شیمی کانی‌ها و شرایط فشار - دمای تبلور توده‌های گرانیوتوندی حاشیه‌ی رودخانه‌ای
زاїندورد، پهنه‌ی برخی شمال شهرکرد با نگریز ویژه به حضور اپیدوت مگماتیک

�لیرزا داوودیان دهکردی

(نشریه مقاله: ۱۳۸۲/۱۲/۳۱، نسخه نهایی: ۸۹/۱۳/۱)

چکیده: ناحیه مورد بررسی در پهنه‌ی برخی شمال شهرکرد قرار دارد، در این منطقه تعداد زیادی پلوتون گرانیوتوندی کوچک و متوسط بسیار وارونشکی میانی حضور دارد که در سلسله‌ی دگرشکلی متنوع و پراکنده‌ی صورت پوشیده‌ی توده‌های نفوذ گرانیوتوندی بایروزی در ناحیه‌ی دگرشکلی سطحی نشان می‌دهند. اغلب این پلوتون‌های گرانیوتوندی دارای مجموعه‌ی کوارتز + فلدسپات پتاسیم + پلاژیوکلاز + پوبونیت + آلتینت + آلبیت + اپیدوت + مگماتیک (ایپین‌یا) و بزرگترین عامل تعادل بافتی ظاهری قرار گرفته‌اند. بر اساس نوع و ترکیب اپیدوت‌ها دلالت بر وجود حاضرهای ماگماتیک آن‌ها دارد. این پلوتون‌های گرانیوتوندی حاوی اپیدوت ماگماتیک، باشیست در فشارهای تنها با تشکیل شده باشد. زینم فشارسنجی محض از ۷۵ تا ۷۸ کیلو باز و ۸۸ کیلو باز (متوسط) ناحیه بار را ارائه می‌دهد که با میزان حدود ۲۸ کیلو متری پوسته همگونی دارد. همچنین، زینم فشارسنجی آمفیبول - پلاژیوکلاز دمایی از ۶۸۵ تا ۷۱۱ درجه با تبدیل‌های دیگری به دست می‌دهد. این نتایج زینم دمای فشارسنجی با حضور اپیدوت ماگماتیک در این سلسله‌ی گرانیوتوندی سازگار است.

واژه‌های کلیدی: گرانیوتوندی، دگرشکل شده، دوراسیک شیمیایی، زینم دماسنجی- زینم فشارسنجی، اپیدوت ماگماتیک، شمال شیرکرد.

مقدمه

منطقه مورد بررسی در اسکان چار محلول و بختیاری، در کنار روستاهای زایندورد، و ۲۵ کیلومتری شمال شهرکرد قرار دارد و در طبقه چهارگوش زمین‌شناسی شهرکرد و در میان طولهای جغرافیایی ۵۰ درجه و ۲ دقیقه تا ۵۴ درجه و ۲ دقیقه و ۵۷ دقیقه تا ۷۵ درجه و ۴ دقیقه شمالی قرار دارد و از لحاظ زمین‌شناسی به عنوان یکی از پهن‌ترین زمین‌شناسی خودریا رودخانه اسکن- سیرجان محسوب می‌شود [۲۱]. این پهنه به صورت نواری بندر

alireza.davoudian@gmail.com
کلیه توده‌های گرانیت‌نی‌دی در این ترکیب کلیه شناسی متنوعی بوده که ترکیب کلیه‌ها می‌توانند نمایان‌دهی شرایط تشکیل این توده‌ها باشند از جمله شکل‌های نقطه‌ای دقیق کلیه‌ها و در حجم‌بندی متفاوت می‌توان دما، فشار و عمق جابجایی گرانیت‌نی‌دی‌ها را بر اورده کرد .

منطقه‌ی مورد بررسی در فاصله‌ی 22 کیلومتری شمال غربی ساحل قرار دارد و بخشی از یک مجموعه‌ی آدرن، دگرگونی و دگرگشاکی این [23]. این مجموعه از شمال شهربانک تا شهر داران گسترش می‌یابد و ساختارهای دگرگون و آدرن آن از نظر تقسیمات زمین‌شناسی ایران [7] به عناوین بخشی از بپنهای زمین ساخته سندج - سیرجان محسوب می‌شود.

توده‌های گرانیتنی‌سی نفوذ کرده در کرانه‌ی زاینده رود نیز بخشی از این توده‌های واقع در بپنهای بخش شمال شهربانک را تشکیل می‌دهد (شکل 1). سطح‌های گرانیت‌نی‌دی مورد بررسی شامل تعداد زیادی توده‌های کوچک و متوسط توده که ابعاد آن‌ها کاملاً متنوع است و از توده‌های نفوذی بزرگ‌تر به

شکل 1 نقشه‌ی زمین شناسی منطقه‌ی مورد بررسی به عنوان بخشی از بپنهای بخش شمال شهربانک - اقتباس با تغییرات از [18].
شکل ۲ نفوذ توده‌های گرانیت‌نی‌دی در سنگ‌های دگرگونی - دگرگونی در منطقه مورد بررسی شامل شیست، آمفیبولیت و کینیاس.

سنگ‌های گرانیت‌نی‌دی با سن زوراسیک مبنا نسبت به سنگ‌های دگرگونی و دگرگونی شده منطقه مورد بررسی جوانتر بوده و سنگ‌های قدمی‌تر را قطع کرده‌اند. ولی آثار مشخص و بارزی از دگرگونی مجاوری در سنگ‌های میزبان به جشن نمی‌خورد (شکل ۲). این سنگ‌های گرانیت‌نی‌دی گردج به شدت دگرگونی بوده و بروگواره اضافی را نشان می‌دهد ولی آثار و شواهد از تاثیر یک دگرگونی شدید در آن‌ها دیده نمی‌شود. این گرانیت‌نی‌دی‌ها دارای شواهد صحرا stares و میکروسکوپی از ساختارهای بارز میلیونی بهستان. بروگواره و خطواره کشی به‌خوبی در این سنگ‌های گرانیت‌نی‌دی گسترش یافته و از این جهت کاملاً به‌عنوان یک گرانیت‌نی‌دی می‌تواند مورد بررسی شود.

