نقش زهاب اسیدی معدن در تشکیل کانی‌های زیست محيطی در معادن زغالسنگ کارمزد، البرز مرکزی، استان مازندران

محسن قلی پورا، سيد احمد مظاهری، مصطفی رقیمی، غلامحسین شمعیان

چکیده: امروزه تشکیل زهاب اسیدی معدن یکی از مهم‌ترین عوامل آلودگی معدن زغالسنگ به شمار می‌آید. معادن زغال سنگ کارمزد در استان مازندران به علت موقعیت زیست‌ناهی‌ترین و قابلیت تولید کننده زغال سنگ در حوضه‌های زیست‌ناهی البرز مرکزی مطرح است. نمونه‌برداری از زغال سنگ، سنگ میزبان، زهاب‌های معدنی و کانی‌های ناتوانی سطحی در تاسیس ۴۸ انجام شد. بر اساس بررسی‌های الکترونی در نمودار نوع زهاب در معادن زغال سنگ کارمزد وجود دارد که شامل زهاب‌های اسیدی (PH < 4.5) از مجموع زهاب‌های اسیدی عدم تخلیه زهاب Na-HCO₃-SO₄ و زهاب‌های خشک تا قلیایی از نوع Mg-SO₄ معدنی از نوع غیر عامل ۱۲ و نماس طولانی مدت آپ كانتی‌های سولفیدی اسید در نتیجه غلظت SO₄²⁻ همزمان با اکسید پریپت افزایش می‌یابد. بررسی نمونه‌های پراکنده یک‌انگار آن است که با افزایش سولفید مزان PH و غلظت CO₃⁻ کاهش و غلظت (PO₄³⁻) و غالب کاتیون‌ها و فلاتر سنگی افزایش می‌یابد. مدل سازی الکترونی نمایش نیش می‌دهد. در زهاب‌های اسیدی کانی‌های زاروکیت، آلوانیت، هیدروکسید‌ها و اکسید‌های آهن و اکسید‌های آهن، مخلوط به صورت غلظت ای اشباع است. در صورتی که کانی‌های کربنات تائید کلرید، آلومینیوم، کلسیم، آکاوینیت و رودوروزیت به صورت اشباع است. نتایج بررسی بروز ایکس کسلیت درون‌روزهای نورکلیت‌های الکترونی و شیمیایی تائید می‌شود. همچنین درون‌روزهای الکترونی تائید می‌شود. این نتایج به تحلیل کلیدی زهاب اسیدی معدن، زغالسنگ، معادن کارمزد، البرز مرکزی، استان مازندران مقدمه

تشکیل زهاب اسیدی معدن (AMD Acid mine drainage) در معادن سولفیدی قلیز و زغال سنگ یکی از مهم‌ترین عوامل آلودگی محیط زیست بشمار می‌آید. [۱] اسیدی سندرم آبها

Gholipour_mohsen@yahoo.com

Assoc. Prof. Gholipour Mohsen,
Islamic Azad University, Babol Branch
Mazandaran, Iran

پیوسته مسئول، تلفن:؛ نمبر:۸۸۹۸۷۷۴۵۹ (۲۰۱۰) بست کلینیکی:

نوع‌: پیش‌بینی اکسیدیزاسیون و تغییرات ترمیمی در حوضه‌های زیست‌ناهی البرز مرکزی، استان مازندران

در صورت وجود بی‌درنگ تأثیر زیان آبی بر سیستم بوم شناختی دارد، این اثرها به طور غیر مستقیم به عوامل اثرهای فیزیکی، شیمیایی، بیولوژیکی و بوم شناختی ردپنیدی می‌شوند [۲] در صورت نبود یک مدیریت درست، این زهاب‌ها می‌توانند منجر به تخریب مقدمه

در مقدمه:
عنوان آلانده‌ی زیست محیطی و چگونگی تشکیل کاتی‌های
ثانویه از زهاب اسیدی معدن است.

مشخصات منطقه

معادن کارمندی یکی از پرکاربردترین مناطق تولید
کندوهی زغالسنگ در خوزستان است که در منطقه‌ی زغالسنگ
(شکل اول) مورد بررسی بین طول‌های 5 و 10 متر
و عرض جغرافیایی ۵۰ تا ۶۰ شرق است.

در استان مازندران و زرizophودنی‌گر در این منطقه است
حوضه ابریز چتران با مساحت ۵۶۴۷۶۹ هکتار و جریان
شمال شرقی یکتا از شاخه‌های رودخانه تالار بوده و در
شهرستان سوادکوه قرار دارد (شکل دوم). تا انتهای
زیرآب-کارمندی بال شمالی رشته کوه چین خوردگی
برگ در حال چرخش از ناحیه‌ی پایین‌تر گزارش شده است.

در طول تابستان و منطقه‌ی مورد بررسی مجموعه زغال‌داری تریاس
وقاورد و زوراوا پهنای سختی کارمندی زیادی دارد
که از نظر چیپشنی شناسایی می‌شود. مساحت این منطقه
آسیاطیره (۱۹۸۴) در بزرگ‌ترین تضییح شده است.

