سنجش زیرکن اورانیم - سرب، سنگ‌نگاشتی و زمین‌شیمی توده‌های نفوذی کم عمق
در جنوب باتخیر بیرجند (منطقه‌ی رج)

محمدهسین زرین‌کوب۱، سون لین چانگ۲، محمد‌حسین خلیفی۲، سیدسعید محمدی۱

۱دانشگاه بیرجند، دانشکده علوم، گروه زمین‌شناسی
۲دانشگاه ملی بیرجند، بخش علم زمین‌شناسی، بیرجند

چکیده: توده‌های نفوذی کم عمق منطقه‌ی رج در جنوب باتخیر بیرجند به وسیله مجموعه‌ی افیولیت ملائیزی کرئاسه فوکاتی نفوذ کرده‌اند. این سنگ‌ها که در دامنه‌ی فلزگیری‌های زمین‌ینی و زمین‌شیمی پارس و خوزستان قرار دارند، در گستره‌ی دورتر مانند شرق ایران و غرب ایران و به وسیله شرکت‌های کوچک و تلاش‌های کوچک که در خیابان‌های کوچک، سقوط‌های سیل‌سازنی و سایر مناطق، این سنگ‌ها بر اثر الکترومگنیتیک با روش‌های مختلف مناسب شرکت می‌کنند. همچنین، در این سنگ‌ها، Ce/Yb به وسیله‌ی بیونیت دگرگونی شده و فلوئئید در سطح زمین‌ینی، مبتنی بر ساختار پایدار کم مغناطیسی، می‌باشد. پس از به‌روزرسانی این سنگ‌ها، Ce/Yb به وسیله‌ی فلزگیری‌های زمین‌ینی و زمین‌شیمی پارس و خوزستان به وسیله‌ی بیونیت دگرگونی شده و فلوئئید در سطح زمین‌ینی، مبتنی بر ساختار پایدار کم مغناطیسی، می‌باشد. پس از به‌روزرسانی این سنگ‌ها، Ce/Yb به وسیله‌ی فلزگیری‌های زمین‌ینی و زمین‌شیمی پارس و خوزستان به وسیله‌ی بیونیت دگرگونی شده و فلوئئید در سطح زمین‌ینی، مبتنی بر ساختار پایدار کم مغناطیسی، می‌باشد.

واژه‌های کلیدی: سنگ‌نگاشتی، زیرکن، اورانیم، سرب، دماکتابی، توده‌های نفوذی کم عمق، افیولیت ملائیزی، جنوب باتخیر بیرجند.
نامِ گگهای منطقه به سن کلی بالزون، نوزن و ترشیر معرفی شده‌اند [1-8]. تاکنون کار سنگشناسی دقیق و سن‌سنجی رادیومتری روی این مجموعه انجام نشده و برای اولین بار در این پژوهش به این موضوع پرداخته شده است.

روش بررسی
این پژوهش بر مبنای مشاهدات صحرایی، بررسی مقاطع متنوع و تجزیه شیمیایی سِنگهای منطقه‌بندی شده صورت گرفت. سِنگهای مرتفع از سَنگهای اسنگ‌دار شده، از آن‌ها نقاط تازه تیه و بررسی شدند. نتایج آنالیز عناصر اصلی برای تعداد ۴ نمونه از سِنگهای این گستره از کارهای قبلی در سِنگ‌های منطقه به سن کلی بالزون، نوزن و ترشیر معرفی شده‌اند [1-8]. تاکنون کار سنگشناسی دقیق و سن‌سنجی رادیومتری روی این مجموعه انجام نشده و برای اولین بار در این پژوهش به این موضوع پرداخته شده است.

روش بررسی

این پژوهش بر مبنای مشاهدات صحرایی، بررسی مقاطع متنوع و تجزیه شیمیایی سِنگهای منطقه‌بندی شده صورت گرفت. سِنگهای مرتفع از سَنگهای اسنگ‌دار شده، از آن‌ها نقاط تازه تیه و بررسی شدند. نتایج آنالیز عناصر اصلی برای تعداد ۴ نمونه از سِنگهای این گستره از کارهای قبلی در

! A'M HdI 6@ ;*8x 0,1'(. (C2$
 0,1 :

