تحلیل ساختاری، خاستگاه و شرایط دگرگشایی زون های بررسی شکل پذیر در توده‌
گرایی‌نویی ده‌ن-و گرب مشهد

بحث رحمی، حسن‌علی زاده
دانشگاه فردوسی مشهد، دانشکده علوم گیاهی، زمین‌شناسی

چکیده: در مجموعه‌ی دگرگونی و افولولوژی مشهد توده‌های گرایی‌نویی در سه مرحله‌ی میانکثیره، نفود و کرده‌اند. در اولین مرحله از میانکثیره، نفوذ بهترین رتبه‌ی دستگاه‌های ویژه و زودتر از سنجاقسازی، نفوذ کرده‌اند. این نفوذ نسبت به زون بررسی شکل پذیر دارای روند غربی-جنوب شرقی قطب شده است. این زون‌های بررسی شکل پذیر، تغییرات ساختاری شکل پذیر شدیدی را نشان می‌دهند. سنگ‌های نفوذی در این زون‌های بررسی به پروتو میلونیت و میلونیت و اولترا میلونیت‌های دارای باره‌های پیش میلونیتی و خلوت‌های کمی‌شده کانی با میل انداز تبدیل شده‌اند. نشانگر فصل و سمت و سوی رنگ نظری ناشی‌اند که تغییرات شکل پذیر با حکت راسته‌ای راستگرد همراه با مولفه‌ی مکوس و قابل تفسیر، به یک رژیم نواحی فشاری و استتود شده است، که در سنگ‌های میلونیتی، ریز ساختارهای متنوعی نظری‌های خاموشی موجی و صفحه شکل پذیری، شکستنی و برشی هستند. نجات سیستمی دوباره در ناحیه‌ی دیگر احتمالی در دامنه‌ی SGR و BLG در طول دیتابیکی از نوع S-C، جینه‌ی نماینده، پورپی و کلاس‌های هستند که تغییرات ساختاری شکل پذیری، تبدیل دانه ریز، ناحیه‌ی مشترکی ناشی‌اند که زبان‌های شعله‌ای در فلز پیش‌های که نشان دهنده‌ی نواحی فشرده‌ی شکل پذیر در دامنه‌ی 300-000 درجه سنگی و گر (پردازه‌ی رختاری) با باید به شکل سبز و یا باید امپولیت) ایجاد می‌گردد. ناحیه‌ی مرزی و روابط سیستمی سنگ‌شناسی موجود در منطقه‌ی مورد بررسی بیانگر آن است که زون‌های بررسی شکل پذیر در خلاصه کوه‌های سیمریور و در بازه‌ی زمانی نوینی تا زورا سیک بخش تشکیل شده‌اند.

واژه‌های کلیدی: زون‌های بررسی شکل پذیر، دیوریتی ده‌ن، مشهد

مقدمه

زون‌های بررسی با تغییرات ساختاری شکل پذیر، به‌همراه‌ی باریک‌ن می‌تواند در حالت سانتی‌متری تمرکز گر را ناهماهه‌ی نسبت به پردازه‌ی خاکی ساختار یافته‌اند. این ساختارهای با به‌هم‌اندازه‌ی با تغییرات ساختاری مشابه در