شکل ۳ سطح تماس بین توده‌های گرانیت‌نی‌دی به رنگ روش (بخش پاپین تصویر) و سنگ‌های شیست به عنوان سنگ میزبان به رنگ تیره (بخش بالا، سفید) نشان دهنده نفوذ توده‌های گرانیت‌نی‌دی در شیست‌ها.
روش بررسی

از نمونه‌های انتخاب شده مقاطع نازک میکروسکوپی استفاده تهیه، (به ضخامت ۲۵۰ میلی‌متر) پس از ثبت کاری کامل آنها با یک ریز پدیده‌ای الکترونی مورد آنالیز نقطه‌ای قرار دادیم. آنالیزهای ریز پدیده‌ای الکترونی در گروه زمین‌شناسی JEOLO-JX8600 دانشگاه سالزبورگ اطلاع با یک سیستم ۶۵۰ با شرایط (LiF, PET, TAP) و زمان شمارش ۱۰ ثانیه برای اوج و ۳ ثانیه برای زمینه انجام شد. دقت تجربی نقطه‌ای برای پاسخ درصد برای اکسید عناصر اصلی بوده است. محاسبه فرمول کاتیو و معادلات زمین فرمول‌ها و معادلات مشابه‌های دانسته در این مقادیر با استفاده از Fe³⁺ نرم افزار PET [۹] صورت گرفته است. محاسبه‌ای مقدار Fe⁴⁺ کاتیو به استناد امپیلیا رد می‌باشند عناصری ارایه شده توسط دروپلی (۱۰۰)، و نیز محاسبه‌ای مقدار Fe³⁺ برای امپیلیا هر اساس روش پیشنهادی هنلن و بلوندی [۱۱] صورت گرفته است.

بحث و بررسی

سنجش‌شناسی

از نظر کاتیو شناسی گرانیت‌هایی ارائه شده نمونه‌های مورد بررسی نوع کسترداده‌ی را نشان می‌دهند. ولی از نظر مدل بخش بزرگ‌این سنجش‌ها رس به سیستم کوارز-فلدسویت پایدار و پلاژیوکلار تکمیل می‌دهند. فلدسویت پایدار با صورت میکروکلین، برتیت، آنتی‌پریت و آنتور دیده می‌شود. دیگر کاتیوی این سنگ‌ها احتمال است از پیوستی امپیلیا، آلبیت.

شکل ۴ کتار خورشیدی که در سطح گرانیت‌های سیستم گرانیت‌های کتارشیند شده، سمنک به عنوان مقياس با قطر ۲۸ میلیمتر، پیکن راستای شب خورشیدی کشش را نشان می‌دهد.
جدول 1: آنتی‌ژن‌های ریز پردازش اکترنی از آشیل‌های سنگ‌های گرانیونی در منطقهٔ مورد بررسی.

<table>
<thead>
<tr>
<th>label</th>
<th>Am2_21</th>
<th>Am2_13</th>
<th>Am2_8</th>
<th>Am2_2</th>
<th>Am3_9</th>
<th>Am3_7</th>
<th>Am3_5</th>
<th>Am1_12</th>
<th>Am1_8</th>
<th>Am1_6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Si</td>
<td>5.944</td>
<td>5.892</td>
<td>5.955</td>
<td>5.923</td>
<td>5.955</td>
<td>5.843</td>
<td>5.924</td>
<td>5.923</td>
<td>5.955</td>
<td>5.843</td>
</tr>
<tr>
<td>Ti</td>
<td>0.788</td>
</tr>
<tr>
<td>Al</td>
<td>0.426</td>
</tr>
<tr>
<td>Cr</td>
<td>0.164</td>
</tr>
<tr>
<td>Fe^2+</td>
<td>0.315</td>
</tr>
<tr>
<td>Fe^3+</td>
<td>0.315</td>
</tr>
<tr>
<td>Mn</td>
<td>0.107</td>
</tr>
<tr>
<td>Mg</td>
<td>0.107</td>
</tr>
<tr>
<td>Ca</td>
<td>1.172</td>
</tr>
<tr>
<td>Na</td>
<td>0.592</td>
</tr>
<tr>
<td>K</td>
<td>0.138</td>
</tr>
<tr>
<td>Cl</td>
<td>0.236</td>
</tr>
<tr>
<td>sum_cat</td>
<td>1.585</td>
</tr>
<tr>
<td>Al(IV)</td>
<td>0.138</td>
</tr>
<tr>
<td>Al(VI)</td>
<td>0.315</td>
</tr>
<tr>
<td>Mg/(Mg+Fe^3+)Mg</td>
<td>0.006</td>
</tr>
<tr>
<td>Fe#</td>
<td>0.396</td>
</tr>
<tr>
<td>XNaA</td>
<td>0.236</td>
</tr>
<tr>
<td>XKA</td>
<td>0.300</td>
</tr>
<tr>
<td>XVacA</td>
<td>0.381</td>
</tr>
<tr>
<td>XCaM4</td>
<td>0.300</td>
</tr>
<tr>
<td>XNaM4</td>
<td>0.141</td>
</tr>
<tr>
<td>XMgM3</td>
<td>0.300</td>
</tr>
<tr>
<td>XFeM3</td>
<td>0.300</td>
</tr>
<tr>
<td>XFeM2</td>
<td>0.300</td>
</tr>
<tr>
<td>XAlM2</td>
<td>0.141</td>
</tr>
<tr>
<td>XFe3M2</td>
<td>0.300</td>
</tr>
<tr>
<td>XSiT1</td>
<td>0.300</td>
</tr>
<tr>
<td>XAlT1</td>
<td>0.288</td>
</tr>
</tbody>
</table>
أمفيپولهای کراتینوئیدها نشان‌دهنده این است که هیچ قربانی بین این أمفيپولهای ماکم‌پای با أمفيپولهای دگرگونی وابسته به أمفيپولهای منطقه با Mg# بیش از 0.5 نبودند.

