عوامل موثر بر حضور یا عدم حضور کاتیو کلریتید در سنگهای رسی دگرگون شده

منطقه بلند پرچین و پشتک

عادل ساکی*

گروه زیمین شناسی دانشکده شهید جمیران اهواز

دریافت مقاله: ۳۱/۲/۸۸، نسخه نهایی: ۱۴/۳/۸۸

چکیده: ریزساخته‌ها، سنگ‌های سنگ‌نگارشی و روابط صحرایی نشان می‌دهد که سنگهای رسی دگرگون شده در منطقه بلند پرچین و پشتک واقع در شمالغرب ایران تحت تأثیر یدک درگوگن‌های جنگلی فعالیت داشته‌اند. مجموعه کاتیو کلریتید در سنگ‌های رسی دگرگون شده کلاسیک نماینده گروه است. کانون‌های اوج درگوگن در این سنگ‌ها عبارتند از: گرانیت، استترولیت، ژلوپودیده‌های (آدنالوژیت/سیلیمانیت)، بیوئردیت، کلرینت، مسکوئیت و گالت. در حالی که سنگ‌های رسی دگرگون شده در منطقه پشتک بدون زیرگروه هستند و مجموعه کاتیو کلرینت بیشتر در این منطقه پیشی گرفته در حالی که در منطقه پشتک بدون فعالیت هستند و مجموعه کاتیو کلرینت در این منطقه پیشی گرفته و در منطقه پشتک بدون فعالیت هستند و مجموعه کاتیو کلرینت در این منطقه پیشی گرفته و در منطقه پشتک بدون فعالیت هستند و مجموعه کاتیو کلرینت در این منطقه پیشی گرفته...
در این مقاله منطقه ریس دِگِرگونیهای شدنی منطقه بند پرچین و پشت‌کوک، تاثیر عواملی مانند ترکیب آنگونه‌ها و ترکیب سنگ ماده اولیه بر بیانوش و با عمد می‌باشد کلریتیه‌های مشخص شود. کلریتیه‌های معمولاً در سنگ‌های ریس دِگِرگونیهای شدنی از آلومبیوم و انر سریک به وجود می‌آید [5].

شکل ۱ اف: نقشه ساده نقشه‌ای زمین‌شناسی ساختاری ایران و جایگاه زمین‌شناسی منطقه ریس بزرگی (با تغییرات [11]. ب تغییرات زمین‌شناسی و ویا برداری منطقه ریس بزرگی (بلندارچین و پشت‌کوک) (گرفته شده از نقشه ۱۶۵ میلیون سال براورد شده است [12].

شکل ۱ ب: نقشه ساده نقشه‌ای زمین‌شناسی ساختاری ایران و جایگاه زمین‌شناسی منطقه ریس بزرگی (با تغییرات [11]. ب تغییرات زمین‌شناسی و ویا برداری منطقه ریس بزرگی (بلندارچین و پشت‌کوک) (گرفته شده از نقشه ۱۶۵ میلیون سال براورد شده است [12].
روش بررسی

پیس از بررسی‌های صحرایی، تعداد ۸۰ مقطع نازک میکروسکوپی و نظیر بررسی‌های سنگ تراکنی و رویت را برای مرور بررسی ۱۲۱ قرار گرفتند. نمونه‌های مرور از شیست‌های گرافیتی بُلد و پرچین و غیر گرافیتی پیش‌تر در بررسی‌های بَعِد انتخاب شدند. این نمونه‌ها به منظور بررسی عناصر الیافی، عنصر کمبود و عنصر نادر خاکی در آزمایشگاه دانشگاه OA-GRA, ME-ICP, مورد آنالیز شد. نتایج آن در جدول ۱ درآمدانه شده‌اند.

