بررسی فرایندهای فیزیکی تیلور در سنگه‌های آذرین جنوب خاوری ایران با استفاده از مدل سازی سه بعدی بلوهره ی‌پلاژیکلاز

صدرالدین امینی، امیر اسکندری

گروه زمین شناسی دانشگاه تربیت مدرس تهران

(دریافت مقاله: 88/06/30، نسخه نهایی: 89/05/30)

چکیده: شکل بلوهره در شرایط فیزیکی و شیمیایی تیلور، گزارش می‌شود: به‌طوری‌که اندوکریست‌های می‌توانند برخی از ویژگی‌های محدود تیلور بلوهره را بازتاب دهند. در این مقاله، روی‌های مختلف اندوزگی که شکل بلوهره در فضای سه بعدی بر مبنای محاوره‌ای آماری در شرایط تیلور فاکتوری و شیمیایی مورد بررسی قرار گرفته است. این شکل بلوهره در دو گروه سنگه‌های آندزیت بارانی و کوارتز تیلور، ناحیه مورد بررسی واقع در 120 کیلومتری جنوب خاوری بهرنج برداشت شدند.

ویژگی‌های هندسی بینش از 300 پر بلوهره در 9 مقطع میکروسکوپی از دو گروه سنگه‌های آندوزگی شدند. نتایج محاسبه‌ی نسبت منظر بلوهره (L/I) با استفاده از یک بعدی: L/I = S/L سنتی به بلوهره (L) و کوارتز تیلور می‌توان نتیجه گرفت که ریزبیلورهای گروه اول در شرایط با درجه‌ی سردشگی و سرعت رشد بیشتری (در حدود 10 مم) برای یک دوره زمانی سنگ‌سازی 3 ساله) نسبت به بلوهره گروه دوم در محدوده که جنس نسبی بین شکل و میانگین رشد بالا تشکیل شده، و جابجایی مکانیکی می‌توان باعث افزایش شیمیایی نسبی قبل تویجه در ایجاد شکل بلوهره داشته این در گروه دوم، سرعت رشد پایین و سرعت انقراض بالاتر بوده است. در ضمن فرایندهای درشت‌گویی بینش در تغییر شکل بلوهره گروه دوم از اتصال‌های بین‌ساختگی و در کاهش نسبت منظر بلوهره متناسب با افزایش اندوزگی برشابینی بلوهره مؤثر بوده است.

واژه‌های کلیدی: شکل بلوهره، تیلور آذرین، درشت‌گویی بینشگی، بیرجن.

مقدمه

بررسی بامت سنگه‌های آذرین و ویژگی‌های اجزای سازنده آن (از جمله بلوهره، شیشه، خلفها) از دیرباز به عنوان مدلول ترین روی برای ارزیابی فرایندهای فیزیکی و تحولات سیستمی‌های مانندی با درک رفتار، است. ژیری بای سنسیوی آذرین تاریخی‌های فیزیکی بین‌ساخت را در خود ثبت کرد. البته این بررسی‌ها به صورت کیفی و با استفاده از بررسی‌های

*نویستگان مسئول، تلفن-نامبند: 92-0124-8825874, پست الکترونیکی: amir.eskandary157@yahoo.com
شاخ‌های جوی ترکیب سمیمی و ایزوتونی تعیین می‌شود.

در سال‌های اخیر اندورسیته‌ای کمی‌بافته نیز به عنوان یکی از ابزارهای تعیین شکل‌سازی نسگ‌ها همچنین از جمله سبب‌بندی وجود برای بهبود کمی‌بافته و رشد پوست‌سازی نسگ‌های سطحی که با استفاده از ابزارهای سطحی و ایزوتونی قابل شناسایی و بررسی نیستند و ترکیب شیمیایی کلی نسگ را (در سیستم‌های بستر) تعیین نمی‌دهند [1]. با استفاده از روشن‌سازی نوین که برای اندورسیته‌ای ویژگی‌های هندسی بلوپرا ابتدا شده است [12]، پاک نسگ‌های آدنر به صورت کلی تحلیل می‌شود.