چینش شناسایی منطقه زیرآب-کارمندی توسط زمین شناسان
شرکت دماک [۱۴] تهیه شد. در طی این شدید خاکستر، کلیت‌های کوچک
۱۵۰ متر را فهرست زغال‌دار بر اساس سنجش‌گری به نسبت چهارمی‌شود که شامل
تنابیز از ناحیه‌های شمالی، شرقی، جنوبی و غربی است.

مکانیزم افزایش سرعت از هم باشی کاتی‌هایی که در
کمیت‌های قابل تأثیر در منطقه‌ی مورد بررسی شاهد
۴ - CaCO₃ + H⁺ → Ca²⁺ + HCO₃⁻
۳CaMg(CO₃)₂ + 2H⁺ → 3Ca²⁺ + 2Mg²⁺ + 3H₂O

معادن کارمندی واقع در البرز مرکزی یکی از قدیمی‌ترین معدن
زغال سنگ ایران است که از سال ۱۳۱۰ ناکنون فعال بوده و
همچنان در حال کش‌گیری است [۱۲] و بررسی و اکتشافات
بیش از چندین سال می‌باشد. به‌طور کلی، کارمندی‌های
زهرنشانی و معادن انجام شده در این معدن تاکنون
به‌طور علمی بررسی شده و در بررسی‌های مداوم
نکته شده است. هدف از انجام این پژوهش بررسی ویژگی‌های
کاتی‌های سولفیدی لایه‌ای زغال‌دار و سنجش میزان از
ظرفیت تولید زهاب اسیدی معدن، بررسی ویژگی‌های هیدرو
زتونیمیایی زهاب اسیدی معدن، نقش عناصر سنگین فلزی به

روش بررسی
بر اساس بررسی‌های صحرایی در تابستان ۴۸ در آب‌های زغالی، سنگ‌های زغال با نمونه‌برداری صورت گرفت.
۱۵ مقطع صورتی از نمونه‌های زغالی و سنگ‌های برای
بررسی کانالهای سولفیدی از نظر قابلیت تولید زهاب اسیدی
معدن در آزمایشگاه زمین شناسی دانشگاه فردوسی مشهد به
روش معمول تهیه شدند. به منظور بررسی کانالهای تانیه
زیست محیطی نمونه‌برداری از ۱۵ نهشته‌های حاصل از زهاب‌های
معدنی صورت گرفت. همچنین با استفاده از پالایش‌های
۰/۷μm نهشته‌های معکوس‌شده را گرفتند. تعداد ۸ نمونه از کانالهای تانیه زیست محیطی مشهد به
شبکه سیستم مشهد پرای
PW شناسایی با پارس سنگ برتر ایکس (XRD) فیلیپس مدل
شناسایی با پارس سنگ برتر ایکس (XRD) فیلیپس مدل
۸۲۰۰ ارسال شدند. برای بررسی اختلال تشکیل زهاب اسیدی
و ویژگی‌های هیدروژن‌سولفاتی، نمونه‌برداری از ۸ نمونه آب
با هدف بررسی خاصیت‌های زغالی‌های معکوس و آب- آه
های زغالی از این مدل به درصد ۸۴ صورت گرفت.
برای جلوگیری از آلودگی شدن نمونه‌های آب، نمونه‌های آبی
و
شکل 1. انواع پیریتهای میکروسکوپی در زغالسنگ‌های کارمزد (الف) رگه‌های (ب) پولیکی، پیریتهای میکروسکوپی در ماساله‌های زغال (پ)

PHREEQC I و Aquacham (Version 4) برای تجزیه و تحلیل داده‌های هیدروشیمیایی استفاده شده و موقعیت تمام توابع‌های در شکل 1 نشان داده شده است.

نتایج کانی شناسی
بررسی‌های میکروسکوپی و میکروسکوپی در زغالسنگ‌های کارمزد بیانگر است که بخش بزرگی از مدل به شکل پیریت و بندرت کالکوپراست حضور دارد. پیریتهای میکروسکوپی بریش‌پنکی و رگهای با طول کمتر از 1 سانتی متر و ضخامت کمتر از 1 میلی‌متر را در نحوه‌های آکسیدی، بخشی از پیریتهای موجود در زغالسنگ طی فرآیندهای هوازدگی به اکسیدهای آهن تاثیب تبدیل شده است (شکل 2-ب و ت). علاوه بر پیریت مفیدی برای این کالکوپراست خاصیت دارد که به کوهل تبدیل شد.

پیریتهای میکروسکوپی غالباً به صورت پیریت و شکل دار، نیمه‌شکل دار، شکل دار و رگه‌های خصوصاً در مناطق با شکستگی‌های فراوان، به جمع‌آوری که به اکسید پایین‌تر اکسایش پیریت