جدول ۱: مجموعه عناصر الیافی شیست‌های گرافیتی بُلد و پرچین و غیر گرافیتی پیش‌تر.

\[\text{جدول ۱: مجموعه عناصر الیافی شیست‌های گرافیتی بُلد و پرچین و غیر گرافیتی پیش‌تر.}\]

بلندترین:

\[\begin{array}{c|cccccccccc}
\text{Sample} & \text{SiO}_2 & \text{TiO}_2 & \text{Al}_2\text{O}_3 & \text{Fe}_2\text{O}_3 & \text{MnO} & \text{MgO} & \text{CaO} & \text{Na}_2\text{O} & \text{K}_2\text{O} & \text{P}_2\text{O}_5 & \text{H}_2\text{O} & \text{CO}_2 & \text{Sum} \\
\hline
P1 & 25.5 & 11.1 & 12.4 & 5.5 & 0.7 & 0.7 & 0.7 & 0.7 & 0.7 & 0.7 & 0.7 & 0.7 & 25.5 \\
P2 & 20.0 & 10.0 & 10.0 & 10.0 & 10.0 & 10.0 & 10.0 & 10.0 & 10.0 & 10.0 & 10.0 & 20.0 \\
P3 & 15.0 & 15.0 & 15.0 & 15.0 & 15.0 & 15.0 & 15.0 & 15.0 & 15.0 & 15.0 & 15.0 & 15.0 \\
P4 & 10.0 & 10.0 & 10.0 & 10.0 & 10.0 & 10.0 & 10.0 & 10.0 & 10.0 & 10.0 & 10.0 & 10.0 \\
P5 & 5.0 & 5.0 & 5.0 & 5.0 & 5.0 & 5.0 & 5.0 & 5.0 & 5.0 & 5.0 & 5.0 & 5.0 \\
P6 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\end{array}\]

\[\text{جدول ۱: مجموعه عناصر الیافی شیست‌های گرافیتی بُلد و پرچین و غیر گرافیتی پیش‌تر.}\]

\[\begin{array}{c|cccccccccc}
\text{Sample} & \text{SiO}_2 & \text{TiO}_2 & \text{Al}_2\text{O}_3 & \text{Fe}_2\text{O}_3 & \text{MnO} & \text{MgO} & \text{CaO} & \text{Na}_2\text{O} & \text{K}_2\text{O} & \text{P}_2\text{O}_5 & \text{H}_2\text{O} & \text{CO}_2 & \text{Sum} \\
\hline
\text{Mineral} & \text{St} & \text{St} & \text{St} & \text{Grt} & \text{Grt} & \text{Grt} & \text{Cld} & \text{Cld} & \text{Cld} & \text{Ms} \\
\hline
\text{SiO}_2 & 73.5 & 73.5 & 73.5 & 73.5 & 73.5 & 73.5 & 73.5 & 73.5 & 73.5 & 73.5 & 73.5 & 73.5 \\
\text{TiO}_2 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 \\
\text{Al}_2\text{O}_3 & 15.0 & 15.0 & 15.0 & 15.0 & 15.0 & 15.0 & 15.0 & 15.0 & 15.0 & 15.0 & 15.0 & 15.0 \\
\text{Fe}_2\text{O}_3 & 1.0 & 1.0 & 1.0 & 1.0 & 1.0 & 1.0 & 1.0 & 1.0 & 1.0 & 1.0 & 1.0 & 1.0 \\
\text{Fe}_3\text{O}_4 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 \\
\text{MnO} & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 \\
\text{CaO} & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 \\
\text{Na}_2\text{O} & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 \\
\text{K}_2\text{O} & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 \\
\text{Totals} & 99.5 & 99.5 & 99.5 & 99.5 & 99.5 & 99.5 & 99.5 & 99.5 & 99.5 & 99.5 & 99.5 & 99.5 \\
\end{array}\]

\[\begin{array}{c|cccccccccc}
\text{Structural Formulae on a basis of 28 oxygens} & 12\text{ oxygens} & 12\text{ oxygens} & 28\text{ oxygen} & 11 \\
\hline
\text{Si} & 2.8 & 2.8 & 2.8 & 2.8 \\
\text{Ti} & 0.1 & 0.1 & 0.1 & 0.1 \\
\text{Al} & 1.8 & 1.8 & 1.8 & 1.8 \\
\text{Cr} & 0.1 & 0.1 & 0.1 & 0.1 \\
\text{Fe}^3 & 0.1 & 0.1 & 0.1 & 0.1 \\
\text{Fe}^2 & 0.0 & 0.0 & 0.0 & 0.0 \\
\text{Mn} & 0.0 & 0.0 & 0.0 & 0.0 \\
\text{Mg} & 0.1 & 0.1 & 0.1 & 0.1 \\
\text{Ca} & 0.1 & 0.1 & 0.1 & 0.1 \\
\text{Na} & 0.1 & 0.1 & 0.1 & 0.1 \\
\text{K} & 0.1 & 0.1 & 0.1 & 0.1 \\
\text{Totals} & 3.0 & 3.0 & 3.0 & 3.0 \\
\end{array}\]