برخی از ویژگی‌های کلی بلوپرا در یک سگ که قابل کت است به سه‌های بستر [1] و سازی هستند مربوط است [1]:

الف) توزیع اندازه بلوپرا (Crystal Size Distribution) [5] با (Crystal Shape) [7] (CSD Distribution Pattern)

ب) آراشی یا الدکی توزیع فضایی بلوپرا (Spatial [9]) و زوایای بین ووجه [10] (DihedralAngles)

بررسی‌های نظری و تجربی در جوهرهای سنتی‌سازی کم‌بافته و علم درک، همچنین مایع و شبیه ارتباط ترکیب بلوپرا و شرایط فیزیکی و شیمیایی میتواند کمک به رشد نسگهای سطحی که بلوپرا می‌باشد [8].

این ترتیب امهمیت ارزیابی شکل بلوپرا روش می‌شود.

در این پوست‌سازی، روش کلی برپاست داده‌ای برای اندازه‌گیری کمی‌بافته سنتی‌سازی می‌باشد [2]. در این پوست‌سازی محاسبه‌ای از شکل بلوپرا، نویز و مدیریت نسگ‌های سطحی در این پوست‌سازی و در این پوست‌سازی، روش کلی برپاست داده‌ای برای اندازه‌گیری کمی‌بافته سنتی‌سازی می‌باشد [2].

زمین‌شناسی عمومی و سنتی‌سازی منطقه‌ای مورد بررسی در فاصله تقسیم ۱۰ کیلومتری جنوب خاوری شهر پیش‌بندک و در حالی رسته‌های کنف و سولاتس قرار دارد. از نظر زمین‌شناسی، این منطقه بخشی از زون جنوب خاوری سیستان است [12] و در نهایت
آمیپیول با حاشیه‌ی واقعی از آمیپیول و بیوت و کوارترز، ماجراکتر و داغ‌تر ولی با ترکیب مشابه نسبت به ماکمای درون، مخزن ماکمایی را دارند. از جمله‌ی این ویژگی‌ها، وجود درون‌زمینی ماکمای (MME)، منطقه‌بندی نوسانی و بافت غربی در پولی‌کلاژرها، وجود به‌گاه بلورهای پیروکسن و

شکل ۱ نقشه‌ی ساده‌ی زمین‌شناسی منطقه‌ی مورد بررسی (نقشه‌ای اصلی از [۴۴]).
شكل 2: تصاویر چند ناحیه از مقطع 4 (ماد چپ) و تصاویر پردازش پس از رسم محیط بلورهای پلاژیکلزاس (سمت راست) مقياس همه تصاویر یکسان است. در تنه و پردازش تصاویر بالا از تلفیق ۲۳ عکس دیجیتالی استفاده شده است.

KHD7 ب) تصاویر اصلی و پردازش شده نمونه KB2

روش برداشت داده‌ها

1- گام نخست در روش مورد استفاده، انتخاب مقاطع نازک مناسب است. این مقاطع میکروسکوپی باستی دارای چند شرط باشند: ال- جداسازی بلورهای مورد نظر از زمینه با اساسی بیشتری انجام شود و میزان تجزیه آنها پایین باشد. ب- جمعیت‌های بلوری موجود در آنها، نماهایی از کل
جمیعت‌های بلوری در سنج‌های مورد بررسی باشند. یا این شرایط، تعداد نه مقطع نازک برگزیده شدن‌یک نمونه از اندزه‌گیری بازالتی و هشتم نمونه از سنج‌های میکروپوروسی و کِلوزرتُن دوربینی.