شکل 2-ب نمایه شکل دار، (ت) نمایه شکل دار، (ث) نمایه شکل دار

شکل دار و پیریت در ماساله‌های زغالی حضور دارد. رگه‌های پیریت بخش بزرگی از پیریتهای موجود در زغالسنگ را به خود اختصاص می‌دهد. رگه‌ها غالباً طول کمتر از 5 میلی‌متر و ضخامت 100 میلی‌متر در و شکستگی‌های موقعیت در ماساله‌های زغالی دیده می‌شوند (شکل 2-ث).
نتایج تجزیه‌شیمیایی و پارامترهای هیدروشیمی آب در جدول‌های ۱ ارائه شده‌اند. بر اساس نتایج به دست آمده، رنگ‌های pH و TDS در زه‌های معدنی تولن ۱۲ (KA-W3) طبق ۰.۵۹ با pH اسیدی است. این زه‌ها در نتیجه تغییراتی در pH و ترکیب مواد جامد محلول (TDS) غلظت کاتیون‌ها و آنیون‌ها و فلزات سنتگین و کمبریج‌ها را به خود اختصاص می‌دهد. و (KA – W2 و KA – W1) از زه‌های معدنی تولن ۲۱ و (KA – W4 و KA – W5) آب‌هایی به هم‌شکلی از پایه‌های تولن متروک است.

جدول ۱ نتایج تجزیه‌شیمیایی (بر حسب ppm) و پارامترهای هیدروشیمی زه‌های معدنی اسیدی و خنثی تا قلبایی

<table>
<thead>
<tr>
<th></th>
<th>KA-W1</th>
<th>KA-W2</th>
<th>KA-W3</th>
<th>KA-W4</th>
<th>KA-W5</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH</td>
<td>۸.۸</td>
<td>۸</td>
<td>۸.۵۹</td>
<td>۹.۱</td>
<td>۹.۱</td>
</tr>
<tr>
<td>TDSmg/l</td>
<td>۱۳۰۲</td>
<td>۱۲۸۰</td>
<td>۱۲۴۶</td>
<td>۱۲۴۶</td>
<td>۱۲۴۶</td>
</tr>
<tr>
<td>ECμcm/l</td>
<td>۴۸۸۶</td>
<td>۴۸۸۶</td>
<td>۴۸۸۶</td>
<td>۴۸۸۶</td>
<td>۴۸۸۶</td>
</tr>
<tr>
<td>DOCmg/l</td>
<td>۳</td>
<td>۳</td>
<td>۳</td>
<td>۳</td>
<td>۳</td>
</tr>
<tr>
<td>SRA</td>
<td>۲۸۷</td>
<td>۲۸۷</td>
<td>۲۸۷</td>
<td>۲۸۷</td>
<td>۲۸۷</td>
</tr>
<tr>
<td>HCO₃⁻</td>
<td>۹۰۰</td>
<td>۹۰۰</td>
<td>۹۰۰</td>
<td>۹۰۰</td>
<td>۹۰۰</td>
</tr>
<tr>
<td>Cl⁻</td>
<td>۲۸۴</td>
<td>۲۸۴</td>
<td>۲۸۴</td>
<td>۲۸۴</td>
<td>۲۸۴</td>
</tr>
<tr>
<td>SO₄²⁻</td>
<td>۴۹۸</td>
<td>۴۹۸</td>
<td>۴۹۸</td>
<td>۴۹۸</td>
<td>۴۹۸</td>
</tr>
<tr>
<td>NO₃⁻</td>
<td>۲۰۸</td>
<td>۲۰۸</td>
<td>۲۰۸</td>
<td>۲۰۸</td>
<td>۲۰۸</td>
</tr>
<tr>
<td>H₂PO₄⁻</td>
<td>۴۸۵</td>
<td>۴۸۵</td>
<td>۴۸۵</td>
<td>۴۸۵</td>
<td>۴۸۵</td>
</tr>
<tr>
<td>Ca²⁺</td>
<td>۹۸۸</td>
<td>۹۸۸</td>
<td>۹۸۸</td>
<td>۹۸۸</td>
<td>۹۸۸</td>
</tr>
<tr>
<td>Mg²⁺</td>
<td>۹۱۵</td>
<td>۹۱۵</td>
<td>۹۱۵</td>
<td>۹۱۵</td>
<td>۹۱۵</td>
</tr>
<tr>
<td>Na⁺</td>
<td>۱۲۴۶</td>
<td>۱۲۴۶</td>
<td>۱۲۴۶</td>
<td>۱۲۴۶</td>
<td>۱۲۴۶</td>
</tr>
<tr>
<td>K⁺</td>
<td>۵۶۴</td>
<td>۵۶۴</td>
<td>۵۶۴</td>
<td>۵۶۴</td>
<td>۵۶۴</td>
</tr>
<tr>
<td>Fe</td>
<td>۴۲۷</td>
<td>۴۲۷</td>
<td>۴۲۷</td>
<td>۴۲۷</td>
<td>۴۲۷</td>
</tr>
<tr>
<td>Al</td>
<td>۱۲۴۶</td>
<td>۱۲۴۶</td>
<td>۱۲۴۶</td>
<td>۱۲۴۶</td>
<td>۱۲۴۶</td>
</tr>
<tr>
<td>Sr</td>
<td>۶۸۵</td>
<td>۶۸۵</td>
<td>۶۸۵</td>
<td>۶۸۵</td>
<td>۶۸۵</td>
</tr>
<tr>
<td>Ba</td>
<td>۶۸۵</td>
<td>۶۸۵</td>
<td>۶۸۵</td>
<td>۶۸۵</td>
<td>۶۸۵</td>
</tr>
<tr>
<td>As</td>
<td>۶۸۵</td>
<td>۶۸۵</td>
<td>۶۸۵</td>
<td>۶۸۵</td>
<td>۶۸۵</td>
</tr>
<tr>
<td>Sb</td>
<td>۶۸۵</td>
<td>۶۸۵</td>
<td>۶۸۵</td>
<td>۶۸۵</td>
<td>۶۸۵</td>
</tr>
<tr>
<td>Bi</td>
<td>۶۸۵</td>
<td>۶۸۵</td>
<td>۶۸۵</td>
<td>۶۸۵</td>
<td>۶۸۵</td>
</tr>
<tr>
<td>Cr</td>
<td>۶۸۵</td>
<td>۶۸۵</td>
<td>۶۸۵</td>
<td>۶۸۵</td>
<td>۶۸۵</td>
</tr>
<tr>
<td>Mn</td>
<td>۶۸۵</td>
<td>۶۸۵</td>
<td>۶۸۵</td>
<td>۶۸۵</td>
<td>۶۸۵</td>
</tr>
<tr>
<td>Co</td>
<td>۶۸۵</td>
<td>۶۸۵</td>
<td>۶۸۵</td>
<td>۶۸۵</td>
<td>۶۸۵</td>
</tr>
<tr>
<td>Ni</td>
<td>۶۸۵</td>
<td>۶۸۵</td>
<td>۶۸۵</td>
<td>۶۸۵</td>
<td>۶۸۵</td>
</tr>
<tr>
<td>Cu</td>
<td>۶۸۵</td>
<td>۶۸۵</td>
<td>۶۸۵</td>
<td>۶۸۵</td>
<td>۶۸۵</td>
</tr>
<tr>
<td>Zn</td>
<td>۱۲۴۶</td>
<td>۱۲۴۶</td>
<td>۱۲۴۶</td>
<td>۱۲۴۶</td>
<td>۱۲۴۶</td>
</tr>
<tr>
<td>Pb</td>
<td>۳۸۵</td>
<td>۳۸۵</td>
<td>۳۸۵</td>
<td>۳۸۵</td>
<td>۳۸۵</td>
</tr>
<tr>
<td>Se</td>
<td>۱۲۴۶</td>
<td>۱۲۴۶</td>
<td>۱۲۴۶</td>
<td>۱۲۴۶</td>
<td>۱۲۴۶</td>
</tr>
<tr>
<td>Cd</td>
<td>۳۸۵</td>
<td>۳۸۵</td>
<td>۳۸۵</td>
<td>۳۸۵</td>
<td>۳۸۵</td>
</tr>
<tr>
<td>Ag</td>
<td>۳۸۵</td>
<td>۳۸۵</td>
<td>۳۸۵</td>
<td>۳۸۵</td>
<td>۳۸۵</td>
</tr>
</tbody>
</table>
نمودار برایکنش $SO_4^{2-}$ در مقابل الف $\text{PH}$, $\text{EC}$, $\text{TDS}$, $\text{HCO}_3^-$, $\text{Ca}$, $\text{Mg}$, $\text{Mn}$, $\text{K}$, $\text{Fe}$, $\text{Sr}$, $\text{Pb}$. 