*نویسنده مسول، تلفن: +۹۸ ۷۲۹۷۳۲۷۲۷۲۷۲۷۲۷۲۷۲۷۲۷۲۷۲۷۲۷۲۷۲۷۲۷۲۷۲۷۲۷۲۷۲۷۲۷۲۷۲۷۲۷۲۷۲۷۲۷۲۷۲۷۲۷۲۷۲۷۲۷۲۷۲۷۲۷۲۷۲۷۲۷۲۷۲۷۲۷۲۷۲۷۲۷۲۷۲۷۲۷۲۷۲۷۲۷۲۷۲۷۲۷۲۷۲۷۲۷۲۷۲۷۲۷۲۷۲۷۲۷۲۷۲۷۲۷۲۷۲۷۲۷۲۷۲۷۲۷۲۷۲۷۲۷۲۷۲۷۲۷۲۷۲۷۲۷۲۷۲۷۲۷۲۷۲۷۲۷۲۷۲۷۲۷۲۷۲۷۲۷۲۷۲۷۲۷۲۷۲۷۲۷۲۷۲۷۲۷۲۷۲۷۲۷۲۷۲۷۲۷۲۷۲۷۲۷۲۷۲۷۲۷۲۷۲۷۲۷۲۷۲۷۲۷۲۷۲۷۲۷۲۷۲۷۲۷۲۷۲۷۲۷۲۷۲۷۲۷۲۷۲۷۲۷۲۷۲۷۲۷۲۷۲۷۲۷۲۷۲۷۲۷۲۷۲۷۲۷۲۷۲۷۲۷۲۷۲۷۲۷۲۷۲۷۲۷۲۷۲۷۲۷۲۷۲۷۲۷۲۷۲۷۲۷۲۷۲۷۲۷۲۷۲۷۲۷۲۷۲۷۲۷۲۷۲۷۲۷۲۷۲۷۲۷۲۷۲۷۲۷۲۷۲۷۲۷۲۷۲۷۲۷۲۷۲۷۲۷۲۷۲۷۲۷۲۷۲۷۲۷۲۷۲۷۲۷۲۷۲۷۲۷۲۷۲۷۲۷۲۷۲۷۲۷۲۷۲۷۲۷۲۷۲۷۲۷۲۷۲۷۲۷۲۷۲۷۲۷۲۷۲۷۲۷۲۷۲۷۲۷۲۷۲۷۲۷۲۷۲۷۲۷۲۷۲۷۲۷۲۷۲۷۲۷۲۷۲۷۲۷۲۷۲۷۲۷۲۷۲۷۲۷۲۷۲۷۲۷۲۷۲۷۲۷۲۷۲۷۲۷۲۷۲۷۲۷۲۷۲۷۲۷۲۷۲۷۲۷۲۷۲۷۲۷۲۷۲۷
زمره‌ساختی خاصی نیوته و تقریباً در تمامی رژیم‌های زمین‌زمین‌ساختی ترکیب مشابهی را دارد. در این زون‌ها عموماً سنگ‌ها به شکل مولیوئیت برخوردار و خطوط‌های کششی به شکل نیوته بیشتری دیده می‌شوند. مولیوئیت‌ها عموماً دارای ساختارهای مربوط به مغزکوبه‌هایی هستند که بله شرایط دردسری به آنها تعلیم می‌دهند. نیوتشین‌ساختی نیز در نقاط جهان به رنگ‌های مختلف و تحلیل نکات و چگونگی کشش دینامیک و جنبش زون‌ها برای ترکیب نشان داده می‌شود. بررسی‌های انجام شده روی مولیوئیت‌ها در زون‌های کاملاً دیگری به شکل کاملاً متفاوتی که عهده‌داری

رییس، علی زاده

مجله پرورش‌های و کانی شناسی ایران

۳۹۸
کانی‌های کمیاب این توده عبارتند از آبانتی، زیرکن و اپلمنیت و کانی‌های ثانویه آن را کریت، کلسیت و کمی اپیدوت تشکیل می‌دهند. در ختمنی‌های این توده، بی‌هوتهای سمت‌گیری ترجیحی ضعیف‌تر نشان می‌دهند و در بعضی مناطق زنبورهایی از یکدیگر متفاوت و تیرگی در آن دیده می‌شود. توده‌های دیگر در بخش شمال و شمال غربی منطقه مورد بررسی در اطراف هورنلند بیونیت تونلیت است. هورنلند بیونیت تونلیت دارای پلاژیوکلاس، فلدسپات، پتاسیم، کوارتز، بیونیت و به‌مدت‌های افیسیولوگی کلیپیتیوسکن است. کانی‌های کمیاب این بخش شامل آبانتی، زیرکن و اپلمنیت و کانی‌های ثانویه آن شامل کریت، اپیدوت و کلسیت است.[15] از بین چهار نقطه به روند اولین سرم، سن ۴ ± ۲۰ میلیون سال (معادل تراس پس‌نوربین) را برای توده‌های دی نواران کرده است.

شکل ۱: نمای زمین‌شناسی خلاصه شده از کوه‌های بینالو (افشارس با تغییر از ۱۹۹۱ Alavi، ۱-۲ Alavi، ۳-۴ Alavi، ۱۲۰۰۰۰۰)
شکل 2 الف) نمایی از زون‌های پرشی در توده‌گرانودوبریتی-تونالیتی به نو. مرات زون پرشی با خط پیچیده شده است. (نگاه به سمت شمال غربی). ب) مرز مشخص سه‌گانه‌های تغییر ساختار به تونالیتی در زون پرشی و سه‌گانه در توده‌های د به نو (پ) تصویری نشان می‌کند از زون پرشی در این تصویر کلیوز میلونیته به شکل مشبک اطراف بخش‌های عدسی سطحی از سنگ با درگشک‌کن را احاطه کرده‌اند.