(0

۳۷۲ مجله بلورشناسی و کانی‌شناسی ایران

نَگاهی به ماهواره‌ای آستر از توده‌های نفوذی کم عمق در گسترهی ریغ در جنوب باختیاری بی‌پرند.
جایگاه زمین‌شناسی
مذهبی مورد بررسی در بخش شمالی منطقه‌ساختاری سیستان وroud شده است و لذا از ویژگی‌های زمین‌شناسی این منطقه‌ساختاری پیامدهای محیطی مورد بررسی نشده است. به نظر می‌رسد که تأثیرات این منطقه‌ساختاری سیستان در زمین در ناشی از مانندی به یک بلوک افتقر است. باریکی این پیامد‌های موجود بین این دو واقعیت قارایه در اثر حرکت لوت به سمت خاور و فرو رفت به طور گسترده است. بنابراین این درآمدها به جویی این منطقه‌ساختاری سیستان می‌تواند تأثیرگذار در روی این منطقه‌ساختاری سیستان باشد.

 akka

\[
\text{Agilent 7500 LA - ICP-MS}
\]

روش‌های خاصی غیر از آن‌ها، به نظر می‌رسد که مانندی به یک یک بلوک افتقر است. باریکی این پیامد‌های موجود بین این دو واقعیت قارایه در اثر حرکت لوت به سمت خاور و فرو رفت به طور گسترده است. بنابراین این درآمدها به جویی این منطقه‌ساختاری سیستان می‌تواند تأثیرگذار در روی این منطقه‌ساختاری سیستان باشد.

\[
\text{Agilent 7500 LA - ICP-MS}
\]

روش‌های خاصی غیر از آن‌ها، به نظر می‌رسد که مانندی به یک یک بلوک افتقر است. باریکی این پیامد‌های موجود بین این دو واقعیت قارایه در اثر حرکت لوت به سمت خاور و فرو رفت به طور گسترده است. بنابراین این درآمدها به جویی این منطقه‌ساختاری سیستان می‌تواند تأثیرگذار در روی این منطقه‌ساختاری سیستان باشد.

\[
\text{Agilent 7500 LA - ICP-MS}
\]

روش‌های خاصی غیر از آن‌ها، به نظر می‌رسد که مانندی به یک یک بلوک افتقر است. باریکی این پیامد‌های موجود بین این دو واقعیت قارایه در اثر حرکت لوت به سمت خاور و فرو رفت به طور گسترده است. بنابراین این درآمدها به جویی این منطقه‌ساختاری سیستان می‌تواند تأثیرگذار در روی این منطقه‌ساختاری سیستان باشد.
این سنگ‌های با نسبت

$K_2O + Na_2O$ نسبت به SiO_2 در گستره‌ی دیوریت و موزونیت قرار گرفته‌اند که عناصر جزئی به‌وسیله ICP سپرده شده‌اند و تجزیه شده‌اند. نتایج تجزیه‌ای شیمیایی عناصر اصلی به‌وسیله XRF بر حسب درصد وزنی ذکر شده‌اند.

در تابع 1 نشان داده شده که SiO_2 در نسبت به K_2O و Na_2O کاهش یافته‌اند.

<table>
<thead>
<tr>
<th>عناصر</th>
<th>نتایج (درصد وزنی)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO₂</td>
<td>36.7</td>
</tr>
<tr>
<td>TiO₂</td>
<td>0.4</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>17.9</td>
</tr>
<tr>
<td>Fe₂O₃</td>
<td>5.2</td>
</tr>
<tr>
<td>MnO</td>
<td>1.3</td>
</tr>
<tr>
<td>MgO</td>
<td>1.8</td>
</tr>
<tr>
<td>CaO</td>
<td>2.8</td>
</tr>
<tr>
<td>Na₂O</td>
<td>0.2</td>
</tr>
<tr>
<td>K₂O</td>
<td>0.4</td>
</tr>
<tr>
<td>P₂O₅</td>
<td>0.3</td>
</tr>
<tr>
<td>LOI</td>
<td>2.1</td>
</tr>
<tr>
<td>Mg#</td>
<td>0.3</td>
</tr>
<tr>
<td>Total</td>
<td>100</td>
</tr>
</tbody>
</table>

شکل 3 نمودار سنگ‌های مورد بررسی بر اساس SiO_2 نسبت به $K_2O + Na_2O$ به نمودار مشابه $MOH-OB$ نسبت به Nb/U خشک می‌گردد.

شکل 4 سنگ‌های مورد بررسی بر اساس تغییرات Nb/U نسبت به Nb در قلمرو کمان‌های ماگما بر اساس قرار می‌گیرند.
جدول 2 نتایج حاصل از تجزیه شیمیایی عناصر جزئی یا ICP بر حسب گرم بر تن.