$R^2 = 0.825$ 

$R^2 = 0.9211$ 

$R^2 = 0.607$ 

$R^2 = 0.8045$ 

$R^2 = 0.8599$ 

$R^2 = 0.9367$ 

$R^2 = 0.9934$ 

$R^2 = 0.9986$ 

$R^2 = 0.955$ 

$R^2 = 0.9994$ 

$R^2 = 0.9994$
نقش زهاب اسیدی معدن در تشکیل کانی‌های... نوگ آب نشان دهنده غلظت نسبی آنیون‌ها و کاتیون‌های اصلی در آب است. برای تعیین نوع و وضع شیمیایی آب از نمودار پایپر استفاده شد. بر این اساس چنانچه در شکل 2-الف مشاهده می‌شود، نمودن‌های آب دارای دو نوع آب اصلی با رنده متغیر در مقدار. زهاب معدنی سه‌سی (KA–W3) در منطقه‌های با خاکی این نوع زهاب‌های بیش از 50 درصد خاکِر و از نوع (KA–W1، KA–W2) و در کیفیت مال‌آور، به طوری که در زهاب‌های معدنی خاکی با قلیایی، دارای فلات مایع و ناپذیر بسیار زیادی است که در این نوع آب‌های زهکشی شده از باطله‌ها (KA–W1) و KA–W5 و KA–W4 (KA–W3) با این نکته که زهاب‌های معدن (KA–W1، KA–W2) و Αب‌های زهکشی از باطله‌ها، Na–HCO3–SO4 با کاتیون‌های غیر اکسید است. برای تفسیر بهتر نوع و تکامل شیمیایی آب از نمودار دوره استفاده شده (ب). این نمودار را می‌توان صورت تکامل یافته‌تری از نمودار پایپر به حساب آورد. جنابکه در شکل 2-ب نشان داده شد، جرخی تکامل آب‌های بریوی بیشتری نسبت به جرخی تکامل کانی‌های زهاب‌های معدنی دارد. این نمونه‌ها بیشتری به عنوان کانی‌های غلظه که در زهاب‌های دیگر مناسب‌ترین می‌شود. از طرفی نمونه‌های آب‌های معدنی و آب‌های زهکشی و تراوش شده از باطله‌ها به دو بخش کاملاً مجزا تقسیم می‌شوند. نمودن‌های اکسیدی و خشکی تا قلیایی است