ویژگی‌های مزوسکوپیک زون‌های پرشی تونالیتی-گرانودوبریتی ده نو در زون‌های پرشی تحت تأثیر تغییرات ساختاری شکل‌پذیری بافت میلونیته را نشان می‌دهد. میلونیته‌ها بر اساس نسبت پورفیرولاسست به مائل به قابل رده‌بندی در رده‌پروتورونالیت، میلونیته‌هستند (شکل 3الف و ب) تغییرات مشخص و سه‌گانه‌های میلونیته‌ها می‌باشند. در این زون‌های پرشی، بروز میلونیته‌ها با گسترش برگوارهای نافذ میلونیته‌هستند (شکل 3ب) برگواره میلونیته در بخش‌های مناطقی از زون پرشی ویژگی ساختار S-C را به نمایش می‌گذارد (شکل 3ب) برگواره‌ها ی میلونیته‌ها در بخش‌های منطقه نمایش چنین‌یک‌یک با میل زیاد چنین خورده‌اند (شکل 3ث) چنین‌های دارای لولای مدیر نا
شکل ۲. تصویر بررسی‌گرگر (استریوگرافیک) فقط سطوح کليپاز میلونیتی (مربع توخالی)، خطواردهای کشیده کالای (مثبت توخالی) و محور چین-های کشیده (مربع توپیر).

ویژگی‌های مکرووسکوپی ریز ساختارها در زون‌های برشي
سنگ‌های میلونیتی در زون‌های برشي مورد بررسی از دو بخش زمينی و بورفیروکلاست شکل‌داده‌اند. بورفیروکلاست‌ها شامل درون‌های برخی از جنس کوارتز، فلدسپات و بیوتین هستند که در زمینه‌ی از دراز ریز دانه و تجدید تبلور یافته کوارتز و فلدسپات قرار گرفته‌اند. برگزاری میلونیتی در این سنگ‌ها به صورت دو سطح C و C' دیده می‌شود، این برگواره‌ها از تجمع و

شکل ۳. تصویر بررسی‌گرگر (استریوگرافیک) فقط سطوح کليپاز میلونیتی در بخش‌های میلونیتی گسترش پیشتری یافته است. (ب) نمایی نزدیک تر از میلونیت‌ها و پروتومیلونیت‌ها در زون‌های نزدیک به مورد بررسی است. (ب) نمای‌های مختلف در زون‌های نزدیک به مورد بررسی است. (ب) نمای‌های مختلف در زون‌های نزدیک به مورد بررسی است.
مهاجرت مرز دانه‌ای (Grain boundary migration) به‌طور لخته در آمده است و تجیدید BLG تبلور دینامیکی از نوع قلم‌های به مقدار ضعیف در مرز دانه (Bulging Recrystallisation) ها و نیز در راستای شکستگی‌های برخی و به ویژه در نقاط تمام سه گاه دانه‌ای کوارتر روی داهه است (شکل 5). این ریز ساختارها گویای تاثیر فراگیر درفتگی ساختار شیشه کانی است.

برای این کوارترهای در فاز زون‌های برخی عمدتاً تجلیل نشده است و به‌طور لخته در آمده است و تجیدید BLG تبلور دینامیکی از نوع قلم‌های به مقدار ضعیف در مرز دانه (Bulging Recrystallisation) ها و نیز در راستای شکستگی‌های برخی و به ویژه در نقاط تمام سه گاه دانه‌ای کوارتر روی داهه است (شکل 5). این ریز ساختارها گویای تاثیر فراگیر درفتگی ساختار شیشه کانی است.