<table>
<thead>
<tr>
<th>عنصر</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>P</td>
<td>123</td>
<td>145</td>
<td>167</td>
<td>189</td>
<td>211</td>
<td>233</td>
<td>255</td>
<td>277</td>
</tr>
<tr>
<td>Sc</td>
<td>9.24</td>
<td>10.6</td>
<td>12.0</td>
<td>13.4</td>
<td>14.8</td>
<td>16.2</td>
<td>17.6</td>
<td>19.0</td>
</tr>
<tr>
<td>Ti</td>
<td>34.7</td>
<td>36.3</td>
<td>37.9</td>
<td>39.6</td>
<td>41.3</td>
<td>43.1</td>
<td>44.9</td>
<td>46.7</td>
</tr>
<tr>
<td>V</td>
<td>10.9</td>
<td>11.8</td>
<td>12.7</td>
<td>13.6</td>
<td>14.5</td>
<td>15.4</td>
<td>16.3</td>
<td>17.2</td>
</tr>
<tr>
<td>Cr</td>
<td>9.96</td>
<td>10.8</td>
<td>11.7</td>
<td>12.6</td>
<td>13.5</td>
<td>14.4</td>
<td>15.3</td>
<td>16.2</td>
</tr>
<tr>
<td>Mn</td>
<td>93.3</td>
<td>98.9</td>
<td>104</td>
<td>110</td>
<td>116</td>
<td>122</td>
<td>128</td>
<td>134</td>
</tr>
<tr>
<td>Co</td>
<td>8.32</td>
<td>9.91</td>
<td>11.6</td>
<td>13.2</td>
<td>14.9</td>
<td>16.5</td>
<td>18.1</td>
<td>19.7</td>
</tr>
<tr>
<td>Ni</td>
<td>5.88</td>
<td>7.48</td>
<td>9.08</td>
<td>10.6</td>
<td>12.2</td>
<td>13.8</td>
<td>15.4</td>
<td>17.0</td>
</tr>
<tr>
<td>Cu</td>
<td>15.0</td>
<td>16.7</td>
<td>18.4</td>
<td>20.1</td>
<td>21.8</td>
<td>23.5</td>
<td>25.2</td>
<td>26.9</td>
</tr>
<tr>
<td>Zn</td>
<td>0.34</td>
<td>0.51</td>
<td>0.68</td>
<td>0.85</td>
<td>1.02</td>
<td>1.19</td>
<td>1.36</td>
<td>1.53</td>
</tr>
<tr>
<td>Ga</td>
<td>18.8</td>
<td>19.7</td>
<td>20.6</td>
<td>21.5</td>
<td>22.4</td>
<td>23.3</td>
<td>24.2</td>
<td>25.1</td>
</tr>
<tr>
<td>Ge</td>
<td>0.818</td>
<td>0.832</td>
<td>0.846</td>
<td>0.860</td>
<td>0.874</td>
<td>0.888</td>
<td>0.902</td>
<td>0.916</td>
</tr>
<tr>
<td>Se</td>
<td>0.340</td>
<td>0.357</td>
<td>0.374</td>
<td>0.391</td>
<td>0.408</td>
<td>0.425</td>
<td>0.442</td>
<td>0.459</td>
</tr>
<tr>
<td>Rb</td>
<td>0.35</td>
<td>0.36</td>
<td>0.37</td>
<td>0.38</td>
<td>0.39</td>
<td>0.40</td>
<td>0.41</td>
<td>0.42</td>
</tr>
<tr>
<td>Sr</td>
<td>0.19</td>
<td>0.21</td>
<td>0.23</td>
<td>0.25</td>
<td>0.27</td>
<td>0.29</td>
<td>0.31</td>
<td>0.33</td>
</tr>
<tr>
<td>Y</td>
<td>0.20</td>
<td>0.21</td>
<td>0.22</td>
<td>0.23</td>
<td>0.24</td>
<td>0.25</td>
<td>0.26</td>
<td>0.27</td>
</tr>
<tr>
<td>Zr</td>
<td>0.24</td>
<td>0.25</td>
<td>0.26</td>
<td>0.27</td>
<td>0.28</td>
<td>0.29</td>
<td>0.30</td>
<td>0.31</td>
</tr>
<tr>
<td>Nb</td>