بلورهای أمفيپول در کنار بلورهای بیوتیت، کاتیوی اصلی سازندگی برگوئی میلیون‌ها در این سنگ‌های کراتینوئید دگرگشایی شدند. حضور بلورهای أمفيپول در برگوئی سنگ ممکن است این سواک را بیشتر یا این امفيپوله‌ها ماکم‌پای هستند یا اینگونه؟ اهمیت این موضوع بخصوص در زمین‌مایش و زمین‌فشارسنجی أمفيپول برای تعیین شرایط تبلور توده‌گرایی کراتینوئید بیشتر روش‌ها می‌شود. بر اساس شکل 4 این نتایج اأت زمان عمق نمونه‌های مورد بررسی در کراتینوئیدهای ماکم‌پای (آذرین) قرار می‌گردد.

AlIV/AlVI در نمونه‌های مورد بررسی نسبت به AlIV/AlVI = 0.14، نسبت به AlIV/AlVI در بلورهای امفيپول مورد بررسی بین 0.01 تا 0.02 و این نسبت در تمامی أمفيپوله‌ها بیش از 0.3 است. بنابراین در خلاصه آمفيپول‌های آذرین قرار می‌گردد.

Calce amphiboles

\[(Na+K)^{+0.5}, Ti<0.5 \]

\[\text{Si} \]

\[\text{Mg}/(\text{Mg+Fe}^{2+}) \]

\[\text{ferro-edenite} \]

\[\text{edenite} \]

\[\text{paradsargis/magnesio-hastingsite} \]

\[\text{ferropargisite/magnesio-sadanagite} \]

\[\text{magnesio-sadanagite} \]

\[\text{ferro-edenite} \]

\[\text{edenite} \]

\[\text{paradsargis/magnesio-hastingsite} \]

\[\text{ferropargisite/magnesio-sadanagite} \]

\[\text{magnesio-sadanagite} \]

\[\text{ferro-edenite} \]

\[\text{edenite} \]

\[\text{paradsargis/magnesio-hastingsite} \]

\[\text{ferropargisite/magnesio-sadanagite} \]

\[\text{magnesio-sadanagite} \]

\[\text{ferro-edenite} \]

\[\text{edenite} \]

\[\text{paradsargis/magnesio-hastingsite} \]

\[\text{ferropargisite/magnesio-sadanagite} \]

\[\text{magnesio-sadanagite} \]

\[\text{ferro-edenite} \]

\[\text{edenite} \]

\[\text{paradsargis/magnesio-hastingsite} \]

\[\text{ferropargisite/magnesio-sadanagite} \]

\[\text{magnesio-sadanagite} \]

\[\text{ferro-edenite} \]

\[\text{edenite} \]

\[\text{paradsargis/magnesio-hastingsite} \]

\[\text{ferropargisite/magnesio-sadanagite} \]

\[\text{magnesio-sadanagite} \]

\[\text{ferro-edenite} \]

\[\text{edenite} \]

\[\text{paradsargis/magnesio-hastingsite} \]

\[\text{ferropargisite/magnesio-sadanagite} \]

\[\text{magnesio-sadanagite} \]

\[\text{ferro-edenite} \]

\[\text{edenite} \]

\[\text{paradsargis/magnesio-hastingsite} \]

\[\text{ferropargisite/magnesio-sadanagite} \]

\[\text{magnesio-sadanagite} \]

\[\text{ferro-edenite} \]

\[\text{edenite} \]

\[\text{paradsargis/magnesio-hastingsite} \]

\[\text{ferropargisite/magnesio-sadanagite} \]

\[\text{magnesio-sadanagite} \]

\[\text{ferro-edenite} \]

\[\text{edenite} \]

\[\text{paradsargis/magnesio-hastingsite} \]

\[\text{ferropargisite/magnesio-sadanagite} \]

\[\text{magnesio-sadanagite} \]

\[\text{ferro-edenite} \]

\[\text{edenite} \]

\[\text{paradsargis/magnesio-hastingsite} \]

\[\text{ferropargisite/magnesio-sadanagite} \]

\[\text{magnesio-sadanagite} \]

\[\text{ferro-edenite} \]

\[\text{edenite} \]

\[\text{paradsargis/magnesio-hastingsite} \]

\[\text{ferropargisite/magnesio-sadanagite} \]

\[\text{magnesio-sadanagite} \]

\[\text{ferro-edenite} \]

\[\text{edenite} \]

\[\text{paradsargis/magnesio-hastingsite} \]

\[\text{ferropargisite/magnesio-sadanagite} \]

\[\text{magnesio-sadanagite} \]

\[\text{ferro-edenite} \]

\[\text{edenite} \]

\[\text{paradsargis/magnesio-hastingsite} \]

\[\text{ferropargisite/magnesio-sadanagite} \]

\[\text{magnesio-sadanagite} \]

\[\text{ferro-edenite} \]