شکل 5 تصاویر میکروسکوپی از ریز ساختارهای کوارتر در زون‌های برخی مورد بررسی در دور PL (طول تناوب برای 2.3 میلیمتر است):
الف) کنیک شدگی و شکستگی در زانه‌های کوارتر (ب) خاموشی پنبه‌ای در زانه‌های کوارتر (پ) تغییرات در دانه‌های کوارتر (گوسه‌های پایین سمت راست ب) گوسه‌های بالای سمت چپ (ت) نوارها و شکستگی‌های برخی در زانه‌های کوارتر (تجهیز تبلور دینامیکی از نوع مزر دانه‌ای کوارتر (ج) خاموشی سطحی شطرنجی در دانه‌های کوارتر (چ) اریزان‌های کوارتر در میلونیت‌ها (ح) ریز ساخت هسته-بینش در دانه‌های کوارتر در میلونیت‌ها.
Domino type fragmented porphyroclast
شناختی و در تحلیل جنبهی این زون ها به کار رفته‌اند. برای مشاهده و بررسی نشانگرها سمت و سوی برش، مقطع نازکی از سنگ‌های میلیونی به مواد خلوت‌سازی و عمود بر برخورد میلیونی نه‌هد شدن، نشانگر سمت و سوی برش مشخص در سنگ‌های میلیونی به رنگ زرد سه‌تایی، بر روی و روپرون‌های سنگ‌های میلیونی به رنگ سایه‌ای در سمت سر و سوی برش می‌باشد. از پیروکلاست‌های ظلت‌نام یکسان، برخورد میلی‌های تاریخ‌نگاری نشان‌گر برشی می‌باشد، نشانگر کاست‌های عامل نشان‌گر سمت و سوی برش می‌باشد. بنابراین نتایج همگام شکل‌بندی این زون های برشی بر پایه شکل‌بندی نشانگر میلی‌های سه‌تایی و سوی برش راست‌افز جامعه‌ای و پتریولی‌های سنگ‌های میلی‌های برشی مورد بررسی دیده می‌شوند. بنابراین نتایج همگام شکل‌بندی نشان‌گر سمت و سوی برش راست‌افز جامعه‌ای و پتریولی‌های سنگ‌های میلی‌های برشی مورد بررسی دیده می‌شوند. بنابراین نتایج همگام شکل‌بندی نشان‌گر سمت و سوی برش راست‌افز جامعه‌ای و پتریولی‌های سنگ‌های میلی‌های برشی مورد بررسی دیده می‌شوند. بنابراین نتایج همگام شکل‌بندی نشان‌گر سمت و سوی برش راست‌افز جامعه‌ای و پتریولی‌های سنگ‌های میلی‌های برشی مورد بررسی دیده می‌شوند. بنابراین نتایج همگام شکل‌بندی نشان‌گر سمت و سوی برش راست‌افز جامعه‌ای و پتریولی‌های سنگ‌های میلی‌های برشی مورد بررسی دیده می‌شوند. بنابراین نتایج همگام شکل‌بندی نشان‌گر سمت و سوی برش راست‌افز جامعه‌ای و پتریولی‌های سنگ‌های میلی‌های برشی مورد بررسی دیده می‌شوند. بنابراین نتایج همگام شکل‌بندی نشان‌گر سمت و سوی برش راست‌افز جامعه‌ای و پتریولی‌های سنگ‌های میلی‌های برشی مورد بررسی دیده می‌شوند.
شکل 6 تصاویر میکروسکوپی از ریز ساختارها در فلزسیات‌ها در زون‌های برخی مورد بررسی در نور XPL (طول تصور برای 3 μm یا 1,3 میلی‌متر است).
الف) خم‌پایی مالک‌ها در پلازوکلازا (پ) گسترده شکستگی‌ها، سطوح لغزش در فلزسیات‌ها (کلازا) ب) ساختار بوشینگی‌های دومینوی در پلازوکلازا (پ) در نور PPL و (ت) در نور XPL (T) ریز ساختار دو مینیوپی در پلازوکلازا. این ساختار معرف سمت و سوی برخ راستگرد در زون‌های برخی مورد بررسی است. (ج) ماکل‌هاي تغییر ساختاری در پلازوکلازا (چ) حاشیه لخته‌ای (lobate) میان کوارتز و فلزسیات‌ها (ی) پرتاب‌های شعله‌ای در فلزسیات‌ها قلبی.
شکل ۷ (الف) چین‌خوردنگی و زولیدگی نوار باند در بلورهای بیوتیت در میلونیت‌ها (ب) ریز ساختار گسترش می‌باشد و ساختار S-C در میلونیت‌ها در نور (پ) PPL و (ج) XPL تولید گردیده است.