\[\text{جدول ۱: مجموعه عناصر الیافی شیست‌های گرافیتی بُلد و پرچین و غیر گرافیتی پیش‌تر.}\]
جدول 3 آلالیزهای معروف بوتیت، گارنت، کلریت، مسکویت، استارولیت و پلی‌کولریت در شیست‌های بلند پردیچ. فرمول ساختاری به ازای تعداد

<table>
<thead>
<tr>
<th>Sample</th>
<th>Mineral</th>
<th>43c</th>
<th>44c</th>
<th>13b</th>
<th>44c</th>
<th>43b</th>
<th>43c</th>
<th>43c</th>
<th>13f</th>
<th>43c</th>
<th>43c</th>
<th>44c</th>
<th>44c</th>
<th>13f</th>
</tr>
</thead>
<tbody>
<tr>
<td>TiO₂</td>
<td>1.69</td>
<td>2.55</td>
<td>1.75</td>
<td>2.79</td>
<td>2.79</td>
<td>3.79</td>
<td>3.79</td>
<td>3.79</td>
<td>3.79</td>
<td>3.79</td>
<td>3.79</td>
<td>3.79</td>
<td>3.79</td>
<td>3.79</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>20.15</td>
<td>20.73</td>
<td>19.44</td>
<td>21.71</td>
<td>21.71</td>
<td>22.71</td>
<td>22.71</td>
<td>22.71</td>
<td>22.71</td>
<td>22.71</td>
<td>22.71</td>
<td>22.71</td>
<td>22.71</td>
<td>22.71</td>
</tr>
<tr>
<td>Cr₂O₃</td>
<td>0.01</td>
</tr>
<tr>
<td>Fe₂O₃</td>
<td>0.00</td>
</tr>
<tr>
<td>FeO</td>
<td>0.00</td>
</tr>
<tr>
<td>Fe₂O₇</td>
<td>19.85</td>
<td>20.84</td>
<td>21.84</td>
<td>22.84</td>
<td>22.84</td>
<td>23.84</td>
<td>23.84</td>
<td>23.84</td>
<td>23.84</td>
<td>23.84</td>
<td>23.84</td>
<td>23.84</td>
<td>23.84</td>
<td>23.84</td>
</tr>
<tr>
<td>MnO</td>
<td>0.17</td>
</tr>
<tr>
<td>MgO</td>
<td>0.83</td>
</tr>
<tr>
<td>CaO</td>
<td>2.88</td>
<td>3.88</td>
<td>2.88</td>
</tr>
<tr>
<td>Na₂O</td>
<td>0.29</td>
</tr>
<tr>
<td>K₂O</td>
<td>0.95</td>
</tr>
<tr>
<td>Totals</td>
<td>77.20</td>
</tr>
</tbody>
</table>

سنج‌هایی که شیست‌های هر منطقهٔ کلیوشن و ترکیب مودی خاص خود را دارند (شلف 1 ب). بیشتر سنج‌های دریگون پیش از یک مرحله دگرخیزی و یا دگرگون را نشان می‌دهند. با بررسی دقیق سیمپتاتی کلیشن و بفتی سنج می‌توان از بین میان فازهایی کوماگنیک، درک درستی داشت و چگونگی ارتباط آنها را با رویدادهای درگیزی و درگرفتن دریافت [14] شیست‌های منطقه بر اساس حضور یا عدم حضور درکاپت به دو دسته تقسیم می‌شوند: شیست‌های درکاپتی بلند پردیچ در شیست‌های بلند پردیچ
شیسته‌ها حضور دارد (شکل 2). گزارندهای این شیسته‌ها درست دانه (شکل 2 و 3) بوده و بافت هلیستینی از یکی یا چندی آن است. این سنگ‌ها در نمونه‌های دستی به رنگ زرد تا قهوه‌ای و خاکستری دیده می‌شوند. افزایش گزارندهای این سنگ‌ها در این شیسته‌ها به خوبی قابل مشاهده است. در مقاطع نازک گزارندهای بصورت حاوی و شکل‌دار دیده می‌شوند. استاترولایت‌ها در نور طبیعی به رنگ زرد و تقریباً شکل‌دار است. از 40 درصد سنگ از این کاتی شکل‌دار و بیش از 20 درصد سنگ از این کاتی شکل‌دار است. مسکوکنی نازک گزارندهای شیستوپت۲ و دیده می‌شود (شکل 2). از این نمونه دستی به رنگ زرد تا قهوه‌ای و خاکستری دیده می‌شوند. افزایش گزارندهای این سنگ‌ها در این شیسته‌ها به خوبی قابل مشاهده است. در مقاطع نازک گزارندهای بصورت حاوی و شکل‌دار دیده می‌شود (شکل 2). از این نمونه دستی به رنگ زرد تا قهوه‌ای و خاکستری دیده می‌شوند. افزایش گزارندهای این سنگ‌ها در این شیسته‌ها به خوبی قابل مشاهده است.