2- عکس‌های دیجیتالی از بخش‌های مختلف مقطع نازک و با مدیتیک میکروسکوپی با میکاس ۲۰۰ گرده شدن. سپس با استفاده از نرم‌افزار Photoshop عکس‌ها به یکدیگر وصل شدن تا سطح بیشتری از مقطع پوشش داده شود (مانند شکل‌های ۱ و ۳). با توجه به بافت پورفیری نمونه‌ها و اندازه‌دار شسته‌ها چنین کاری برای دستیابی به تعداد بیشتر و کیفیتی کامل اندزه‌گیری بلوره‌ای ضروری بود. جز نمونه‌ای اندزه‌گیری بانالی، برای بقیه نمونه‌ها مقطع‌های از ۱۰ تا ۲۰ تریتره از هر مقطع استفاده شد. به گونه‌ای که این هدف بردیشند.

3- محیط بلوره‌ای پلاژوکالتر از روی عکس نرم‌سیمیش شد (مانند شکل‌های ۲ و ۴). این کار با استفاده از نرم‌افزار ArcGIS و CorelDraw امکان‌پذیر بوده است. با توجه به اینکه در بررسی کمیت بیافشی از روش‌های امکان‌پذیر آندازه‌گیری زیاد باشد تا نتایج حاصل در سطح معنی‌دار بالاتری قرار گیرند. بدین حال اندزه‌گیری شده در مجموع بیش از ۲۳۰۰ دانه پلاژوکالتر در مقطع‌های مختلف نرم‌سیمی و اندازه‌گیری شده و تعداد بلوره‌های مورد اندازه‌گیری شده در هر مقطع در جدول ۱ ارائه شده‌اند. برای نمونه‌های MAD4 و KHD3 از چند ناحیه مقطع به‌جای یک ناحیه استفاده شد و برج آن ناحیه، مرحله ۲ و ۳. به صورت جداگانه تکرار شدند تا تعداد بیشتری از بلوره‌ها مورد شمارش قرار گیرند.

4- تصاویر بردارشده در مرحله‌ی پیشین، به صورت سی‌آرتی استفاده می‌شود تا نتایج بیشتری از بلورهای مورد بررسی شده (مانند شکل‌های ۴). در روزهای مخصوص بر روی نمونه‌ها نازک برگزیده‌های مختلف نازک برگزیده شدند. سپس بلوره‌ای پلاژوکالتر، بر روی نمونه‌های مورد بررسی شده و نمونه‌های نازک برگزیده سپس باید تکرار شود و در مورد اندازه‌گیری شده با استفاده از نرم‌افزار الرانالیز تصویر اندزه‌گیری شدن در ان نرم‌افزار پرایورما هر دانه پیشین و پس از آن با تعداد بیشتری از مقطع‌های مورد بررسی شده و در مورد بررسی شده و نمونه‌های

بررسی فرآیندهای فیزیکی بلور در سنج‌های آدرين...
جدول 1. برخی از مشخصات کلی نمونه‌ها و بلوهای پلازیوکلاژ اندوزی گیری شده.