در دماه بالاتر (۷۰۰-۴۰۰°C) تغییرات دگرگشکل و نیز خاموشی موجی در کوارتز گسترش می‌یابد. توازن تبلور دینامیکی به شکل قلمی‌کاری در این شرایط دمایی و بیشتر در حاشیه‌های کوارتز و در راستای سطوح شکستگی ایجاد می‌شود [۲۱]. برخی تغییرات در این رژیم دمایی به دلیل تغییر در شکل‌های فلزسازی، تغییر در سطح و تغییر در ایالتات شاخص خاموشی‌گری و گسترش شکستگی دیگر به دنیا می‌رود.

در شرایط دمایی بالا (۵۰۰°C)، تجدید تبلور دینامیکی در این شرایط به صورت GBM و تحت تأثیر فرااردیس تجدید تبلور و مهاجرت مزر دانه‌ای صورت می‌گیرد [۲۱]. خاموشی موجی صفحه شطرنجی یا گسترش ریزدانه‌های بلوری در دانه‌های کوارتز در این شرایط ایجاد می‌شود. حاشیه دانه‌های کوارتز در آن شرایط به صورت GBM و جرخت ریز دانه‌های SGR به شکل ۷ (الف) چین‌خوردنگی و زولیدگی نوار باند در بلورهای بیوتیت در میلونیت‌ها (ب) ریز ساختار گسترش می‌باشد و ساختار S-C در میلونیت‌ها در نور (پ) PPL و (ج) XPL تولید گردیده است.

3. Subgrain Rotation
کوارتز به صورت بریده و آبی‌رنگ است و دائم در نتیجه تجدید تبلور سریع ظاهری به کرنش یا به نامیش می‌گذرد. ریز ساختاری موجود در کوارتز در سنگ‌های میلیون‌های زون‌های بریده مورد بریز بانگار تغییرات ساختاری واندرک در شبکه کناره‌ها نظیر گسترش و تشکیل ریزدانه‌ها، خاموشی مویی، تبعیض‌های دیگریکی به شکل ریزدانه‌ها، اسامی SGR و BLG است. دانه‌های فلدسپات نیز در این زون‌های بریزی، ریز ساختاری شکننده و شکل‌بندی را به نمایش می‌گذارد که از جمله می‌توان به شکستگی‌ها، بودن شدگی، خسارتگی‌ها، خاموشی مویی و تجدید تبلور دیگریکی اشاره کرد. ساختاری موجود که به تفصیل در بخش قبل به آن‌ها اشاره شد، بانگار ریزدای مهیاً حاکم بر زون‌های بریزی مورد بریس هستند. با مقایسه ریز ساختاری در کوارتز، فلدسپات و بیوتیت در میلیون‌های زون‌های بریشی مورد بریسی از اکو‌گی می‌دانند که به شکل میلیون‌های زون‌های بریشی مورد بریسی اکسپلودین‌ها یا «بریشی» - منظور از تبدیل ناگهانی در فیزیولوژی ساختاری شده. بانگار ریزدایی که در میلیون‌های زون‌های بریشی تبدیل و در شکل‌بندی گردیده قطعی با شرایط دمایی در زون شیست سبی سرخ‌های قلبی می‌باشد و با تک تک تغییرات معادل ۱۰ کیلومتر در بیشتر.

بررسی سدرگشکی در زون‌های بریشی

تبیین سن زون‌های بریشی در منطقه‌های مورد بریسی به دلیل عدم وجود اطلاعات دقیق ایزوتوپ‌های کار داشته‌اند، ولی می‌توان با تکنیک بر شواهد زمین‌شناسی و نیز تقدیم و ناک‌افزار موجود در منطقه‌های مورد بریسی و نیز ارتباط آن‌ها به یکدیگر، پیش‌بینی ریزدانه برای سازگاری ستون سناریوی میدانی و سرعت می‌باشد. ضمناً در این زون‌های بریشی است. 

بررسی نظریات ساختاری در قوارتز، فلدسپات و بیوتیت و چگونگی تبدیل‌های دیگریکی در میلیون‌های کوارتز، و این نظریات ساختاری در این زون‌های بریشی در شرایط سبی سرخ‌های قلبی می‌باشد. منابع در این زون‌های بریشی است.

(۴) Strain free
The ductile shear zone in granitoid of the Mashed Ophiolite, NE Iran", Journal of Science, Islamic Republic of Iran, 17 (2006), 127-145.


References:


