>
<td>11.43</td>
<td>11.34</td>
<td>11.34</td>
<td>11.39</td>
<td>11.77</td>
<td>11.77</td>
<td>11.77</td>
<td>11.77</td>
<td></td>
</tr>
<tr>
<td>Cl</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>99.67</td>
<td>99.46</td>
<td>99.15</td>
<td>98.21</td>
<td>98.21</td>
<td>98.21</td>
<td>98.21</td>
<td>98.21</td>
<td></td>
</tr>
</tbody>
</table>

مقدار میزان‌های اکسیدهای گیچه‌ای شرکت کننده در صفحه‌ها.

Si، *Ti*، *Al*، *Cr*، *Fe*، *Mn*، *Mg*، *Ca*، *Na*، *K*، *Cl*

<table>
<thead>
<tr>
<th>sum_cat</th>
<th>G1_19</th>
<th>G1_20</th>
<th>G1_21</th>
<th>G1_22</th>
<th>G1_16</th>
<th>G1_17</th>
<th>G1_22</th>
<th>G2_10</th>
<th>G2_22</th>
</tr>
</thead>
</table>

ترکیب بلورهای بلازپولکلز و فلدسبات یاسمن از گرانیتولیدی مورد بررسی روي تصمیم‌گیری فلدسبات‌ها.

Ab، *Or*، *An*
تینتیت: بلورهای تینتیت نیز یکی دیگر از کالیهای فرعی سازندگی این توده‌های گرانیت‌نوردی دگرگویی شده‌ند مورد بررسی هستند که نتایج آن‌ها در جدول ۳ را برای اینهای؛ اندارم، همکاران [۱۶] ترکیب تینتیت با فلز و دما تشکیل وابسته دانسته‌اند. در سگه‌های گرگوئی متوسط محتوای (Al+Fe³⁺) تینتیت با افزایش دما و عمق کاهش می‌یابد. تینتیت‌هایی از توده‌های نفوذی مورد بررسی دارای پایدار بوده و با بررسی شankan نیز مدل هستند که می‌توانند با توجه به مقدار پایین این نمات یکی از توده‌های خاص و حاصل از تجزیه است [۱۷].

جدول ۳ آنتیزهای ریز پراداری اکلنی کالیهای تینتیت و ایپیدوت از توده‌های گرانیت‌نوردی خالصیبی روستای یاپادی یاپاد. بهره بر شماره

<table>
<thead>
<tr>
<th>label</th>
<th>G1_14</th>
<th>G1_15</th>
<th>G1_30</th>
<th>G3_10</th>
<th>G3_12</th>
<th>G3_14</th>
<th>G3_15</th>
<th>G3_16</th>
<th>G4_14</th>
<th>G4_15</th>
<th>G4_18</th>
</tr>
</thead>
<tbody>
<tr>
<td>mineral</td>
<td>Titanite</td>
<td>Epitite</td>
<td>Epidote</td>
<td>Epidote</td>
<td>Epidote</td>
<td>Epidote</td>
<td>Epidote</td>
<td>Epidote</td>
<td>Epidote</td>
<td>Epidote</td>
<td>Epidote</td>
</tr>
<tr>
<td>SiO₂</td>
<td>۳۰۹</td>
<td>۳۰۸</td>
<td>۳۰۶</td>
<td>۳۸۶</td>
<td>۳۸۴</td>
<td>۳۸۴</td>
<td>۳۸۴</td>
<td>۳۸۴</td>
<td>۳۸۴</td>
<td>۳۸۴</td>
<td>۳۸۴</td>
</tr>
<tr>
<td>TiO₂</td>
<td>۲۴۴</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>۷۴۴</td>
</tr>
<tr>
<td>Cr₂O₃</td>
<td>۳۰</td>
</tr>
<tr>
<td>FeO</td>
<td>۸۰</td>
</tr>
<tr>
<td>MnO</td>
<td>۱۴۴</td>
</tr>
<tr>
<td>MgO</td>
<td>۵۴</td>
</tr>
<tr>
<td>CaO</td>
<td>۶۷۷</td>
</tr>
<tr>
<td>Na₂O</td>
<td>۰</td>
</tr>
<tr>
<td>K₂O</td>
<td>۰</td>
</tr>
<tr>
<td>Li₂O</td>
<td>۱۰۰</td>
</tr>
<tr>
<td>Cl</td>
<td>۰</td>
</tr>
<tr>
<td>Total</td>
<td>۹۱۸</td>
</tr>
</tbody>
</table>