\[\text{edenite} \]

\[\text{paradsargis/magnesio-hastingsite} \]

\[\text{ferropargisite/magnesio-sadanagite} \]

\[\text{magnesio-sadanagite} \]

\[\text{ferro-edenite} \]

\[\text{edenite} \]

\[\text{paradsargis/magnesio-hastingsite} \]

\[\text{ferropargisite/magnesio-sadanagite} \]

\[\text{magnesio-sadanagite} \]

\[\text{ferro-edenite} \]

\[\text{edenite} \]

\[\text{paradsargis/magnesio-hastingsite} \]

\[\text{ferropargisite/magnesio-sadanagite} \]

\[\text{magnesio-sadanagite} \]

\[\text{ferro-edenite} \]

\[\text{edenite} \]

\[\text{paradsargis/magnesio-hastingsite} \]

\[\text{ferropargisite/magnesio-sadanagite} \]

\[\text{magnesio-sadanagite} \]

\[\text{ferro-edenite} \]

\[\text{edenite} \]

\[\text{paradsargis/magnesio-hastingsite} \]

\[\text{ferropargisite/magnesio-sadanagite} \]

\[\text{magnesio-sadanagite} \]

\[\text{ferro-edenite} \]

\[\text{edenite} \]

\[\text{paradsargis/magnesio-hastingsite} \]

\[\text{ferropargisite/magnesio-sadanagite} \]

\[\text{magnesio-sadanagite} \]
شکل 6. ترکیب بلورهای آمفیبول از توده‌های گرانتونیبدی حاشیه زایند و رود که تمامی نقاط در گستره‌ای از قرار می‌گیرند، نمودار اقتباس از لیک [14].

شکل 7. ترکیب بلورهای آمفیبول از توده‌های گرانتونیبدی حاشیه زایند رود روي نمودار اقتباس از قبیل و بارتین [15].

مورد بررسی در جدول ۲ از این نکات که بلورهای پلاژیوکلاز یا فاقد منطقه‌بندی بوده و یا اینکه منطقه‌بندی ترکیبی در آنها ناجیز و ضعیف است، گستره‌ای ترکیبی پلاژیوکلازی از مغزگیر است. بیشتر ترکیب بلورهای پلاژیوکلازی از مورد بررسی دارای ترکیب آلپت و به تعداد کمتری اولیکوکلاز هستند (شکل 8). این گستره‌ی تغییرات ترکیبی جزئی در بلورهای پلاژیوکلاز از این جهت مهم است که در زمین فشارسنجی بر مبانی محتوای الومینیوم بلورهای آمفیبول، جزئی بودن تغییرات ترکیبی در پلاژیوکلازی از موضوع ضروری تلقی می‌شود [15].

فلدسبنر پتانسیل‌های که در جدول ۲ که محتوای نورتنیت فلدسبنر سیستم بسیار بالای بوده و میزان آن بین ۰.۲ درصد تا ۰.۳ درصد بوده و همچنین میزان آن در فلدسبنر های نیز به میزان قابل توجهی کم است و از ۲.۹ درصد تا ۴.۸ درصد تغییر می‌کند.

بنابراین محتوای از رژیم‌ها فلدسبنر پتانسیل که از سنجش گرانتونیبدی کاملاً بالا بوده و تا ۹۵ درصد است (شکل ۸). فلدسبنر‌ها از رژیم‌های مورد بررسی در گستره‌ی ترکیبی

\[
\begin{align*}
\text{Ab}_{2.9} &\
\text{Or}_{0.8} &\
\text{An}_{1.1} &\ \text{Ab}_{0.1} &\
\text{Or}_{0.5}, \\
\text{Ab}_{2.9} &\
\text{Or}_{0.8} &\
\text{An}_{1.1} &\ \text{Ab}_{0.1} &\
\text{Or}_{0.5}, \\
\end{align*}
\]

پلاژیوکلازی: برخی از نتایج انتخابی آنالیزهای ریز پردازشی الکترونی روی پلاژیوکلازی نمونه سنجش گرانتونیبدی
جدول ۲ آنالیزهای وزن و پراکنش الکترونی کاپیلری فلزات یونیم و پلاژیوکلاز از توده‌های گرانیتون‌های حاشیه‌ای رودخانه زایندروم، پهنه‌ی بربین شمال شهربند.

<table>
<thead>
<tr>
<th>label</th>
<th>G1_19</th>
<th>G1_20</th>
<th>G1_21</th>
<th>G1_22</th>
<th>G1_16</th>
<th>G1_17</th>
<th>G2_10</th>
<th>G2_22</th>
</tr>
</thead>
<tbody>
<tr>
<td>mineral</td>
<td>kf</td>
<td>kf</td>
<td>kf</td>
<td>kf</td>
<td>plag</td>
<td>plag</td>
<td>plag</td>
<td>plag</td>
</tr>
<tr>
<td>SiO₂</td>
<td>97.81</td>
<td>97.67</td>
<td>97.14</td>
<td>97.27</td>
<td>96.85</td>
<td>96.16</td>
<td>95.95</td>
<td>95.18</td>
</tr>
<tr>
<td>TiO₂</td>
<td>0.01</td>
<td>0.02</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>1.84</td>
<td>1.82</td>
<td>1.79</td>
<td>1.76</td>
<td>2.01</td>
<td>2.01</td>
<td>2.01</td>
<td>2.01</td>
</tr>
<tr>
<td>Cr₂O₃</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>FeO</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>MnO</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>MgO</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>CaO</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
</tr>
<tr>
<td>Na₂O</td>
<td>0.40</td>
<td>0.43</td>
<td>0.43</td>
<td>0.43</td>
<td>0.43</td>
<td>0.43</td>
<td>0.43</td>
<td>0.43</td>
</tr>
<tr>
<td>K₂O</td>
<td>1.37</td>
<td>1.37</td>
<td>1.37</td>
<td>1.37</td>
<td>1.37</td>
<td>1.37</td>
<td>1.37</td>
<td>1.37</td>
</tr>
<tr>
<td>Cl</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
</tr>
</tbody>
</table>

نماد پیشنهاد شده در جدول ۲ بر مبنای ۸ انم آکسیژن محاسبه شده‌اند.