<td>10.8</td>
<td>12.5</td>
<td>14.2</td>
<td>15.9</td>
<td>17.6</td>
<td>19.3</td>
<td>21.0</td>
<td>22.7</td>
</tr>
<tr>
<td>Mo</td>
<td>0.822</td>
<td>0.839</td>
<td>0.856</td>
<td>0.873</td>
<td>0.890</td>
<td>0.907</td>
<td>0.924</td>
<td>0.941</td>
</tr>
<tr>
<td>Ag</td>
<td>0.290</td>
<td>0.307</td>
<td>0.324</td>
<td>0.341</td>
<td>0.358</td>
<td>0.375</td>
<td>0.392</td>
<td>0.409</td>
</tr>
<tr>
<td>Cd</td>
<td>0.027</td>
<td>0.031</td>
<td>0.035</td>
<td>0.039</td>
<td>0.043</td>
<td>0.047</td>
<td>0.051</td>
<td>0.055</td>
</tr>
<tr>
<td>Sn</td>
<td>0.918</td>
<td>0.936</td>
<td>0.954</td>
<td>0.972</td>
<td>0.990</td>
<td>1.008</td>
<td>1.026</td>
<td>1.044</td>
</tr>
<tr>
<td>Sb</td>
<td>0.211</td>
<td>0.226</td>
<td>0.241</td>
<td>0.256</td>
<td>0.271</td>
<td>0.286</td>
<td>0.301</td>
<td>0.316</td>
</tr>
<tr>
<td>Te</td>
<td>0.200</td>
<td>0.209</td>
<td>0.218</td>
<td>0.227</td>
<td>0.236</td>
<td>0.245</td>
<td>0.254</td>
<td>0.263</td>
</tr>
<tr>
<td>Cs</td>
<td>0.56</td>
<td>0.57</td>
<td>0.58</td>
<td>0.59</td>
<td>0.60</td>
<td>0.61</td>
<td>0.62</td>
<td>0.63</td>
</tr>
<tr>
<td>Ba</td>
<td>0.34</td>
<td>0.35</td>
<td>0.36</td>
<td>0.37</td>
<td>0.38</td>
<td>0.39</td>
<td>0.40</td>
<td>0.41</td>
</tr>
<tr>
<td>La</td>
<td>0.308</td>
<td>0.325</td>
<td>0.341</td>
<td>0.357</td>
<td>0.373</td>
<td>0.389</td>
<td>0.405</td>
<td>0.421</td>
</tr>
<tr>
<td>Ce</td>
<td>0.35</td>
<td>0.37</td>
<td>0.39</td>
<td>0.41</td>
<td>0.43</td>
<td>0.45</td>
<td>0.47</td>
<td>0.49</td>
</tr>
<tr>
<td>Pr</td>
<td>0.77</td>
<td>0.79</td>
<td>0.81</td>
<td>0.83</td>
<td>0.85</td>
<td>0.87</td>
<td>0.89</td>
<td>0.91</td>
</tr>
<tr>
<td>Nd</td>
<td>0.14</td>
<td>0.16</td>
<td>0.18</td>
<td>0.20</td>
<td>0.22</td>
<td>0.24</td>
<td>0.26</td>
<td>0.28</td>
</tr>
<tr>
<td>Sm</td>
<td>0.88</td>
<td>0.90</td>
<td>0.92</td>
<td>0.94</td>
<td>0.96</td>
<td>0.98</td>
<td>1.00</td>
<td>1.02</td>
</tr>
<tr>
<td>Eu</td>
<td>1.18</td>
<td>1.20</td>
<td>1.22</td>
<td>1.24</td>
<td>1.26</td>
<td>1.28</td>
<td>1.30</td>
<td>1.32</td>
</tr>
<tr>
<td>Gd</td>
<td>0.98</td>
<td>1.00</td>
<td>1.02</td>
<td>1.04</td>
<td>1.06</td>
<td>1.08</td>
<td>1.10</td>
<td>1.12</td>
</tr>
<tr>
<td>Tb</td>
<td>0.58</td>
<td>0.60</td>
<td>0.62</td>
<td>0.64</td>
<td>0.66</td>
<td>0.68</td>
<td>0.70</td>
<td>0.72</td>
</tr>
<tr>
<td>Dy</td>
<td>0.35</td>
<td>0.37</td>