تعداد مولی برای تینتیت ۱۲ و برای ایپیدوت بر میانه ۵ آزمایش متابولیک شده‌اند.
ایپیدوت مکانیکی: کلیه رهگیره ایپیدوت در طیف گسترده‌ای از سنگ‌ها حضور می‌یابد. به طوری که از شرایط تنزیک به سطح زمین تا سنگ‌های دگرگونی با فشار بالا یا خلیف فشار بالا و به عنوان یکی از اولویت‌های ایپیدوت (Fe3+ \(Fe^{2+} + \text{Al} \)) حاوی فوگاسیته اکسیژن و شرایط اکسیژنی به سنگ‌ را ارائه می‌دهند. نش ایپیدوت طی تبیکر مکانیکی به حاوی‌شانش است. به زیست‌شناسی توابع رابطه‌ای در سنگ‌های کریستالی به پیشنهاد شده است. تولید ایپیدوت مکانیکی با تعریف حاوی‌سازی توسط یک طریق ممکن برای افت‌گذاری این الروپت در سنگ‌های کریستالی به طوری که آن‌ها به طور می‌یابد. به‌طور مثال Fe3+ \(Fe^{2+} + \text{Al} \) فوگاسیته اکسیژن و شرایط اکسیژنی به سنگ را ارائه می‌دهند. نش ایپیدوت طی تبیکر مکانیکی به حاوی‌شانش است. به زیست‌شناسی توابع رابطه‌ای در سنگ‌های کریستالی به پیشنهاد شده است. تولید ایپیدوت مکانیکی با تعریف حاوی‌سازی توسط یک طریق ممکن برای افت‌گذاری این الروپت در سنگ‌های کریستالی به طوری که آن‌ها به طور می‌یابد. به‌طور مثال Fe3+ \(Fe^{2+} + \text{Al} \) فوگاسیته اکسیژن و شرایط اکسیژنی به سنگ را ارائه می‌دهند. نش ایپیدوت طی تبیکر مکانیکی به حاوی‌شانش است. به زیست‌شناسی توابع رابطه‌ای در سنگ‌های کریستالی به پیشنهاد شده است. تولید ایپیدوت مکانیکی با تعریف حاوی‌سازی توسط یک طریق ممکن برای افت‌گذاری این الروپت در سنگ‌های کریستالی به طوری که آن‌ها به طور می‌یابد. به‌طور مثال Fe3+ \(Fe^{2+} + \text{Al} \) فوگاسیته اکسیژن و شرایط اکسیژنی به سنگ را ارائه می‌دهند. نش ایپیدوت طی تبیکر مکانیکی به حاوی‌شانش است. به زیست‌شناسی توابع رابطه‌ای در سنگ‌های کریستالی به پیشنهاد شده است. تولید ایپیدوت مکانیکی با تعریف حاوی‌سازی توسط یک طریق ممکن برای افت‌گذاری این الروپت در سنگ‌های کریستالی به طوری که آن‌ها به طور می‌یابد. به‌طور مثال Fe3+ \(Fe^{2+} + \text{Al} \) فوگاسیته اکسیژن و شرایط اکسیژنی به سنگ را ارائه می‌دهند. نش ایپیدوت طی تبیکر مکانیکی به حاوی‌شانش است. به زیست‌شناسی توابع رابطه‌ای در سنگ‌های کریستالی به پیشنهاد شده است. تولید ایپیدوت مکانیکی با تعریف حاوی‌سازی توسط یک طریق ممکن برای افت‌گذاری این الروپت در سنگ‌های کریستالی به طوری که آن‌ها به طور می‌یابد. به‌طور مثال Fe3+ \(Fe^{2+} + \text{Al} \) فوگاسیته اکسیژن و شرایط اکسیژنی به سنگ را ارائه می‌دهند. نش ایپیدوت طی تبیکر مکانیکی به حاوی‌شانش است. به زیست‌شناسی توابع رابطه‌ای در سنگ‌های کریستالی به پیشنهاد شده است. تولید ایپیدوت مکانیکی با تعریف حاوی‌سازی توسط یک طریق ممکن برای افت‌گذاری این الروپت در سنگ‌های کریستالی به طوری که آن‌ها به طور می‌یابد. به‌طور مثال Fe3+ \(Fe^{2+} + \text{Al} \) فوگاسیته اکسیژن و شرایط اکسیژنی به سنگ را ارائه می‌دهند. نش ایپیدوت طی تبیکر مکانیکی به حاوی‌شانش است. به زیست‌شناسی توابع رابطه‌ای در سنگ‌های کریستالی به پیشنهاد شده است. تولید ایپیدوت مکانیکی با تعریف حاوی‌سازی توسط یک طریق ممکن برای افت‌گذاری این الروپت در سنگ‌های کریستالی به طوری که آن‌ها به طور می‌یابد. به‌طور مثال Fe3+ \(Fe^{2+} + \text{Al} \) فوگاسیته اکسیژن و شرایط اکسیژنی به سنگ را ارائه می‌دهند. نش ایپیدوت طی تبیکر مکانیکی به حاوی‌شانش است. به زیست‌شناسی توابع رابطه‌ای در سنگ‌های کریستالی به پیشنهاد شده است. تولید ایپیدوت مکانیکی با تعریف حاوی‌سازی توسط یک طریق ممکن برای افت‌گذاری این الروپت در سنگ‌های کریستالی به طوری که آن‌ها به طور می‌یابد. به‌طور مثال Fe3+ \(Fe^{2+} + \text{Al} \) فوگاسیته اکسیژن و شرایط اکسیژنی به سنگ را ارائه می‌دهند. نش ایپیدوت طی تبیکر مکانیکی به حاوی‌شانش است. به زیست‌شناسی توابع رابطه‌ای در سنگ‌های کریستالی به پیشنهاد شده است. تولید ایپیدوت مکانیکی با تعریف حاوی‌سازی توسط یک طریق ممکن برای افت‌گذاری این رو
شکل ۹ حضور ابیدوت ماگمای در کار و درون بیوتیت در مرکز تصویر، پهنای میدان دید برابر با ۰.۳ میلیمتر، نور بیوتیت و بیوتر XPL.