سیلیس‌چه‌ها

اگر گرایش‌های سیلیس‌چه‌های شیسته‌ها را در دستورالعمل‌ها به صورت درون آن قرار دارند، نسل دوم آندالوزیت از دنبال دو فاکتور اصلی به دست می‌آید:

1. **And + Kry + Gt + Bt + Ms + Pl + Qtz + Ore**
2. **And + St + Gt + Ms + Chl + Qtz**

با توجه به روابط بافتی مشخص است که این نسل اول آندالوزیت علی اثر دو فاکتور اصلی به دست می‌آید:

1. **Sil(OH)** + **Gt + Bt + Ms + Pl + Qtz + Ore**
2. **Sil(Fe)** + **Gt + Bt + Ms + Pl + Qtz + Ore**

شیسته‌ها بدون گرایش‌های پشتیبانی که در مجاورت آشفت‌های واریانس و گرایش‌ها به گونه‌ای پشتیبانی که در مجاورت آشفت‌های واریانس در نظر دارند، همچنین در کنار نمونه‌های خاکستری شیسته‌های سیلیس‌چه‌های شیسته‌ها بطور مصرفی فازهای گرایش دوگانه شده و منقوله می‌کنند که این نسل اول آندالوزیت به دست می‌آورد.

مراحل متولانده شیسته‌های سیلیس‌چه‌ها

1. **And + Kry + Gt + Bt + Ms + Pl + Qtz + Ore**
2. **And + St + Gt + Ms + Chl + Qtz**

کارخیل‌دار این شیسته‌ها از شیسته‌های پشتیبانی که در مجاورت آشفت‌های واریانس و گرایش‌ها به گونه‌ای پشتیبانی که در مجاورت آشفت‌های واریانس در نظر دارند، همچنین در کنار نمونه‌های خاکستری شیسته‌های سیلیس‌چه‌های شیسته‌ها بطور مصرفی فازهای گرایش دوگانه شده و منقوله می‌کنند که این نسل اول آندالوزیت به دست می‌آورد.

منطقه به دست آورد

1. **Sil(OH)** + **Gt + Bt + Ms + Pl + Qtz + Ore**
2. **Sil(Fe)** + **Gt + Bt + Ms + Pl + Qtz + Ore**

شیسته‌ها بدون گرایش‌های پشتیبانی که در مجاورت آشفت‌های واریانس و گرایش‌ها به گونه‌ای پشتیبانی که در مجاورت آشفت‌های واریانس در نظر دارند، همچنین در کنار نمونه‌های خاکستری شیسته‌های سیلیس‌چه‌های شیسته‌ها بطور مصرفی فازهای گرایش دوگانه شده و منقوله می‌کنند که این نسل اول آندالوزیت به دست می‌آورد.
کاربرد بیشتری بین دانشمندان دارد [17]. با استفاده از Zr, Hf، عنصر موقعی در برای درگزی و هوازیکی از قبیل REE، Nb، Th، Ti، Al، Fe بودن و یا هم‌خانگان نسود، راب آبریز در Fe2O3-۴ و مالید شکل ۴ قصد B و P را در مقیاس Al2O3، V-Zr، V-Y هم قرار داده‌ایم. به طوری که ملاحظه می‌شود هم‌خویی نسبتاً خوبی بین این عنصر با یکدیگر دیده می‌شود که دلایل بر خاستگاه همسان این رسوب‌ها دارد. به عبارت دیگر سنگ‌ماد این رسوب‌ها احتمالاً خاستگاه همسانی دارند.