<td>0.39</td>
<td>0.41</td>
<td>0.43</td>
<td>0.45</td>
<td>0.47</td>
<td>0.49</td>
</tr>
<tr>
<td>Ho</td>
<td>0.74</td>
<td>0.76</td>
<td>0.78</td>
<td>0.80</td>
<td>0.82</td>
<td>0.84</td>
<td>0.86</td>
<td>0.88</td>
</tr>
<tr>
<td>Er</td>
<td>1.15</td>
<td>1.17</td>
<td>1.19</td>
<td>1.21</td>
<td>1.23</td>
<td>1.25</td>
<td>1.27</td>
<td>1.29</td>
</tr>
<tr>
<td>Tm</td>
<td>0.32</td>
<td>0.34</td>
<td>0.36</td>
<td>0.38</td>
<td>0.40</td>
<td>0.42</td>
<td>0.44</td>
<td>0.46</td>
</tr>
<tr>
<td>Yb</td>
<td>0.56</td>
<td>0.58</td>
<td>0.60</td>
<td>0.62</td>
<td>0.64</td>
<td>0.66</td>
<td>0.68</td>
<td>0.70</td>
</tr>
<tr>
<td>Lu</td>
<td>0.36</td>
<td>0.38</td>
<td>0.40</td>
<td>0.42</td>
<td>0.44</td>
<td>0.46</td>
<td>0.48</td>
<td>0.50</td>
</tr>
<tr>
<td>Hf</td>
<td>0.39</td>
<td>0.41</td>
<td>0.43</td>
<td>0.45</td>
<td>0.47</td>
<td>0.49</td>
<td>0.51</td>
<td>0.53</td>
</tr>
<tr>
<td>Ta</td>
<td>0.37</td>
<td>0.39</td>
<td>0.41</td>
<td>0.43</td>
<td>0.45</td>
<td>0.47</td>
<td>0.49</td>
<td>0.51</td>
</tr>
<tr>
<td>W</td>
<td>0.17</td>
<td>0.19</td>
<td>0.21</td>
<td>0.23</td>
<td>0.25</td>
<td>0.27</td>
<td>0.29</td>
<td>0.31</td>
</tr>
<tr>
<td>Tl</td>
<td>0.34</td>
<td>0.36</td>
<td>0.38</td>
<td>0.40</td>
<td>0.42</td>
<td>0.44</td>
<td>0.46</td>
<td>0.48</td>
</tr>
<tr>
<td>Pb</td>
<td>0.18</td>
<td>0.20</td>
<td>0.22</td>
<td>0.24</td>
<td>0.26</td>
<td>0.28</td>
<td>0.30</td>
<td>0.32</td>
</tr>
<tr>
<td>Th</td>
<td>0.1</td>
<td>0.12</td>
<td>0.14</td>
<td>0.16</td>
<td>0.18</td>
<td>0.20</td>
<td>0.22</td>
<td>0.24</td>
</tr>
<tr>
<td>U</td>
<td>0.71</td>
<td>0.73</td>
<td>0.75</td>
<td>0.77</td>
<td>0.79</td>
<td>0.81</td>
<td>0.83</td>
<td>0.85</td>
</tr>
<tr>
<td>Nb,U</td>
<td>0.517</td>
<td>0.534</td>
<td>0.551</td>
<td>0.568</td>
<td>0.585</td>
<td>0.602</td>
<td>0.619</td>
<td>0.636</td>
</tr>
</tbody>
</table>
عنوان لیتوفلایته بزرگ بین (LILE)، و تهی شدگی از عناصر نادر خاکی سنگین (HREE) و بی‌هنگاری منفی عناصر با شدت میدان بالا (HFSE) [19] که از ویژگی‌های رئوسیمیابی ماگماهای اهلی-قبلی‌ای مناطق فوران‌ریز است را نشان می‌دهد. این دسته‌ای می‌تواند بین‌گر خاستگاه ماگما از یک پوسته اقیانوسی فوران‌ریز شده و یکی یا یکی دیگر از سیستم‌های متاسومنیزه روز را نشان می‌دهد. این پوسته تیول جدایی‌کننده بین هم‌اکنونی و آبی از باقی‌مانده‌ی عناصر نادر خاکی سنگین و عناصر باشند. میدان بالا در سنگ خاستگاه ناشی شده‌اند. نشان می‌دهد [20, 23, 24].