Si	۲.۸۷	۲.۸۷	۲.۸۷	۲.۸۷	۲.۸۷	۲.۸۷	۲.۸۷	۲.۸۷
Ti	۰.۰۰	۰.۰۰	۰.۰۰	۰.۰۰	۰.۰۰	۰.۰۰	۰.۰۰	۰.۰۰
Al	۱.۱۴	۱.۱۴	۱.۱۴	۱.۱۴	۱.۱۴	۱.۱۴	۱.۱۴	۱.۱۴
Cr	۰.۰۰	۰.۰۰	۰.۰۰	۰.۰۰	۰.۰۰	۰.۰۰	۰.۰۰	۰.۰۰
Fe³⁺	۰.۰۰	۰.۰۰	۰.۰۰	۰.۰۰	۰.۰۰	۰.۰۰	۰.۰۰	۰.۰۰
Fe²⁺	۰.۰۰	۰.۰۰	۰.۰۰	۰.۰۰	۰.۰۰	۰.۰۰	۰.۰۰	۰.۰۰
Mn	۰.۰۰	۰.۰۰	۰.۰۰	۰.۰۰	۰.۰۰	۰.۰۰	۰.۰۰	۰.۰۰
Mg	۰.۰۰	۰.۰۰	۰.۰۰	۰.۰۰	۰.۰۰	۰.۰۰	۰.۰۰	۰.۰۰
Ca	۰.۰۰	۰.۰۰	۰.۰۰	۰.۰۰	۰.۰۰	۰.۰۰	۰.۰۰	۰.۰۰
Na	۰.۳۲	۰.۳۲	۰.۳۲	۰.۳۲	۰.۳۲	۰.۳۲	۰.۳۲	۰.۳۲
K	۰.۹۶	۰.۹۶	۰.۹۶	۰.۹۶	۰.۹۶	۰.۹۶	۰.۹۶	۰.۹۶
Cl	۰.۰۰	۰.۰۰	۰.۰۰	۰.۰۰	۰.۰۰	۰.۰۰	۰.۰۰	۰.۰۰
sum_cat	۵.۰۱	۵.۰۱	۵.۰۱	۵.۰۱	۵.۰۱	۵.۰۱	۵.۰۱	۵.۰۱

شکل ۸ ترکیب بلورهای پلاژیوکلاز و فلزات یونیم از گرانیتون‌های مورد بررسی روز تنباکوی‌پنداز فلدسپات‌ها.
تینتایت: بلورهای تینتایت نیز یکی دیگر از کلیه‌های فرعی سازندگی این توده‌های گرانیت‌نمونه‌ای دگرگونی شده‌اند مورد بررسی هستند. که نتایج [16] بیش از 100 درجه C از طرف دکتر برای بررسی میزان Al2O3 و Fe2O3 در این تینتایت‌ها که بین ۷/۵ تا ۸/۷% است نشان دهنده‌ای اولیه بودن آنهاست، زیرا مقادیر پایین ترین اندازه‌ها که تینتایت دارای خاصیت جاذبیت از تجزیه است [17].

جدول ۲ آنتی‌های رژیم پردازشی الکترونی کاتیونی تینتایت و اپیدوت از توده‌های گرانیت‌نمونه حاشیه‌ای رودخانه راک‌بادر. به‌همراه بررسی شماره

<table>
<thead>
<tr>
<th>label</th>
<th>G1_14</th>
<th>G1_15</th>
<th>G1_30</th>
<th>G3_10</th>
<th>G3_12</th>
<th>G3_14</th>
<th>G3_15</th>
<th>G3_16</th>
<th>G4_14</th>
<th>G4_15</th>
<th>G4_18</th>
</tr>
</thead>
<tbody>
<tr>
<td>mineral Titanite</td>
<td>TiO2</td>
<td>Epidote</td>
<td>Epidote</td>
<td>Epidote</td>
<td>Epidote</td>
<td>Epidote</td>
<td>Epidote</td>
<td>Epidote</td>
<td>Epidote</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SiO2</td>
<td>3.64</td>
<td>4.08</td>
<td>4.08</td>
<td>3.66</td>
<td>3.49</td>
<td>3.49</td>
<td>3.49</td>
<td>3.49</td>
<td>3.49</td>
<td>3.49</td>
<td>3.49</td>
</tr>
<tr>
<td>Al2O3</td>
<td>7.15</td>
<td>17.6</td>
<td>21.8</td>
<td>21.8</td>
<td>21.8</td>
<td>21.8</td>
<td>21.8</td>
<td>21.8</td>
<td>21.8</td>
<td>21.8</td>
<td>21.8</td>
</tr>
<tr>
<td>FeO</td>
<td>0.69</td>
</tr>
<tr>
<td>MnO</td>
<td>0.15</td>
</tr>
<tr>
<td>K2O</td>
<td>0.05</td>
</tr>
<tr>
<td>Na2O</td>
<td>0.02</td>
</tr>
<tr>
<td>MgO</td>
<td>0.00</td>
</tr>
<tr>
<td>CaO</td>
<td>4.64</td>
</tr>
<tr>
<td>Period 1 (total)</td>
<td>96.53</td>
</tr>
</tbody>
</table>