شکل ۱۰ حضور ابیدوت ماگمای در اطراف بلور کشنده الینت، پهنای میدان دید برابر با ۰.۲ میلیمتر، نور الینت و بیوتر XPL.
چگونگی شکل گیری یک توده گرانیتودی مثبت مخالط شیار در این برآورد فشار تیلوآ فشرده‌سازی می‌شود.

و دستیابی است که در آن منطبق شده است. جانشینی

جرماک در آمپیویل‌ها از افزایش فکری بیشتر می‌شود (پنی با افزایش فشار آمپیویل‌ها از Al گنیتر می‌شود)، در حالی که جانشینی ادیت با افزایش دما قوی‌تر می‌شود (آمپیویل‌ها با افزایش دما از سدیم و آلومینیوم غیر می‌شوند) [29]. با توجه به این جانشینی‌ها این مکانیزم‌های می‌آید تا به‌طور کلی

منیات آمپیویل در آمپیویل، فشار اجسام گرانیتودی‌ها را محاسبه کرد. از آنجا که بلورهای آمپیویل از توده‌های گرانیتودی مورد بررسی همراه با کوارتز، فلزات پتاسیم، پلاژیوکلاز، بوبینت، مگنیت و تینیت هستند. زمین فشرده‌سازی بر منیات آمپیویل در آمپیویل (هوئلین) قابل

کاربرد بوده و از قابلیت اطمینان بالایی برخود است [30]. از طرف دیگر جنتوچ در مبحث شیمی کاپا پلاژیوکلاز اشاره شد، جزئی بودن دامنه نگیرشات ترکیبی پلاژیوکلازها در سنگ‌های مور هر تزئین فشرده‌سازی فوق را

پذیرفته شده.

جدول ۴ محاسبه‌ی فشار تکش بلورهای مختلف آمپیویل توده‌های گرانیتودی با استفاده از چهار روش زمین فشرده‌سازی (مستقل از دما) بر

\[
\text{Al – in – Hornblende}
\]