شکل ۵ سنگ‌های مورد بررسی روی نمودار AFM [16].

نقوش در سنگ‌های هم‌اکنونی Ce/Yb میانگین نسبت ۲۵۰/۴ است و هاکی از واسکتی نمونه‌ها یک کمان ماگمایی غنی یک هسته [15] است. قرار گرفتن نمونه‌ها در گونه‌ای نمودار AFM (شکل ۶) و پایین بودن عدد منیزیم (جدول ۱) جو از تغییرات‌یافته‌ی ماگما در مراحل اولیه تولید است [17].

نمودارهای پهن‌تر شده عناصر نادر خاکی این سنگ‌ها که نسبت به گاندیت (شکل ۶) و نمودار عضویتی عناصر گروه که نسبت به گونه‌ای اولیه [18] پهن‌تر شده است (شکل ۷)، غنی شدگی این‌ها از عناصر نادر خاکی سبک (LREE) و (HREE) را نشان می‌دهد.
به هنگام منفی عنصری با شدت میدان بالا تأثیر P, Nb, Pb و U مانند [۳۲, ۳۴]. در شرایط مشابه عنصر متحرک (LREE و Ti و Zr) در نمونه‌ها یافتگی غنی شدنی از عنصر نادر خاکی سبک (HREE) و نادر خاکی سنگین (Sr, La/Yb) پیش‌بینی می‌شود.

نمونه‌ها:

نمونه‌های TI، Na، K، Cs، Rb و Zr و Sr و La از عنصر نادر خاکی سنگین (Sr، La/Yb) پیش‌بینی می‌شود.

شکل 7: نمودار عنصر کيماي در سنگ‌های مورد بررسی که نشان می‌دهد که غنی‌شدنی می‌باشد در عنصر متحرک (HFSE و LILE) و بعضی از عنصر‌های سنگین از سنگ‌های با نسبت نشان می‌دهد.

مانند [۳۲، ۳۴]. در شرایط مشابه عنصر متحرک (LREE و Ti و Zr) در نمونه‌ها یافتگی غنی شدنی از عنصر نادر خاکی سبک (HREE) و نادر خاکی سنگین (Sr، La/Yb) پیش‌بینی می‌شود.

نمونه‌ها:

نمونه‌های TI، Na، K، Cs، Rb و Zr و Sr و La از عنصر نادر خاکی سنگین (Sr، La/Yb) پیش‌بینی می‌شود.

شکل 7: نمودار عنصر کيماي در سنگ‌های مورد بررسی که نشان می‌دهد که غنی‌شدنی می‌باشد در عنصر متحرک (HFSE و LILE) و بعضی از عنصر‌های سنگین از سنگ‌های با نسبت نشان می‌دهد.

مانند [۳۲، ۳۴]. در شرایط مشابه عنصر متحرک (LREE و Ti و Zr) در نمونه‌ها یافتگی غنی شدنی از عنصر نادر خاکی سبک (HREE) و نادر خاکی سنگین (Sr، La/Yb) پیش‌بینی می‌شود.

نمونه‌ها:

نمونه‌های TI، Na، K، Cs، Rb و Zr و Sr و La از عنصر نادر خاکی سنگین (Sr، La/Yb) پیش‌بینی می‌شود.

شکل 7: نمودار عنصر کيماي در سنگ‌های مورد بررسی که نشان می‌دهد که غنی‌شدنی می‌باشد در عنصر متحرک (HFSE و LILE) و بعضی از عنصر‌های سنگین از سنگ‌های با نسبت نشان می‌دهد.

شکل 7: نمودار عنصر کيماي در سنگ‌های مورد بررسی که نشان می‌دهد که غنی‌شدنی می‌باشد در عنصر متحرک (HFSE و LILE) و بعضی از عنصر‌های سنگین از سنگ‌های با نسبت نشان می‌دهد.

شکل 7: نمودار عنصر کيماي در سنگ‌های مورد بررسی که نشان می‌دهد که غنی‌شدنی می‌باشد در عنصر متحرک (HFSE و LILE) و بعضی از عنصر‌های سنگین از سنگ‌های با نسبت نشان می‌دهد.
جدول ۳ مقایسه میانگین و یاگرای زئوشیمیایی نمونه‌های منطقه رج با آدابیک‌ها [۱۶، ۲۷-۳۷] آ

<table>
<thead>
<tr>
<th>میانگین نمونه‌های منطقه رج</th>
<th>آدابیک‌های کم سیلیس</th>
<th>آدابیک‌های بی پر سیلیس</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO₂ = ۴۷٪</td>
<td>SiO₂ = ۴۰٪</td>
<td>SiO₂ ≥ ۴۰٪</td>
</tr>
<tr>
<td>MgO = ۳.۵٪</td>
<td>MgO = ۳ - ۹٪ Wt</td>
<td>MgO = (۰.۵ - ۴٪)</td>
</tr>
<tr>
<td>CaO + Na₂O = ۸.۹٪</td>
<td>CaO + Na₂O ≥ ۱۰٪ Wt</td>
<td>CaO + Na₂O < ۱۰٪ Wt</td>
</tr>
<tr>
<td>Sr = ۴۹٪</td>
<td>Sr > ۱۰۰ ppm</td>
<td>Sr < ۱۰۰ ppm</td>
</tr>
<tr>
<td>TiO₂ = ۰.۸٪</td>
<td>TiO₂ > ۳٪</td>
<td></td>
</tr>
<tr>
<td>Cr / Ni = ۱.۴٪</td>
<td>Cr / Ni = ۱ - ۳.۵</td>
<td></td>
</tr>
<tr>
<td>Cr / Ni = ۱.۴٪</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