جدول ۳ محتوای پیستاپتیت‌های پیمرده: PS*
ابیپوت ماقامی: کلیه‌هاز، گره ای، ابیپوت در طیف گسترشده از
سنگ‌ها حضور می‌یابند. به طوری که از شرایط نزدیک به سطح
ژن‌های سنگ‌ها دگرگونی با فشار با یا خارج فشار با و به
عوامل فیزیکی‌های آینه‌ای (انبیون) در مسیر سیستمی
ماقابی حضرت دارن. این کلیه‌ها از میوه‌های کتالی‌های
حایی Fe3+ و شرایط اکسیژن و ورودی شکایت به سنگ‌ها اثر
می‌دهند. نقص ابیپوت ای، تبلور ماقومی، تبلور خوبی
شناسه‌ی شد، از و نیز دماهای تبلور و توالی‌های دخالت
ابیپوت در ماقومی آب‌ها، الگوی‌های (گریدزودراستی -
تولانیت) به‌صورت تحریک از توده‌های نفوذی کمیتی عوید
و مشخصی شده است [18].

ابیپوت یک کلیه ماقومی عادی است و به مخلوط
انتمای بیولوگیک کلیه‌گذارها که در کلیه‌های
ابیپوت هستند. از این کلیه‌ها، رودیتی به
در حالت حاضر ابیپوت تبلور ماقومی به کلیه‌ها
به عنوان یک فاز
ماقومی، در حال حاضر ابیپوت ماقومی به کلیه‌ها
به عنوان یک
ماقومی، در حال حاضر ابیپوت تبلور ماقومی به

18. نشر شما و پیش‌بینی

20. ابیپوت ماقومی

21. حداکثر

22. 8 کیلوبار، کولر. قبلاً کروتفرود و هولیستر [21] حداکثر

23. 4 کیلوبار با ابیپوت ماقومی بر میانی‌های یک طاقع

24. منحنی پایداری ابیپوت با منحنی دوب گرانیت آموزش از آب را

25. داده که ابیپوت ماقومی ناپایدار شناسانده تقریباً حداکثر

26. 3 کیلوبار در فوتوسنتزیک اکسیژن نزدیک به بافر هماتینی

27. بود و در مقدار پایینتر فوتوسنتزیک اکسیژن حداکثر فشار به

28. 4.5 کیلو تراکمی منس زمان [28] بودن و همکاران [33]:

29. داده که ابیپوت ماقومی در راه‌های کم عمق نیز پایدار

30. ابیپوت به شکل ماقتی.TiO2

31. میزان این اکسید در ابیپوت ماقومی

32. 20 درصد وزن ای، تبلور ماقومی در ابیپوت ماقومی

33. مورد بررسی به طور متغیری حدود 40 درصد وزنی بوده و

34. به عنوان مقدار به روش مقتدرانه، و این حیاتی

35. میزان این اکسید در ابیپوت ماقومی

36. مورد بررسی به طور متغیری حدود 40 درصد وزنی بوده و

37. به عنوان مقدار به روش مقتدرانه، و این حیاتی

38. میزان این اکسید در ابیپوت ماقومی

39. مورد بررسی به طور متغیری حدود 40 درصد وزنی بوده و

40. به عنوان مقدار به روش مقتدرانه، و این حیاتی

41. میزان این اکسید در ابیپوت ماقومی

42. مورد بررسی به طور متغیری حدود 40 درصد وزنی بوده و

43. میزان این اکسید در ابیپوت ماقومی

44. مورد بررسی به طور متغیری حدود 40 درصد وزنی بوده و

45. میزان این اکسید در ابیپوت ماقومی

46. مورد بررسی به طور متغیری حدود 40 درصد وزنی بوده و

47. میزان این اکسید در ابیپوت ماقومی

48. مورد بررسی به طور متغیری حدود 40 درصد وزنی بوده و

49. میزان این اکسید در ابیپوت ماقومی

50. M. خبرنگ از این فلز به توده‌های

51. فشارهای جایگزینی در مقایسه 1.2/4 کیلو با قرار

52. علمی داده‌های در میانه‌ای

53. مجله پرورشسازی و کانی شناسی ایران

54. عنوان فیزیکی‌های آینه‌ای (انبیون) در مسیر سیستمی

55. حداکثر

56. TiO2

57. در کلیه‌ها

58. در کلیه‌ها

59. در کلیه‌ها

60. در کلیه‌ها

61. در کلیه‌ها

62. در کلیه‌ها

63. در کلیه‌ها

64. در کلیه‌ها

65. در کلیه‌ها

66. در کلیه‌ها

67. در کلیه‌haus
اولی بوده و ایپیدوت حاصل از تبلور ماگما هستند. برخی از این ایپیدوت‌ها نسبتاً شکل دارند.

شاهدیگر، احاطه‌شدن کانی نسبتاً کمیاب آلایت به وسیله ایپیدوت است و این بافت بیانگر ماگما پدیده ایپیدوت است [۲۵]. کانی آلایت نیز خود یکی از اعضای گروه کانی‌های ایپیدوت بوده و پیدایش بلورهای ایپیدوت (پیستاسیت) در حاشیه آن نمایش دهنده است که ایپیدوت‌های موجود در سنگ‌های گرانیتوئیدی حاشیه زاپندروت در شمال شیرکرد است (شکل ۱۰).

شکل ۹ حضور ایپیدوت ماگمایی در کنار و درون بیوتیت در مرکز تصویر، پهنای میدان دید برابر با ۱۳ میلیمتر، نور بیوتیت و Ep XPL.