<table>
<thead>
<tr>
<th>Label</th>
<th>Ti</th>
<th>Al (total)</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Am_1_6</td>
<td>0.06</td>
<td>2.356</td>
<td>7.7</td>
<td>8.4</td>
<td>9.0</td>
<td>9.6</td>
</tr>
<tr>
<td>Am_1_8</td>
<td>0.08</td>
<td>2.644</td>
<td>8.5</td>
<td>10.0</td>
<td>10.5</td>
<td>10.9</td>
</tr>
<tr>
<td>Am_1_12</td>
<td>0.09</td>
<td>2.432</td>
<td>8.3</td>
<td>10.0</td>
<td>10.5</td>
<td>10.9</td>
</tr>
<tr>
<td>Am_3_5</td>
<td>0.08</td>
<td>2.411</td>
<td>8.2</td>
<td>10.0</td>
<td>10.5</td>
<td>10.9</td>
</tr>
<tr>
<td>Am_3_7</td>
<td>0.08</td>
<td>2.402</td>
<td>8.2</td>
<td>10.0</td>
<td>10.5</td>
<td>10.9</td>
</tr>
<tr>
<td>Am_3_9</td>
<td>0.09</td>
<td>2.565</td>
<td>9.0</td>
<td>10.0</td>
<td>10.5</td>
<td>10.9</td>
</tr>
<tr>
<td>Am_2_2</td>
<td>0.07</td>
<td>2.368</td>
<td>7.6</td>
<td>9.0</td>
<td>9.6</td>
<td>10.1</td>
</tr>
<tr>
<td>Am_2_1</td>
<td>0.08</td>
<td>2.46</td>
<td>8.3</td>
<td>10.0</td>
<td>10.5</td>
<td>10.9</td>
</tr>
<tr>
<td>Am_2_13</td>
<td>0.09</td>
<td>2.367</td>
<td>8.0</td>
<td>10.0</td>
<td>10.5</td>
<td>10.9</td>
</tr>
<tr>
<td>Am_2_21</td>
<td>0.07</td>
<td>2.54</td>
<td>8.2</td>
<td>9.3</td>
<td>9.6</td>
<td>10.1</td>
</tr>
</tbody>
</table>

منیات

1. P (±3 kbar) = -3.92 + 5.03 Al (total), Hammarstrom and Zen (1986) [31]
2. P (±0.5 kbar) = -3.46 + 4.25 Al (total), Johnson and Rutherford (1989) [32]
3. P (±0.6 kbar) = -3.01 + 4.76 Al (total), Schmidt (1992) [33]
4. P (±1.0 kbar) = -4.76 + 5.64 Al (total), Hollister et al. (1987) [34]
جدول 5 مهابهی فشار تشکیل توده‌های نفوذی مورد بررسی بر مبنای روش زمین فشارسنجی اندرسون و اسمیت [31].