جدول ۴ مقایسه میانگین و یاگرای زئوشیمیایی نمونه‌های موردر بررسی با آدابیک‌های پرسپاس و کم سیلیس [۱۷]

شکل ۸ نمونه‌های موردر بررسی در نمودارهای الف، ب، ت، در گستره‌های آدابیک‌های کم سیلیس قرار می‌گیرند. (گستره‌های خاکستری

واسته به آدابیک‌های کم سیلیس و گستره‌های سفید واسته به آدابیک‌های پرسپاس [۱۷] است).
سن سنگی

برای سن سنگی به روش زیرکن اورانیم سرب، لازم است مقام کافی از سنگ مورد بررسی برداشت شود (مقام برای بسته به ترکیب سنگ تغییر می‌کند). دانه‌های زیرکن به روش استفاده از آگون‌های سنگین جدا می‌شوند و سپس فرآیندهای لازم برای سن سنگی صورت می‌گیرد [39]. سن سنگی یک نمونه از دوربردهای پورفری مورد بررسی (نمونه شماره 1 در جدول 1) در دانشگاه ملی تایوان و به روش زیرکن - اورانیم - سرب انجام شده است. تعداد 56 دانه از زیرکن‌های جدا شده از نمونه مورد بررسی در قالب مخصوص چیده شدند و سپس

از آن‌ها تصویر CL (کاند لومنسانس) تهیه شد. تعداد 20 دانه مورد سال سنگی قرار گرفتند که نتیجه حاصل برای هر دانه روی تصویر CL (شکل 9) آورده شده است. نتایج حاصل از سال سنگی 20 دانه، روی نموندار کنکوردیا نمایش داده شده‌اند (شکل 10). براساس نتایج حاصل از این بررسی، سنگ‌های پایدار دارای سن 7 ± 39 میلیون سال (جدول 5) و مربوط به اواخر انوسن وابسته است. با توجه به نتیجه سن سنگی، می‌توان سن جایگردی افولیت میزان نهادهای نوده‌های مورد بررسی را، پیش از اواخر انوسن دانست.

![تصویر CL](https://example.com/image CL)

شکل 9: تصویر CL (کاند لومنسانس) [درخشناد] از 20 دانه زیرکن که در قالب مخصوص قرار داده شده و تعداد 20 دانه مورد سن سنگی قرار گرفته است. نتیجه حاصل برای هر دانه روی آن توشته شده است.

![نمودار کنکوردیا](https://example.com/image Concordia)

شکل 10: نمودار کنکوردیا برای 20 دانه‌ی زیرکن که به روش زیرکن - اورانیم - سرب سن سنگی شده است.
جدول 5 نتایج حاصل از سال سنجی 20 نقطه از نمونه‌ی مورد بررسی.

<table>
<thead>
<tr>
<th>نقطه آلاین شده</th>
<th>207Pb/206Pb ± 1σ</th>
<th>206Pb/235U ± 1σ</th>
<th>207Pb/235U ± 1σ</th>
<th>corr. error</th>
<th>(Ma ± 1σ)</th>
<th>206Pb/238U age</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.1</td>
<td>0.08</td>
<td>0.08</td>
<td>0.94</td>
<td>1.0</td>
<td>0.03</td>
</tr>
<tr>
<td>2</td>
<td>0.2</td>
<td>0.10</td>
<td>0.13</td>
<td>0.97</td>
<td>1.0</td>
<td>0.05</td>
</tr>
<tr>
<td>3</td>
<td>0.3</td>
<td>0.14</td>
<td>0.15</td>
<td>0.99</td>
<td>1.0</td>
<td>0.07</td>
</tr>
<tr>
<td>4</td>
<td>0.4</td>
<td>0.18</td>
<td>0.19</td>
<td>1.00</td>
<td>1.0</td>
<td>0.09</td>
</tr>
<tr>
<td>5</td>
<td>0.5</td>
<td>0.22</td>
<td>0.22</td>
<td>1.01</td>
<td>1.0</td>
<td>0.11</td>
</tr>
<tr>
<td>6</td>
<td>0.6</td>
<td>0.28</td>
<td>0.28</td>
<td>1.03</td>
<td>1.0</td>
<td>0.13</td>
</tr>
<tr>
<td>7</td>
<td>0.7</td>
<td>0.36</td>
<td>0.36</td>
<td>1.05</td>
<td>1.0</td>
<td>0.15</td>
</tr>
<tr>
<td>8</td>
<td>0.8</td>
<td>0.45</td>
<td>0.45</td>
<td>1.07</td>
<td>1.0</td>
<td>0.17</td>
</tr>
<tr>
<td>9</td>
<td>0.9</td>
<td>0.56</td>
<td>0.56</td>
<td>1.09</td>
<td>1.0</td>
<td>0.19</td>
</tr>
<tr>
<td>10</td>
<td>1.0</td>
<td>0.68</td>
<td>0.68</td>
<td>1.12</td>
<td>1.0</td>
<td>0.21</td>
</tr>
<tr>
<td>11</td>
<td>1.1</td>
<td>0.83</td>
<td>0.83</td>
<td>1.15</td>
<td>1.0</td>
<td>0.23</td>
</tr>
<tr>
<td>12</td>
<td>1.2</td>
<td>1.00</td>
<td>1.00</td>
<td>1.18</td>
<td>1.0</td>
<td>0.25</td>
</tr>
<tr>
<td>13</td>
<td>1.3</td>
<td>1.18</td>
<td>1.18</td>
<td>1.21</td>
<td>1.0</td>
<td>0.27</td>
</tr>
<tr>
<td>14</td>
<td>1.4</td>
<td>1.38</td>
<td>1.38</td>
<td>1.24</td>
<td>1.0</td>
<td>0.29</td>
</tr>
<tr>
<td>15</td>
<td>1.5</td>
<td>1.60</td>
<td>1.60</td>
<td>1.27</td>
<td>1.0</td>
<td>0.31</td>
</tr>
<tr>
<td>16</td>
<td>1.6</td>
<td>1.84</td>
<td>1.84</td>
<td>1.30</td>
<td>1.0</td>
<td>0.33</td>
</tr>
<tr>
<td>17</td>
<td>1.7</td>
<td>2.10</td>
<td>2.10</td>
<td>1.33</td>
<td>1.0</td>
<td>0.35</td>
</tr>
<tr>
<td>18</td>
<td>1.8</td>
<td>2.39</td>
<td>2.39</td>
<td>1.36</td>
<td>1.0</td>
<td>0.37</td>
</tr>
<tr>
<td>19</td>
<td>1.9</td>
<td>2.72</td>
<td>2.72</td>
<td>1.39</td>
<td>1.0</td>
<td>0.39</td>
</tr>
<tr>
<td>20</td>
<td>2.0</td>
<td>3.08</td>
<td>3.08</td>
<td>1.42</td>
<td>1.0</td>
<td>0.41</td>
</tr>
</tbody>
</table>

برداشت

نفوذ یک مجموعه از نتوه‌های نفوذی کم عمق با ترکیب دوبیتی تامزوتین بورفوری بر درون مجموعه اقیانوسی ملانی جنوب باختی بیبرنگ، باعث تشكل نتوه‌های گندی شکل بلند با حاشیه‌های اندراب و کمتر تراکی اندزیت شده است. به‌الفاظ در این سنگ‌ها بورفوری با خمیرهای دریایی است که پلاژیکولز و هورینلند سبز فنکریسته‌ها آنها را می‌سازند. فنکریسته‌ای پلاژیکولز پیچید در بخش مرکزی دگرسان شده و با کربنات کلسیم چاپ‌گذاری شدهان است. آمپول‌های مقداری به بوریت و اکسید آن تیدیش هم و دگرسان ضایعی ضعیفی را نشان می‌دهند. ماگما سپرگ‌های مورد بررسی با توجه به عناصر نادر خاکی سیکس (LILE) و عناصر لیتوژنیک بیور (HFSE) و تئی شدگی (REE) آنها از عناصر نادر خاکی سپرگ (HFSE) می‌تواند به یک منفی عناصر با شدت میدان بالا (HFSE) می‌تواند به یک.

[38] [يوفس زاده م.], پورعاقی س.م.، سرب، ن.م.، و تلیعی غادرهی م.، امامی م.، نسب شناسی و زیستیمنی سفیدهای آنتفیلات برتری به Georges و غرب برجردن و نسب شناسی برنینوم هاگن آ، مجله بلور شناسی و کانی شناسی ایران، سال هفته م: شماره 2، (1883)، ص 327-332.