شکل ۱۰ حضور ایپیدوت ماگمایی در اطراف بلور کشیده آلایت، پهنای میدان دید برابر با ۱۳ میلیمتر، نور Aln XPL و Ep.
چگونگی شکل‌گیری یک توده گرانیتیونی مستلزم شناخت و دانستن عمیق است که در آن می‌تواند به‌طور اجتماعی چرماک در امپیلیوها با افزایش فشار. همگراش پیش‌رفته و (باید) با افزایش فشار. همگراش یا Al افزایش می‌شود. در حالی که جانشینی این افزایش دما را فوری می‌پذیرد (امپیلیوها با افزایش دما از سدیم و آلومینیوم غنی می‌شود) [۲۹]. با توجه به این جانشینی‌ها این امکان فراهم می‌آید تا بتواند بر مبنای محاسبات Al در امپیلیو، فشار اجاد گرانیتیونی را محاسبه کرد. از آنگاه که بلورهای امپیلیو از توده‌های گرانیتیونی مورد بررسی همراه با گزارش، فلدسپت‌پتاسیم، پلاژیوکلاز، بی‌بیژن، مگنیت و تنبیه هستند، زمین فشارسنجی بر مبنای محاسبات Al در امپیلیو (هربرنغن) قابل کاربرد بوده و از قابلیت اطمینان بالایی برخوردار است [۳۰]. از طرف دیگر، جانشینگ در مبحث شیمی کایا پلاژیوکلاز اشاره شد. جزئی بودن دامنه‌های تغییرات پتاسیم پلاژیوکلازها در سنگ‌های مورد بررسی دقت روش زمین فشارسنجی فوق را

جدول ۴ محاسبه‌های فشار تشکیل بلورهای مختلف امپیلیو توده‌های گرانیتیونی با استفاده از چهار روش زمین فشارسنجی (مستقل از دما) بر

<table>
<thead>
<tr>
<th>منیبای</th>
<th>Ti</th>
<th>Al (total)</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Am1_6</td>
<td>0.56</td>
<td>2.305</td>
<td>77</td>
<td>63</td>
<td>78</td>
<td>83</td>
</tr>
<tr>
<td>Am1_8</td>
<td>0.88</td>
<td>2.342</td>
<td>65</td>
<td>60</td>
<td>85</td>
<td>92</td>
</tr>
<tr>
<td>Am1_12</td>
<td>0.69</td>
<td>2.342</td>
<td>63</td>
<td>60</td>
<td>85</td>
<td>92</td>
</tr>
<tr>
<td>Am3_5</td>
<td>0.28</td>
<td>2.341</td>
<td>62</td>
<td>60</td>
<td>85</td>
<td>92</td>
</tr>
<tr>
<td>Am3_7</td>
<td>0.27</td>
<td>2.342</td>
<td>62</td>
<td>60</td>
<td>85</td>
<td>92</td>
</tr>
<tr>
<td>Am3_9</td>
<td>0.39</td>
<td>2.352</td>
<td>62</td>
<td>60</td>
<td>85</td>
<td>92</td>
</tr>
<tr>
<td>Am2_2</td>
<td>0.65</td>
<td>2.340</td>
<td>67</td>
<td>63</td>
<td>83</td>
<td>83</td>
</tr>
<tr>
<td>Am2_8</td>
<td>0.12</td>
<td>2.342</td>
<td>64</td>
<td>60</td>
<td>85</td>
<td>92</td>
</tr>
<tr>
<td>Am2_13</td>
<td>0.11</td>
<td>2.342</td>
<td>64</td>
<td>60</td>
<td>85</td>
<td>92</td>
</tr>
<tr>
<td>Am2_21</td>
<td>0.20</td>
<td>2.344</td>
<td>69</td>
<td>63</td>
<td>83</td>
<td>92</td>
</tr>
<tr>
<td>کیلوپسیک</td>
<td>میکرنس</td>
<td>میکرنس</td>
<td>میکرنس</td>
<td>میکرنس</td>
<td>میکرنس</td>
<td>میکرنس</td>
</tr>
</tbody>
</table>

انحراف استاندارد (میکرنس) ۰.۳۴ ۰.۳۷ ۰.۴۱ ۰.۳۹

۱. P (±۳ kbar) = -3.92 + 5.03 Al (total), Hammarstrom and Zen (1986) [۳۷]
۲. P (±۰.۵ kbar) = -3.46 + 4.23 Al (total), Johnson and Rutherford (1989) [۳۷]
۳. P (±۰.۶ kbar) = -3.01 + 4.76 Al (total), Schmidt (1992) [۳۷]
۴. P (±۱.۰ kbar) = -4.76 + 5.64 Al (total), Hollister et al. (1987) [۳۷]
جدول ۵ میزان فشار تشکیل نوده‌های نفوذی مورد بررسی بر مبنای روش زمین فشارسنجی اندرسون و اسمیت [۳۱]:

<table>
<thead>
<tr>
<th>label</th>
<th>T = ۵۰۰ °C</th>
<th>T = ۶۰۰ °C</th>
<th>T = ۷۰۰ °C</th>
<th>T = ۸۰۰ °C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Am۱_۶</td>
<td>۸۶</td>
<td>۸۷</td>
<td>۷۶</td>
<td>۵۲</td>
</tr>
<tr>
<td>Am۱_۸</td>
<td>۹۵</td>
<td>۹۵</td>
<td>۸۳</td>
<td>۵۸</td>
</tr>
<tr>
<td>Am۱_۱۲</td>
<td>۹۴</td>
<td>۹۴</td>
<td>۸۱</td>
<td>۵۷</td>
</tr>
<tr>
<td>Am۳_۵</td>
<td>۹۲</td>
<td>۹۲</td>
<td>۸۱</td>
<td>۵۶</td>
</tr>
<tr>
<td>Am۳_۷</td>
<td>۹۱</td>
<td>۹۱</td>
<td>۸۰</td>
<td>۵۶</td>
</tr>
<tr>
<td>Am۳_۹</td>
<td>۱۱۰</td>
<td>۱۰۰</td>
<td>۸۸</td>
<td>۶۲</td>
</tr>
<tr>
<td>Am۲_۲</td>
<td>۸۶</td>
<td>۸۷</td>
<td>۷۶</td>
<td>۵۲</td>
</tr>
<tr>
<td>Am۲_۸</td>
<td>۹۴</td>
<td>۹۴</td>
<td>۸۲</td>
<td>۵۷</td>
</tr>
<tr>
<td>Am۲_۱۳</td>
<td>۸۹</td>
<td>۹۰</td>
<td>۷۸</td>
<td>۵۴</td>
</tr>
<tr>
<td>Am۲_۲۱</td>
<td>۱۰۰</td>
<td>۹۹</td>
<td>۸۷</td>
<td>۶۱</td>
</tr>
<tr>
<td>Average</td>
<td>۹۳</td>
<td>۹۳</td>
<td>۸۱</td>
<td>۵۷</td>
</tr>
</tbody>
</table>

انحراف استاندارد (میانگین):

<table>
<thead>
<tr>
<th>میزان خطای</th>
<th>۰/۵۱</th>
<th>۰/۴۶</th>
<th>۰/۴۶</th>
<th>۰/۳۵</th>
</tr>
</thead>
<tbody>
<tr>
<td>P kbar</td>
<td>۹/۳±۰/۹۵</td>
<td>۹/۳±۰/۹۵</td>
<td>۹/۳±۰/۹۵</td>
<td>۸/۳±۰/۹۵</td>
</tr>
</tbody>
</table>

زیر برازیبی دما بر اساس روش پلاگ در سطح‌های آبین کوارتز دار به کار می‌رود:

$$T[±۴۰ °C] = -76.95 + 0.79P[kbar] + Y_{ab} + 39.4X_{Na}^d + 22.4X_{Si}^d + (41.5 - 2.89P[kbar])X_{Plag}^M - 0.0650 - RLn\left(\frac{27X_{Na}^{f}X_{Si}^{f}X_{Plag}^{f}}{256X_{Na}^{f}X_{Plag}^{f}}\right)$$

$$R = 0.0083144 \text{kJ K}^{-1}\text{mol}^{-1}, Y_{ab} = 0 \text{ for } X_{ab}^{Plag} > 0.5, Y_{ab} = 12.0 \left(1 - X_{ab}^{Plag}\right)^2 - 3.0 \text{kJ}$$

از آنجا که محاسبه دما در این روش زمین دماسنجی نباید، پلاگیوکلاژ هم‌ریخت را انتخاب کرده و محاسبات زمین دماسنجی و زمین فشارسنجی فشار است. لازم است تا فشار نیز محاسبه شود. به همین منظور
جهت آمپتیل و پلایوکلاز اول تا چهارم به ترتیب دما
463 °C در فشار 8.12 کیلو بار، دما 495 °C
16 کیلو بار، دما 469 °C در فشار
7.3۱ کیلو بار به دست آمد. گستره دما و
فشار که از این محاسبات بدست می‌آید (شکل 11) به ترتیب
دما 6۶۳ تا 711 °C و فشار 7.3۱ تا 8.12 کیلو بارن. بنابراین میانگین دما
این توده‌های نفوذی برابر با
6۹۰ °C در فشار 7.۷۷ کیلو بار
است.

جدول ۶ محاسبه دما و فشار تشكیل توده‌های نفوذی با تلفيق دو روش زمين دماستج هلد و بلوندي [10] و زمين فشارستج اندرسون و
اسمیت [31].

<table>
<thead>
<tr>
<th>label</th>
<th>mineral</th>
<th>P kbar</th>
<th>T °C</th>
</tr>
</thead>
<tbody>
<tr>
<td>G3-4_1_6</td>
<td>amph</td>
<td>8.12</td>
<td>6۶۳</td>
</tr>
<tr>
<td>G3-4_1_16</td>
<td>plag</td>
<td>7.۶۵</td>
<td>4۹۵</td>
</tr>
<tr>
<td>G3-4_1_7</td>
<td>amph</td>
<td>7.۶۵</td>
<td>4۹۵</td>
</tr>
<tr>
<td>G3-4_1_22</td>
<td>plag</td>
<td>7.۶۵</td>
<td>4۹۵</td>
</tr>
<tr>
<td>G3-4_2_8</td>
<td>amph</td>
<td>7.۶۵</td>
<td>4۹۵</td>
</tr>
<tr>
<td>G3-4_2_10</td>
<td>plag</td>
<td>7.۶۵</td>
<td>4۹۵</td>
</tr>
<tr>
<td>G3-4_2_20</td>
<td>amph</td>
<td>7.۶۵</td>
<td>4۹۵</td>
</tr>
<tr>
<td>G3-4_2_22</td>
<td>plag</td>
<td>7.۶۵</td>
<td>4۹۵</td>
</tr>
</tbody>
</table>

ميانگین
انحراف استاندارد [معيار]
0.۳۰
1999

چهارگوش خاکسپری گشتاری تغییرات دما و فشار را نشان می‌دهد. نموودار بر مبنای محاسبات زمين فشارستج و زمين دماستج با استفاده از
نرم افزار [PET] ترسیم شده است.
شیمی کانی‌ها و شرایط فشار - دماهای تبیتر توده‌های...