<table>
<thead>
<tr>
<th>جوارش نمونه</th>
<th>تعداد بلوهای شماره شده (mm²)</th>
<th>طول کنیه (mm)</th>
<th>طول بیشتر (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAD4</td>
<td>355</td>
<td>5.6</td>
<td>0.4</td>
</tr>
<tr>
<td>KHD2</td>
<td>280</td>
<td>5.3</td>
<td>0.5</td>
</tr>
<tr>
<td>KHA6</td>
<td>272</td>
<td>5.7</td>
<td>0.4</td>
</tr>
<tr>
<td>KHT6</td>
<td>267</td>
<td>4.2</td>
<td>0.7</td>
</tr>
<tr>
<td>KHD3</td>
<td>262</td>
<td>4.6</td>
<td>0.3</td>
</tr>
<tr>
<td>KB2</td>
<td>248</td>
<td>3.8</td>
<td>0.7</td>
</tr>
<tr>
<td>KHA6</td>
<td>240</td>
<td>3.7</td>
<td>0.4</td>
</tr>
<tr>
<td>KHT8</td>
<td>237</td>
<td>3.0</td>
<td>0.8</td>
</tr>
<tr>
<td>KHA6</td>
<td>234</td>
<td>2.6</td>
<td>0.7</td>
</tr>
<tr>
<td>MAD4</td>
<td>232</td>
<td>1.6</td>
<td>0.8</td>
</tr>
<tr>
<td>KHD2</td>
<td>227</td>
<td>0.6</td>
<td>0.4</td>
</tr>
<tr>
<td>KHD3</td>
<td>225</td>
<td>0.1</td>
<td>0.3</td>
</tr>
<tr>
<td>KHA6</td>
<td>220</td>
<td>0.5</td>
<td>0.3</td>
</tr>
<tr>
<td>KHT6</td>
<td>217</td>
<td>0.8</td>
<td>0.7</td>
</tr>
<tr>
<td>KHD3</td>
<td>209</td>
<td>0.1</td>
<td>0.2</td>
</tr>
<tr>
<td>KB2</td>
<td>207</td>
<td>0.4</td>
<td>0.6</td>
</tr>
<tr>
<td>KHA6</td>
<td>206</td>
<td>0.5</td>
<td>0.3</td>
</tr>
<tr>
<td>KHT8</td>
<td>203</td>
<td>0.8</td>
<td>0.7</td>
</tr>
<tr>
<td>KHA6</td>
<td>200</td>
<td>0.1</td>
<td>0.2</td>
</tr>
<tr>
<td>KHD3</td>
<td>197</td>
<td>0.5</td>
<td>0.3</td>
</tr>
<tr>
<td>KB2</td>
<td>195</td>
<td>0.4</td>
<td>0.6</td>
</tr>
<tr>
<td>KHA6</td>
<td>194</td>
<td>0.5</td>
<td>0.3</td>
</tr>
</tbody>
</table>

روش اول
این روش بر اساس مدل‌سازی عدیدی نمود سومپریده بلوک با استفاده از شکل بلوهای در مقاطع نازک است [19]. این مدل بر پایه احتمال بروز و چهار ضعف‌های با ابعاد فضایی مشخص استوار است و نتایج آن قابل تعمیم به بلوهای موجود در سه‌گهگاه است. بنابراین مدل‌سازی هیپوژن [7] با تحلیل آماری شکل و اندوزه بلوهای در مقاطع نازک می‌توان شکل و اندوزه واقعی بلوهای را تعیین کرد. مقدار S در تمام روش‌های موجود از جمله در روش [7] 1 به جای 1 در نظر گرفته می‌شود. نسبت (w/L) معادل با مقدار نسبت بلوهای عرض به طول (w/L) بلوهای S/I در مقاطع نازک است. قله‌کیوه که در نمودار فراوانی نسبت به عرض به طول بلوهای تولید می‌شود، مقدار می‌تواند مشخص می‌زند (مانند شکل 4). این دقت نسبت I/L مشکل‌تر است؛ به‌خصوص اگر بلوهای موجود در مقاطع سست‌گیری خاصی نداشته باشند.

این نسبت را می‌توان با افزودن 0.5 به چولگی [یک‌سایی]

شکل 4. نشان دهنده زیست‌پذیری و گردش عرض به طول بلوهای (مقطع 4). قله بند در نمودار مقدار مرا به نشان می‌دهد که در این مورد 0.65 است و به این ترتیب مقدار 1 نیاز به 0.5 محسوب می‌شود.
روش دوم
در این روش با ایجاد یک پاتک داده‌ها و برنامه‌ای می‌شود. CSDSlice نسبت منظر بلورها را به نمایش می‌دهد. مدل‌هایه ساختار خلاصه و نسبت عرض به طول بلورها در یک مقطع مرکزی نسبت به توزیع مدل‌هایی که از قبل تهیه شده‌اند، مقایسه می‌کند و به این ترتیب نسبت S/I و L/W نسبت منظر داده‌های S:IL شده. نمود متفاوت به صورت نسبت S:IL وجود دارد. با وجود کردن اندازه‌گیری‌هایی که از نمودهای دو بعدی به دست آمده (صلح و عرض بلورها) در برنامه CSDSlice و مقایسه با

![Best fit shape curve](image)

جدول ۲ نتایج انتخاب ۵ نسبت منظر مناسب برای مقطع KHT8 بر اساس محاسبات انجام شده در برنامه CSDSlice به‌هیچ‌گونه است. انتخاب ترم‌افزار برای شکل بلورها است.