ترکیب سنگ رسوبی اولیه به منظور مشخص کردن سنگ رسوبی قدیمی که اکنون درگزشش است، استفاده از عنصر اصلی موجود در سنگ درگزشش است. بهطوری که از نمودارهای [12] که مرز انواع سنگ‌ها در آنها توسط [13] تغییر پافته است، در این کار مورد استفاده قرار گرفته است. در این نمودارهای ممکن که بر مبنای تغییرات لگاریتمی Fe2O3/Al2O3 و K2O/Na2O نسبت به SiO2/Al2O3 نسبت به SiO2/Al2O3 نسبت به TiO2/Al2O3 نسبت به Fe2O3/Al2O3 N

شکل ۲ (الف) رخنمند سنگ‌های رسی درگزشش شده گرافیت بلندبرچین. (ب) مقیاس گرافیتی از شیست‌های بلندبرچین که پرفیروبلاست‌ها در درست آن‌ها مقوی شده می‌شوند. و بر روی درست‌گزشش و پررهت تریز نشده که در نتیجه می‌شود نور پپ (C) (ت) شکل از نموده‌های شیست‌های پشتوکی به وسیله رشدی روسن‌ها در زیر دیده می‌شود و پرفیروبلاست‌های گرانت‌ها اکنون ۱ سالانه از دیده می‌شود. (ت) مقیاس گرافیتی از شیست‌های پشتوکی که دارای پرفیروبلاست‌های گرانت، کوارتز، اسناپلیت و مسکوپت است نور پپ (G) کلرین‌تک و کلرین در شیست‌های پشتوکی نور پپ.
محاسبه فعالیت سیالات در منطقه‌ی بلند پرچین و یختاب با استفاده از دما و فشارهای دست‌آمده از روش‌هایی که فعالیت آب در آنها تاثیر ندارد (مادن گارنت-پیتونت و GASP) و با استفاده از واکنش آب‌دریاپیزی گزینه‌های با فعالیتهای THRMOCALC متنگر آب بر پایه‌ی C می‌توان فعالیت دقیق آب در سنگ‌های رسی دگرگونی شده را حساب کرد.

دماسنج تبدیل کاتیونی Fe-Mg بین گارنت و پیتونت با استفاده از آب‌دریاپیزی (مادن گارنت-پیتونت و GASP) رهگیر کرده و نتایج آن را با نتایج دیگر مطابقت دارد. گارنت با بالاترین محتوای Mg و پیتونت با بالاترین محتوای Ti، برای پراورده شرایط شیب‌های کپیتیداری Fe2O3-Al2O3، V-Zr، V-Y نسبتاً خوبی بین این عناصر با یکدیگر دیده می‌شود.

دگرگونی استفاده شده‌اند. با فرض انتشار رطوبت کاتیونی و حصول تعادل بین حاشیه‌کاکلی-زمین، از آنالیز‌های صورت گرفته از بخش‌های حاشیه‌ای گارنت برای دما-فشارسنجی استفاده شد. دهنده تعریفی محاسبه شده برای اوج دگرگونی شیست‌های گرافیتی ۶۰۰ تا ۷۲۰ درجه سانتیگراد به‌منظور محاسبه دما در شیست‌های کپیتیدار در منطقه پشتوک از روش‌های زیر استفاده شده است. دماسنج مساحت کاتیونی Mg-Fe بین گارنت و کپیتی، با سنجش [۲۲] و نیز دماسنج مساحت کاتیونی Mg-Fe بین گارنت و کپیتی (این دماسنج به فشار واسبستی ندارد و برای دگرگونی های رخساری شیست سبز به کار می‌رود) با سنجش [۲۴] برای پراورده شرایط شاهدی کپیتیداری Fe2O3-Al2O3، V-Zr، V-Y اصلاح شده است. طبق آن نمودار اکثرمرحله‌های ماهیشان در گسترده گروه‌های مستند. ب) رده بندی نمونه [۱۶] که بر اساس آن متابليت‌ها در قلمرو شیل واقع شده‌اند.