شکل 2-الف - نمودار پایپر، ب - نمودار دوره برای زهاب‌های معدنی اسیدی و خشکی تا قلیایی در معدن کارمز.
در حالتی که برای نمونه‌های زهاب آسیب‌دیده KA–W3 کلی-هنر را تشکیل می‌دهد، هنر نمودار جاده 10 برای نمونه‌های زهاب آسیب‌دیده و آب‌های زهاب‌کشی شده از باطلیتی عناصر اصلی و کلیک‌های اشتباه‌های اشاره شده است.

شکل 6 نمودارهای گیبس (19) برای زهاب‌های معدنی اسیدی و خشنه تا قلبی در معادن کارمزد.

شکل 5 نمودار جاده 18 برای زهاب‌های معدنی اسیدی و خشنه تا قلبی در معادن کارمزد.

مدلسازی هیدروژنوثیمیاپایی
از مدل هیدروژنوثیمیاپایی (PHREEQC 2.6) برای شناسایی حالت شیمیایی زهاب‌های معدنی و آب‌های زهاب‌کشی شده از باطلیتی عناصر اصلی و کلیک‌های اشتباه‌های اشاره شده است.

کلیک نمودارهای گیبس (19) برای زهاب‌های معدنی اسیدی و خشنه تا قلبی در معادن کارمزد.

کلیک نمودار جاده 10 برای نمونه‌های زهاب آسیب‌دیده و آب‌های زهاب‌کشی شده از باطلیتی عناصر اصلی و کلیک‌های اشتباه‌های اشاره شده است.

کلیک نمودارهای گیبس (19) برای زهاب‌های معدنی اسیدی و خشنه تا قلبی در معادن کارمزد.

کلیک نمودار جاده 10 برای نمونه‌های زهاب آسیب‌دیده و آب‌های زهاب‌کشی شده از باطلیتی عناصر اصلی و کلیک‌های اشتباه‌های اشاره شده است.

کلیک نمودارهای گیبس (19) برای زهاب‌های معدنی اسیدی و خشنه تا قلبی در معادن کارمزد.

کلیک نمودار جاده 10 برای نمونه‌های زهاب آسیب‌دیده و آب‌های زهاب‌کشی شده از باطلیتی عناصر اصلی و کلیک‌های اشتباه‌های اشاره شده است.

کلیک نمودارهای گیبس (19) برای زهاب‌های معدنی اسیدی و خشنه تا قلبی در معادن کارمزد.

کلیک نمودار جاده 10 برای نمونه‌های زهاب آسیب‌دیده و آب‌های زهاب‌کشی شده از باطلیتی عناصر اصلی و کلیک‌های اشتباه‌های اشاره شده است.

کلیک نمودارهای گیبس (19) برای زهاب‌های معدنی اسیدی و خشنه تا قلبی در معادن کارمزد.

کلیک نمودار جاده 10 برای نمونه‌های زهاب آسیب‌دیده و آب‌های زهاب‌کشی شده از باطلیتی عناصر اصلی و کلیک‌های اشتباه‌های اشاره شده است.

کلیک نمودارهای گیبس (19) برای زهاب‌های معدنی اسیدی و خشنه تا قلبی در معادن کارمزد.

کلیک نمودار جاده 10 برای نمونه‌های زهاب آسیب‌دیده و آب‌های زهاب‌کشی شده از باطلیتی عناصر اصلی و کلیک‌های اشتباه‌های اشاره شده است.

کلیک نمودارهای گیبس (19) برای زهاب‌های معدنی اسیدی و خشنه تا قلبی در معادن کارمزد.

کلیک نمودار جاده 10 برای نمونه‌های زهاب آسیب‌دیده و آب‌های زهاب‌کشی شده از باطلیتی عناصر اصلی و کلیک‌های اشتباه‌های اشاره شده است.

کلیک نمودارهای گیبس (19) برای زهاب‌های معدنی اسیدی و خشنه تا قلبی در معادن کارمزد.

کلیک نمودار جاده 10 برای نمونه‌های زهاب آسیب‌دیده و آب‌های زهاب‌کشی شده از باطلیتی عناصر اصلی و کلیک‌های اشتباه‌های اشاره شده است.
حوزه دانش و به صورت نهشته‌های با ضخامت کمتر از 1 سانتی‌متر در بستر زهاب‌ها یافت می‌شود. کالی‌های ثانویه پیکرینگیت، هالوریتیت و زیپس به رنگ سفید مایل به زرد در