<table>
<thead>
<tr>
<th>شکل</th>
<th>x</th>
<th>y</th>
<th>z</th>
<th>score (R²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>بیشترین انتخاب ترم افزار</td>
<td>1.00</td>
<td>1.40</td>
<td>0.47</td>
<td>0.8798</td>
</tr>
<tr>
<td>دومین انتخاب ترم افزار</td>
<td>1.00</td>
<td>1.10</td>
<td>0.50</td>
<td>0.5888</td>
</tr>
<tr>
<td>سومین انتخاب ترم افزار</td>
<td>1.00</td>
<td>1.25</td>
<td>0.50</td>
<td>0.8372</td>
</tr>
<tr>
<td>چهارمین انتخاب ترم افزار</td>
<td>1.00</td>
<td>1.40</td>
<td>0.50</td>
<td>0.8264</td>
</tr>
<tr>
<td>پنجمین انتخاب ترم افزار</td>
<td>1.00</td>
<td>1.15</td>
<td>0.50</td>
<td>0.8227</td>
</tr>
</tbody>
</table>
روش سوم
بهرنگی روش برای تعیین شکل بلوهای منشوری، آزمودن بلوهای با سمت گیری خاص در مقطع میکروسکوپی است.
یعنی بلوهایی که محور بلند آنها به موازات مقطع باشد [2].
این راهبرد در برخی بروزه‌ها به عنوان روش نهایی تعیین شکل بلوهای منشوری با کارا روشنایی دیگر است.
ب بر اساس منحنی را ارائه کرده‌اند [3.20] با توجه به اینکه در این روش از مشاهده مستقیم نمونه استفاده می‌شود، در صورت وجود شرایط لازم، نتایج مطمئن تری به می‌باشد.

جدول ۲. نتایج محاسبه شکل بلوهای به روش‌های مختلف و گروه‌سازی شکل مناسب برای هر نمونه.

<table>
<thead>
<tr>
<th>شکل مناسب</th>
<th>روش ۳</th>
<th>روش ۲</th>
<th>روش ۱</th>
<th>شماره نمونه</th>
</tr>
</thead>
<tbody>
<tr>
<td>I=L</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>MAD4</td>
</tr>
<tr>
<td>I=L</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>JA22</td>
</tr>
<tr>
<td>I=L</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>KHA6</td>
</tr>
<tr>
<td>I=L</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>KHD2</td>
</tr>
<tr>
<td>I=L</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>KHD3</td>
</tr>
<tr>
<td>I=L</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>KHD7</td>
</tr>
<tr>
<td>I=L</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>KHA6</td>
</tr>
<tr>
<td>I=L</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>KHT6</td>
</tr>
<tr>
<td>I=L</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>KHT8</td>
</tr>
<tr>
<td>I=L</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>KB2</td>
</tr>
</tbody>
</table>

جدول ۲

دست می‌آید. مثال‌ای از کاربرد این روش تخته‌های پلاژوکلاژ

است که به‌طور معمول در راستای (۱۰۰) به شده باشد [۲].
ابن فرض را می‌توان در نظر گرفت که بلوهایی که در راستای (۱۰۰) به شده است (شکل ۶)
در نتیجه در صورتی که نسبت S/I
تلسیم شود، شکل بلوهای
چپین KHD2 و KHA6 در دو نمونه ی به
بلوهایی شناسایی شدند (شکل ۶) و در نتیجه شکل آنها به
ابن روش بر اساس شمد و مقدار I برای با L در نظر گرفته شد.

(جدول ۳)

جدول ۳

شکل ۶: خلاصه شکل بلوهای به روش‌های مختلف و گروه‌سازی شکل مناسب برای هر نمونه.