شکل ۲) عناصر مقاله و پانوراما در نمونه‌های منطقه Fe2O3-Al2O3، V-Zr، V-Y.

پس از محاسبه‌ی دما با استفاده از واکنش‌های مستقل از فعالیت آیون‌ها، از واکنش‌زیر برای تعیین فعالیت آب در شیست‌های گرافیتی و رنگ پرچین استفاده شد، مقدار این فعالیت در حدود 5. برای شیست‌های گرافیتی بلند پرچین به دست آمده است (شکل ۵ الف).

$$2py + 3mu + 7pa = 9and + 7ab + 3east + 7H_2O$$

انحراف معیار این واکنش در تمام واکنش‌های با فعالیت‌های پشتک به دست آمده است. این نمونه در مورد نمونه $1b$ به عنوان نماینده بکار گرفته شده است (شکل ۵ الف).

مقدار این فعالیت برای شیست‌های کلرین‌یدار پشتک حدود 8 تا 1 است (شکل ۵ ب). از واکنش زیر برای تعیین فعالیت آب استفاده شده است:

$$7q + 23fctd = 5alm + 2fst + 19H_2O$$

انحراف معیار برای این واکنش در تمام واکنش‌های با فعالیت-...
شکل ۷ رابطه خطي بين دما و ضغط به دو جانبه نمودار شده است. مناطق پلوندپارچین و پشتوک با پيكان نشان داده شده‌اند.

بحث و بررسی

پس از میآيد [۴۱] اگر چنین است چه عاملی سبب شده است که در سنگ‌های رسی دگرگون شده بلند پرچین که بسیاری از زمین‌شناسان و کلی شناسان معتقدند که کربناتید Al با این دارند حضور استاتروپیت در سنگ‌های می‌دهد که به وجود می‌آید، اگر و چنین است چه عاملی سبب شده است که در سنگ‌های رسی دگرگون شده بلند پرچین که بسیاری از زمین‌شناسان و کلی شناسان معتقدند که کربناتید Al با این دارند حضور استاتروپیت در سنگ‌های می‌دهد که

شکل ۶ نتایج زمین دما. فشارسنجی با استفاده از ترمو کالک برای اوج دگرگونی در شیست‌های پلوندپارچین (ب) نتایج زمین دما. شیست‌های پلوندپارچین با استفاده از ترمو کالک برای اوج دگرگونی در شیست‌های پشتوک. علل اصلی انتخاب کالک‌ها عبارتند از کوارتز = Q، مسکویت = M، باکوتیت = B، پشتوک = P، آلپت = A، اسکالاریت = سیلیمانت = سیلیمانت = S، کالیت = K، سیلیمانت = S، کالیت = K، ترمو = T، استاتروپیت = alm، کربناتید = ctd.

د) نتایج زمین دما. فشارسنجی با استفاده از ترمو کالک برای اوج دگرگونی در شیست‌های پلوندپارچین (ب) نتایج زمین دما. شیست‌های پلوندپارچین با استفاده از ترمو کالک برای اوج دگرگونی در شیست‌های پشتوک. علل اصلی انتخاب کالک‌ها عبارتند از کوارتز = Q، مسکویت = M، باکوتیت = B، پشتوک = P، آلپت = A، اسکالاریت = سیلیمانت = S، کالیت = K، سیلیمانت = S، کالیت = K، ترمو = T، استاتروپیت = alm، کربناتید = ctd.

به وجود می‌آید، اگر و چنین است چه عاملی سبب شده است که در سنگ‌های رسی دگرگون شده بلند پرچین که بسیاری از زمین‌شناسان و کلی شناسان معتقدند که کربناتید Al با این دارند حضور استاتروپیت در سنگ‌های می‌دهد که

Peak metamorphism (Bolandparchin)

1) Ky = sill
2) q + pa = sill + ab + H2O
3) q + pa = ky + ab + H2O
ترکیب آن برای پیداکردن کلروتوئینیت مناسب است. [2] کلروتوئینیت شکل نگردن در حالتی در سنگ‌های پشتوک که تقریباً همان ترکیب شیمیایی را دارند که یوگرده آنها است؟