جدول 2: شاخص درجهیถب شدگی زهاب‌های معدنی اسیدی و خشکی تا قابلیت در معدان کارمید

<table>
<thead>
<tr>
<th>ماده</th>
<th>CA-W1</th>
<th>CA-W2</th>
<th>CA-W3</th>
<th>CA-W4</th>
<th>CA-W5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Al(OH)₃</td>
<td>-1.0</td>
<td>-0.8</td>
<td>-0.7</td>
<td>-0.6</td>
<td>-0.5</td>
</tr>
<tr>
<td>K₂SO₄</td>
<td>-1.49</td>
<td>-1.5</td>
<td>-1.5</td>
<td>-1.5</td>
<td>-1.5</td>
</tr>
<tr>
<td>CaCO₃</td>
<td>0.3</td>
<td>0.1</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>BaSO₄</td>
<td>-1.4</td>
<td>-1.4</td>
<td>-1.4</td>
<td>-1.4</td>
<td>-1.4</td>
</tr>
<tr>
<td>SrSO₄</td>
<td>-1.2</td>
<td>-1.2</td>
<td>-1.2</td>
<td>-1.2</td>
<td>-1.2</td>
</tr>
<tr>
<td>PbCO₃</td>
<td>-0.9</td>
<td>-0.9</td>
<td>-0.9</td>
<td>-0.9</td>
<td>-0.9</td>
</tr>
<tr>
<td>FeCO₃</td>
<td>-1.7</td>
<td>-1.7</td>
<td>-1.7</td>
<td>-1.7</td>
<td>-1.7</td>
</tr>
<tr>
<td>CdCO₃</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
</tr>
<tr>
<td>MnO₂</td>
<td>-1.3</td>
<td>-1.3</td>
<td>-1.3</td>
<td>-1.3</td>
<td>-1.3</td>
</tr>
<tr>
<td>Mn₂O₃</td>
<td>-1.3</td>
<td>-1.3</td>
<td>-1.3</td>
<td>-1.3</td>
<td>-1.3</td>
</tr>
<tr>
<td>Fe₂O₃</td>
<td>-1.3</td>
<td>-1.3</td>
<td>-1.3</td>
<td>-1.3</td>
<td>-1.3</td>
</tr>
<tr>
<td>Fe₃O₄</td>
<td>-1.3</td>
<td>-1.3</td>
<td>-1.3</td>
<td>-1.3</td>
<td>-1.3</td>
</tr>
<tr>
<td>CaMg(CO₃)₂</td>
<td>-2.7</td>
<td>-2.7</td>
<td>-2.7</td>
<td>-2.7</td>
<td>-2.7</td>
</tr>
<tr>
<td>Fe₂O₃</td>
<td>-1.3</td>
<td>-1.3</td>
<td>-1.3</td>
<td>-1.3</td>
<td>-1.3</td>
</tr>
<tr>
<td>Fe₂O₃</td>
<td>-1.3</td>
<td>-1.3</td>
<td>-1.3</td>
<td>-1.3</td>
<td>-1.3</td>
</tr>
<tr>
<td>Fe₂O₃</td>
<td>-1.3</td>
<td>-1.3</td>
<td>-1.3</td>
<td>-1.3</td>
<td>-1.3</td>
</tr>
</tbody>
</table>

الگه نهشته‌های ثانویه زرد مایل به فهوم‌های ناتوروزوموبیت ب- کاکی‌های سفید مایل به زرد پیکرینگیت، هالوریتیت، زیپس.
بحث و برداشت

از نظر شرایط تشکیل زغال‌سنگ‌های کاراملد از نوع درجا و به‌محیط‌های آب‌شیرین (مداری) وابسته است [12]. میزان خاکستر زغال‌سنگ‌های کاراملد بین 0.3 تا 0.8 درصد در نوسان است و در گروه کیمیایی قرار می‌گیرد [15,16]. شرایط تشکیل زغال‌سنگ‌های نوع درجا زا باید مناسب‌سازی با اینکه به‌طور تقریبی است، که منجر به کاهش سطحی درصد خاکستر می‌شود [21]. میزان گذشتن زغال‌سنگ‌های کاراملد کمتر یک درصد است و درگذشتن زغال‌سنگ‌های گردن کم رده بندی ایندیکس است. میزان گذشتن زغال‌سنگ‌های کاراملد به‌طور دماوند در محلات کنار آب و هوای مناسب نشان می‌دهد [22]. زغال‌سنگ‌های کاراملد از نظر بزرگی و کوچکی مواد زا (دربر) به صورت پرتویی و به ندرت کالکوپرتی حضور دارد. پرتو پوسیدر به صورت یولکی، رهن‌های و شکاری‌های نیمه‌شبکی‌دار و افسان در لایه‌های زغال‌سنگ و به صورت افسان‌های آریل‌زهیتی در حفره‌های کوچک در لایه‌های مشکی‌تری ساخته شده است. لایه‌های زغال‌سنگ اغلب با لایه‌های آریل‌زهیتی به شکلی خاکستری تیره در پرتویی از طرفی همراه است که به‌طور توده‌ای هستند. آب‌شیرینی زغال‌سنگ‌های کاراملد درون گزارش شده است [24]. در میزان پرتویی به از خاکستر زغال‌سنگ‌های کاراملد با اینکه به‌طور دماوند در محلات کنار آب و هوای مناسب نشان می‌دهد [22]. زغال‌سنگ‌های کاراملد از نظر بزرگی و کوچکی مواد زا (دربر) به صورت پرتویی و به ندرت کالکوپرتی حضور دارد. پرتو پوسیدر به صورت یولکی، رهن‌های و شکاری‌های نیمه‌شبکی‌دار و افسان در لایه‌های زغال‌سنگ و به صورت افسان‌های آریل‌زهیتی به شکلی خاکستری تیره در پرتویی از طرفی همراه است که به‌طور توده‌ای هستند. آب‌شیرینی زغال‌سنگ‌های کاراملد درون گزارش شده است [24]. در میزان پرتویی به از خاکستر زغال‌سنگ‌های کاراملد با اینکه به‌طور دماوند در محلات کنار آب و هوای مناسب نشان می‌دهد [22]. زغال‌سنگ‌های کاراملد از نظر بزرگی و کوچکی مواد زا (دربر) به صورت پرتویی و به ندرت کالکوپرتی حضور دارد. پرتو پوسیدر به صورت یولکی، رهن‌های و شکاری‌های نیمه‌شبکی‌دار و افسان در لایه‌های زغال‌سنگ و به صورت افسان‌های آریل‌زهیتی به شکلی خاکستری تیره در پرتویی از طرفی همراه است که به‌طور توده‌ای هستند. آب‌شیرینی زغال‌سنگ‌های کاراملد درون گزارش شده است [24]. در میزان پرتویی به از خاکستر زغال‌سنگ‌های کاراملد با اینکه به‌طور دماوند در محلات کنار آب و هوای مناسب نشان می‌دهد [22]. زغال‌سنگ‌های کاراملد از نظر بزرگی و کوچکی مواد زا (دربر) به صورت پرتویی و به ندرت کالکوپرتی حضور دارد. پرتو پوسیدر به صورت یولکی، رهن‌های و شکاری‌های نیمه‌شبکی‌دار و افسان در لایه‌های زغال‌سنگ و به صورت افسان‌های آریل‌زهیتی به شکلی خاکستری تیره در پرتویی از طرفی همراه است که به‌طور توده‌ای هستند. آب‌شیرینی زغال‌سنگ‌های کاراملد درون گزارش شده است [24]. در میزان پرتویی به از خاکستر زغال‌سنگ‌های کاراملد با اینکه به‌طور دماوند در محلات کنار آب و هوای مناسب نشان می‌دهد [22]. زغال‌سنگ‌های کاراملد از نظر بزرگی و کوچکی مواد زا (دربر) به صورت پرتویی و به ندرت کالکوپرتی حضور دارد. پرتو پوسیدر به صورت یولکی، رهن‌های و شکاری‌های نیمه‌شبکی‌دار و افسان در لایه‌های زغال‌سنگ و به صورت افسان‌های آریل‌زهیتی به شکلی خاکستری تیره در پرتویی از طرفی همراه است که به‌طور توده‌ای هستند. آب‌شیرینی زغال‌سنگ‌های کاراملد درون گزارش شده است [24]. در میزان پرتویی به از خاکستر زغال‌سنگ‌های کاراملد با اینکه به‌طور دماوند در محلات کنار آب و هوای مناسب نشان می‌دهد [22]. زغال‌سنگ‌های کاراملد از نظر بزرگی و کوچکی مواد زا (دربر) به صورت پرتویی و به ندرت کالکوپرتی حضور دارد. ПРСУБ УЧЕНІВ КАМ'ЯНИХ ДО ГОЛОВНИХ КОМУНІКАЦІЙ

2-Alkaline mine drainage
سطح میکروستری در داخل افه‌کن‌های خالی یا در زده‌ها و شکستگی‌های زغال سنگ و آرزوزی‌ها، حضور اکسیدهای ناشی از ه، اکسیدهای ناشی از H₂، کربنات‌های یونی مانند Fe(OH)₃، Cu(OH)₂ و Zn(OH)₂، و ترکیبات نیتریژنی، مانند NO و N₂O، باعث تولید مقدار زیادی از 
سیستم ویولاکتیک شده می‌شوند. در این محیط تولید 
می‌شود: 

\[
H^+ + CO_3^{2-} \rightarrow H_2CO_3
\]

در این محیط تولید می‌شود: 

\[
4H^+ + 4CO_3^{2-} \rightarrow 4H_2CO_3
\]

سیستم ویولاکتیک شده می‌شوند. در این محیط تولید 
می‌شود: 

\[
4H^+ + 4CO_3^{2-} \rightarrow 4H_2CO_3
\]
کربناتی نظیر کلریت، دولومیت، آرگونیت و رودکروسیت تحت اشیاء است. همچنین به روشی‌های اطرافی غلظت سولفات و فلزات است. با پرتوی ایکس حضور کالری اورتراتوسیستم و اکسیدها و هیدروکسیدهای اورترات، در بررسی مشارکت، دیگری مختص می‌شود که تکیه شیمیایی زهاب‌های اسیدی Ca-Mg-SO₄ است. با مانوند نمونه لرب و روز سکون به نوع هیدروکسیدی و اکسیدها و هیدروکسیدهای اورتراتیهای است. در حالی که کالری‌های کربناتی، دولومیت، آرگونیت و رودکروسیت تحت اشیاء است.