<table>
<thead>
<tr>
<th>label</th>
<th>T(°C)</th>
<th>P(±0.6 kbar)</th>
<th>T(°C)</th>
<th>P(±0.6 kbar)</th>
<th>T(°C)</th>
<th>P(±0.6 kbar)</th>
<th>T(°C)</th>
<th>P(±0.6 kbar)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Am1_6</td>
<td>56.4</td>
<td>4.76AlTot - 3.01 − {(T °C) − 675}/85</td>
<td>56.4</td>
<td>4.76AlTot - 3.01 − {(T °C) − 675}/85</td>
<td>56.4</td>
<td>4.76AlTot - 3.01 − {(T °C) − 675}/85</td>
<td>56.4</td>
<td>4.76AlTot - 3.01 − {(T °C) − 675}/85</td>
</tr>
<tr>
<td>Am1_8</td>
<td>6.8</td>
<td>4.76AlTot - 3.01 − {(T °C) − 675}/85</td>
<td>6.8</td>
<td>4.76AlTot - 3.01 − {(T °C) − 675}/85</td>
<td>6.8</td>
<td>4.76AlTot - 3.01 − {(T °C) − 675}/85</td>
<td>6.8</td>
<td>4.76AlTot - 3.01 − {(T °C) − 675}/85</td>
</tr>
<tr>
<td>Am1_12</td>
<td>9.5</td>
<td>4.76AlTot - 3.01 − {(T °C) − 675}/85</td>
<td>9.5</td>
<td>4.76AlTot - 3.01 − {(T °C) − 675}/85</td>
<td>9.5</td>
<td>4.76AlTot - 3.01 − {(T °C) − 675}/85</td>
<td>9.5</td>
<td>4.76AlTot - 3.01 − {(T °C) − 675}/85</td>
</tr>
<tr>
<td>Am3_5</td>
<td>9.2</td>
<td>4.76AlTot - 3.01 − {(T °C) − 675}/85</td>
<td>9.2</td>
<td>4.76AlTot - 3.01 − {(T °C) − 675}/85</td>
<td>9.2</td>
<td>4.76AlTot - 3.01 − {(T °C) − 675}/85</td>
<td>9.2</td>
<td>4.76AlTot - 3.01 − {(T °C) − 675}/85</td>
</tr>
<tr>
<td>Am3_7</td>
<td>9.1</td>
<td>4.76AlTot - 3.01 − {(T °C) − 675}/85</td>
<td>9.1</td>
<td>4.76AlTot - 3.01 − {(T °C) − 675}/85</td>
<td>9.1</td>
<td>4.76AlTot - 3.01 − {(T °C) − 675}/85</td>
<td>9.1</td>
<td>4.76AlTot - 3.01 − {(T °C) − 675}/85</td>
</tr>
<tr>
<td>Am3_9</td>
<td>10.1</td>
<td>4.76AlTot - 3.01 − {(T °C) − 675}/85</td>
<td>10.1</td>
<td>4.76AlTot - 3.01 − {(T °C) − 675}/85</td>
<td>10.1</td>
<td>4.76AlTot - 3.01 − {(T °C) − 675}/85</td>
<td>10.1</td>
<td>4.76AlTot - 3.01 − {(T °C) − 675}/85</td>
</tr>
<tr>
<td>Am2_2</td>
<td>8.6</td>
<td>4.76AlTot - 3.01 − {(T °C) − 675}/85</td>
<td>8.6</td>
<td>4.76AlTot - 3.01 − {(T °C) − 675}/85</td>
<td>8.6</td>
<td>4.76AlTot - 3.01 − {(T °C) − 675}/85</td>
<td>8.6</td>
<td>4.76AlTot - 3.01 − {(T °C) − 675}/85</td>
</tr>
<tr>
<td>Am2_8</td>
<td>8.4</td>
<td>4.76AlTot - 3.01 − {(T °C) − 675}/85</td>
<td>8.4</td>
<td>4.76AlTot - 3.01 − {(T °C) − 675}/85</td>
<td>8.4</td>
<td>4.76AlTot - 3.01 − {(T °C) − 675}/85</td>
<td>8.4</td>
<td>4.76AlTot - 3.01 − {(T °C) − 675}/85</td>
</tr>
<tr>
<td>Am2_13</td>
<td>8.9</td>
<td>4.76AlTot - 3.01 − {(T °C) − 675}/85</td>
<td>8.9</td>
<td>4.76AlTot - 3.01 − {(T °C) − 675}/85</td>
<td>8.9</td>
<td>4.76AlTot - 3.01 − {(T °C) − 675}/85</td>
<td>8.9</td>
<td>4.76AlTot - 3.01 − {(T °C) − 675}/85</td>
</tr>
<tr>
<td>Am2_21</td>
<td>10.1</td>
<td>4.76AlTot - 3.01 − {(T °C) − 675}/85</td>
<td>10.1</td>
<td>4.76AlTot - 3.01 − {(T °C) − 675}/85</td>
<td>10.1</td>
<td>4.76AlTot - 3.01 − {(T °C) − 675}/85</td>
<td>10.1</td>
<td>4.76AlTot - 3.01 − {(T °C) − 675}/85</td>
</tr>
<tr>
<td>Average</td>
<td>9.3</td>
<td>4.76AlTot - 3.01 − {(T °C) − 675}/85</td>
<td>9.3</td>
<td>4.76AlTot - 3.01 − {(T °C) − 675}/85</td>
<td>9.3</td>
<td>4.76AlTot - 3.01 − {(T °C) − 675}/85</td>
<td>9.3</td>
<td>4.76AlTot - 3.01 − {(T °C) − 675}/85</td>
</tr>
</tbody>
</table>

P(±0.6 kbar) = 4.76AlTot - 3.01 − {(T °C) − 675}/85

همهیرز و شاید کاربرد ترین روش تعیین دمای توده‌های نفوذی گراییچتولیدی، روش زمین فشارسنجی هوربینلند - پلاژیوکلاز با دو روش متغیر است. هندل و بلوندی [35] سه واکنش دانگانه را ارائه کردند که واکنش انتی - ترمولیت برای سنگ‌های آدرین حاوی کوارتز با پلاژیوکلاز دارای محتمال آن‌چنان کمتر است که 92% قابل استفاده است. شرط دیگر این‌که

\[
T[±40°\text{C}] = -76.95 + 0.79P[kbar] + Y_{ab} + 39.4X_{Na}^d + 22.4X_{Si}^d + (41.5 - 2.89P[kbar])X_{Al}^M \]