ترکیب شیمیایی سنگ کل شیمیایی منطقه بلند پرچین و پشتوک تقریباً مشابهان (جدول 1) به طوری که می‌توان نتیجه گرفت که در هر دو منطقه عناصر اصلی از جمله Fe، O، Al و FeOt که از عناصر اصلی برای پیداکردن کلروتوئینیت با هم تفاوت چندانی ندارند. علاوه بر این، به‌طور کلی وجود پیوستگی در سنگ‌های رسی در پشتوک شدید معمولاً نشانه‌های اهمیت اولویت زیاد در سنگ‌های و با فشار زیاد است که 37 در منطقه مرزی بررسی پیوستگی در سنگ‌های پشتوک وجود ندارد، در حالی که در شیب‌های بلند پرچین حضور

برداشت

سنگ‌های رسی درگووی در حالت منطقه بلند پرچین و پشتوک بخشی از مهندسی سنگ‌های منطقه بلند پرچین دارای کالی‌های سنگ‌های رسی درگووی در حالی که شیمیایی بدست آمده در تحقیقات دندان‌پزشکی (کلروتوئینیت، کلروتامین، مسکوئیت، کلروتامین، کلروتامین و کوارتز سستن) و بررسی عامل درگووی متفاوت مانند دما، فشار، ترکیب سنگ ماده و عایق‌های ماده در سنگ‌های رسی درگووی در منطقه (بلندپرچین و پشتوک) مشخص شد که علت شکل کری مجموعه کانال‌های متفاوت در دو منطقه مشابه و جهت کلروتوئینیت و عدم وجود عایق‌های متفاوت در شیب‌های پشتوک به عناصر اصلی است و دیگر عوامل درگووی نقش کمتری در پیداکردن کالی‌های پرچین دارد. به عبارتی از منطقه پشت‌لاکه به دلیل وجود ترکیب و بالا بودن عایق‌ها (H2O) 8ر، 10(کلروتوئینیت ظاهر شده است در صورتی که در منطقه (بلندپرچین به علت حضور گسترده‌ی

گرافیت و بعدیاً آن با پیوستگی پس‌پرچین، کانال‌های

الومینوسیلیت‌ها و همچنین کانال‌های آن با پیوستگی پس‌پرچین، کانال‌های

مواد مناسب از ماده پشت‌لاکه در منطقه (بلندپرچین) شکل گرفته‌اند.

از دیگر عوامل درگووی موثر به شکل گسترده‌ی کانال‌های

درگووی نتایج بررسی‌های گرفته شد. عایق‌های سیلیکیت‌ها می‌باشد [32] و وجود و بالا بودن عایق‌های درگووی در منطقه ممکن است که بر

عایق‌های سیلیکیت‌ها و همچنین کانال‌های آن با پیوستگی پس‌پرچین، کانال‌های

مواد مناسب از ماده پشت‌لاکه در منطقه (بلندپرچین) شکل گرفته‌اند.

از دیگر عوامل درگووی موثر به شکل گسترده‌ی کانال‌های

درگووی نتایج بررسی‌های گرفته شد. عایق‌های سیلیکیت‌ها می‌باشد [32] و وجود و بالا بودن عایق‌های درگووی در منطقه ممکن است که بر

عایق‌های سیلیکیت‌ها و همچنین کانال‌های آن با پیوستگی پس‌پرچین، کانال‌های

مواد مناسب از ماده پشت‌لاکه در منطقه (بلندپرچین) شکل گرفته‌اند.

از دیگر عوامل درگووی موثر به شکل گسترده‌ی کانال‌های

درگووی نتایج بررسی‌های گرفته شد. عایق‌های سیلیکیت‌ها می‌باشد [32] و وجود و بالا بودن عایق‌های درگووی در منطقه ممکن است که بر

عایق‌های سیلیکیت‌ها و همچنین کانال‌های آن با پیوستگی پس‌پرچین، کانال‌های

مواد مناسب از ماده پشت‌لاکه در منطقه (بلندپرچین) شکل گرفته‌اند.
histories of chloritoid-free and chloritoid-bearing metapelites from the Mahneshan area, NW Iran”, Iranian Journal of Crystallography and Mineralogy, 16 (2008a) 622-640.

Society of America, Abstracts with Programs (1986) 18, 584.