[22] همچنین در بررسی‌های دیگری مدل‌سازی هیدروزیمایی زهاب‌های اسیدی [24، 29، 31 و 33] نشان داد، شامل درجه اشیاء شدگی براو کالری‌های هیدروکسیدی‌های سولفات و اکسیدها و هیدروکسیدهای آورتراتی اورتراتیهای آلومینیوم اب اشیاء است. در حالی که کالری‌های کربناتی، دولومیت، آرگونیت و رودکروسیت تحت اشیاء است.


تشکیل زهاب اسیدی در معدن 13 معدن کاربردی بین‌النهری از این رو آمده است که مقدار اسید تولید شده بیشتر از قابلیت خشی سایه سنگ می‌باشد. است بطوری که منجر به کاهش pH تا 4.09 شده است. ویرگ‌های شیمیایی آسیب‌های تحلیل شده از 30 معدن متروک زغالسنگ در انگلستان و استرالیا مورد بررسی قرار گرفتند [1] در این بررسی معلوم شد که در خاک‌های پتانسیل اسیدی با کالری‌های کربناتی خشی نمی‌شود مانند هر pH ماهیت اسیدی پیدا کرده و با فلزات به ویژه آلومینیوم شده است. نمودارهای پایه‌بندی، دور و جاده‌بانک آن است که تکیه شیمیایی زهاب اسیدی در معدن کاربردی از نوع تیپ سولفاتی با کالری‌های بیشتر می‌باشد. مدل سازی هیدروزیماییهای نشان داد که کالری‌های زغالسنگ، آلومینیوم، هیدروکسیدهای آورتراتیهای آلومینیوم به طور غالب ابر اشیاء است. در حالی که کالری‌های

شکل 8 مدل شبیه‌سازی شده از روند تشکیل زهاب‌های معدنی اسیدی و خشی‌هاین با معدن کاربردی.
کردن. زهاب‌های معدنی خشیع می‌تواند به پایداری با چندین مصرف دهد که بر این مفهوم مبتکر نه دارد. بنابراین در جدول آب‌های سطحی نظر رودخانه‌ها چتر مافی می‌شود که باعث مشکلات زیست محیطی شود. بنابراین سه حرکت از در زیر زمان توجه

SO₄, PO₄, As, Sr, Ca, Sb

 فيه بایستی از جد ماحتی بودن میزان

می‌تواند منجر به آلودگی آب زیرزمینی منطقه شود. می

Bi و بدنی این هرگاه می‌باشد از این توان منجر به متغیری

به شدت کاهش می‌یابد که قابلیت آلودگی‌ها

شود (شکل 9). جنگل خیابا باد از طبیعی، یکی از مهم‌ترین

عامل‌های لایه‌ای محوری محیط زیست بایستی در گزارش‌های غلط

بالا و تماس طولانی های همان‌ویژه منطقه دسترسی یک

پیشنهاد می‌شود. پژوهش این متروک در حال حاضر در

کارمزد که دیلی نیود بهبودی به حضوری زغالی

به آن می‌بوده است. به فرآم کردن امکانات لازم مورد

بررسی قرار گرفت. در این مورد از آلودگی آب‌های

زیرزمینی جل‌گیری شود. با توجه به اینکه در زغال‌سنگ‌های

Sr, Ba, Nb, Ce, Zr, Rb, V

کارمزد تمکرک و تیو و عناصر

Y, Cr, Co, Ni, Cu, Zn, Pb, Mo, W, Th, U

به منابع

پیشنهاد از غلاب غلاف‌سنگ‌های جهان است [12] این امر با

تحت قرار می‌آمد. محیط زیست به‌عوامل متغیر است

به همراهی این‌ها تمکرک فلزات سنگین و عناصر فرعی و نادر را به

دب‌دیار و نیز مؤقت حضوری زغالی کارمزد که در البرز

مرکزی و ناحیه مولتی‌جزئی خیزی واقع شده است

همیت آن را بسیار بیچرده می‌کند. به عوامل متغیر در معدن

زغال‌سنگی و اکلنکرسن با تعطیلی شدن معادن در سال

1392 و عدم کشیدن فضای‌های معدنی، ورود زهاب‌های

آب‌هایی به pH = 4.2 به دوستان کلی منجر نمی‌باشد کامل

حیات آبی با شاخص 12 کیلومتری شده است [19] همه‌گانه

با رابطه انتقال و فلزات در زهاب‌های اسیدی منجر به آلودگی آب‌های

سطحی و زیرزمینی شده است.

7. Jambor J.L., Blowes D.W., "Theory and Applications of mineralogy in Environmental studies of sulfide- Bearing mine waste", In: Cabri,
[25] APSR. 9E7

[16] شرکت زغالسک سامان، "گزارش مرتبه باختر کرمان" (1381) ص.
[20] Parkhurst D.L., Thorstenson D.C., Plummer L.N., "PHREEQE a computer program"


[37] ناصحی ح. ل، بررسی هیدروشیمیایی احیا و حوضه قصره سوردشت گرگان، پایان نامه کارشناسی ارشد، دانشگاه شهید جمهور اهواز، دانشکده علوم (1380) ص 119.

[38] سازمان حفاظت محیط زیست، تشخیص و استانداردهای زیست محیطی، انتشارات دایره سی و (1382) ص 150.