-0.0650 - R ln \left(\frac{27X_{Na}^d X_{Si}^d X_{Al}^{plag}}{256X_{Na}^d X_{Al}^d} \right)

\[
R = 0.0083144 \text{ kJ K}^{-1}\text{mol}^{-1}, \ Y_{ab} = 0 \text{ for } X_{Al}^{plag} > 0.5, \ Y_{ab} = 12.0 \left(1 - X_{Al}^{plag}\right)^2 \text{ kJ} \]

از آنجا که محاسبه دما در این روش زمین فشارسنجی تابعی از فشار است، لازم است تا فشار نیز محاسبه شود. به همین منظور...
جفت آمفیبول و پلازیوکلاز اول تا چهارم به ترتیب دما ۷۶۵ در فشار ۱۲ کیلوی بار، دما ۷۶۹ در فشار ۱۲ کیلوی بار و دما ۷۱۱ در فشار ۳۲ کیلوی بار به دست آمد. گسترده دما و فشار که از این محاسبات بدست می‌آید (شکل ۱۱) به ترتیب دما گمینه و پیشینه تا ۷۶۸ و دما گمینه و پیشینه فشار بین ۷۶۵ تا ۷۱۱ کیلوی بارند. بنابراین میانگین دما و فشار این توده‌های نفوذی برای دما ۶۹۰ در فشار ۲۷ کیلوی بار است.

جدول ۶ محاسبه دما و فشار تکیهگاه توده‌های نفوذی با تلقیق دو روش زنین دماسنج هلند و بلندی [۱۰] و زنین فشارسنجی آندرسن و اسپیت [۳۱] برای آن‌ها. انجام دادیم که نتایج آن در جدول ۶ ارائه شده‌اند.

برای این منظور نخست با استفاده از زنین فشارسنجی آندرسون و اسپیت [۳۱] در دماهای مقاوت فشار را برای هر کمک از این چهار آمفیبول محاسبه شده که حاصل کار در نمودار P-T چهار خط نسبتاً خمیده به موارد محور T است (شکل ۱۱). از طرف دیگر با استفاده از زنین دماسنج هلند و بلندی [۱۱] در فشارهای مختلف، دما تبلور به دست آمد که حاصل آن چهار خط نسبتاً راست به موارد محور P است (شکل ۱۱). پیوندگاه این خطوط در نمودار P-T چهار نقطه بود که برای برمی‌آورد.

<table>
<thead>
<tr>
<th>label</th>
<th>mineral</th>
<th>P kbar</th>
<th>T °C</th>
</tr>
</thead>
<tbody>
<tr>
<td>G3-4_1_6</td>
<td>amph</td>
<td>۸.۱۲</td>
<td>۶۶۳</td>
</tr>
<tr>
<td>G3-4_1_16</td>
<td>plag</td>
<td></td>
<td></td>
</tr>
<tr>
<td>G3-4_1_7</td>
<td>amph</td>
<td>۷.۶۵</td>
<td>۶۴۵</td>
</tr>
<tr>
<td>G3-4_1_22</td>
<td>plag</td>
<td></td>
<td></td>
</tr>
<tr>
<td>G3-4_2_8</td>
<td>amph</td>
<td>۷.۶۴</td>
<td>۶۴۲</td>
</tr>
<tr>
<td>G3-4_2_10</td>
<td>plag</td>
<td></td>
<td></td>
</tr>
<tr>
<td>G3-4_2_20</td>
<td>amph</td>
<td>۷.۳۱</td>
<td>۷۱۱</td>
</tr>
<tr>
<td>G3-4_2_22</td>
<td>plag</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

میانگین

انحراف استاندارد [معیار]

۷.۶۹
۰.۳۳
۱۹.۹۹

شکل ۱۱ نتایج زنین فشارسنجی آمفیبول [۳۱] و زنین دماسنج آمفیبول - پلازیوکلاز [۱۰] از سنگهای گرانیتولید شمال شهرکرد، جه‌گوش خاکستری گسترشی تغییرات دما و فشار را نشان می‌دهد. نمودار بر منای محاسبات زنین فشارسنجی و زنین دماسنجی با استفاده از نرم افزار [۳۱] ترسیم شده است.