روش ۱ از [۷] روش ۲ از [۸] و روش ۳ از [۲]
بحث و بروزی
محاسبات شکل بلوهرا در نمودار زینگی با نمودار نسبت

شکل 7 نمودار زینگی (اصل نمودار برفیت از [16]). بیشتر نمودهای در گستره شکل‌های تخاطعی و برخی نیز در گستره شکل‌های همبعد قرار گرفته‌اند. نمودهای دیورینی - کوارتز دیورینی با بزرگی بیشتر تورب و نمودهای آندریت بایزالتی با صورت دایره نمایش داده شده است. نسبت منظر بلوهرا در بررسی‌های دیگر نیز همراه با نوج سک هر مورد بررسی، برای مقایسه در نمودار ترسیم شده است.

![Diagram](image-url)
برای مقایسه، داده‌های حاصل از ماحس‌های نیست منظر بولوها در سنگ‌های آنتسفانی (جدب ریز مختلف [25]) در نمودار زیادی ترکیب شده‌اند. به‌طور مثال، میکروپلی‌های پلاژیوکلیت در سنگ‌های مارت و پوپسیت [25] در نیست منظر بالایی بوده و ریخت‌شانسی‌های و سوزنی داشته‌اند (شکل 7) که این هندسه‌های بولوها را نتیجه‌گیری از فرآیندگی بالا و نظام تبلوری با قدرت گسترش معرفی کرده‌اند. از نظر به این نتایج ممکن بود که بطور نسبی ریز بولوها پلاژیوکلیت در نمونه‌های آنتسفانی با سرعت سرودزدنش بیشتر و سرعت رشد بالاتر نسبت به بولوها تخته‌ای به نهادگر به وجود آمدند که با نمایشگری بیشتری دیگر این سسک‌ها نز

شکل 8 واکنش احتمالی سرعت‌های رشد و جوی بولوها پلاژیوکلیت با تغییرات میکروپلی‌های پیمان‌های بیمار در حالت رشد [20]. سطح (201) این شکل احتمالی سرعت‌های رشد و جوی بولوها پلاژیوکلیت با تغییرات میکروپلی‌های پیمان‌های بیمار در حالت رشد [20]. سطح (201) این شکل احتمالی سرعت‌های رشد و جوی بولوها پلاژیوکلیت با تغییرات میکروپلی‌های پیمان‌های بیمار در حالت رشد [20].
اغر حوض که تأمین شاخص‌های شیمیایی ثابت، با هم جاجوی مکانیکی لایه‌ای مریزی، خود به تنها می‌تواند تفاوت‌ها را از چکیده و ابزار این سطح‌ها با سرعت بیشتری رشد می‌کند، نسبت به این تأثیر سطحی‌تر. (られてる) جاگر مکانیکی مکاگرا (Stirring) در خلیف بلورهای طولی‌تر و نازک‌تری را به برتری می‌دهد که در حیات ایستا متغیره اثر ثباته در میزان قر. با وجود می‌تواند [32] کنتل مکانیکی روزی شکل بلور، در مورد این بلورهای آنوروزیت‌ها و توده‌های نفوذی مفید مشاهده شده است [197] بلورهای پی‌پلوزیک در آنوروزیت‌های این محیطی نامناسب به وجود آمده‌ناسبی، نسبت به برتری این دارای شکل‌های خطردار می‌کند در حیات ایستا تا شکل‌های پی‌پلوزیک.

باید نمود ماکاگرا فلزیک بدل گرانی را به روز می‌گیرد. بلورهای آنوروزیت‌ها و توده‌های نفوذی مفید مشاهده شده است [197] بلورهای پی‌پلوزیک در آنوروزیت‌های این محیطی نامناسب به وجود آمده‌ناسبی، نسبت به برتری این دارای شکل‌های خطردار می‌کند در حیات ایستا تا شکل‌های پی‌پلوزیک.

در ماه‌ها مایل به دهلیز گرانی را به روز می‌گیرد. بلورهای آنوروزیت‌ها و توده‌های نفوذی مفید مشاهده شده است [197] بلورهای پی‌پلوزیک در آنوروزیت‌های این محیطی نامناسب به وجود آمده‌ناسبی، نسبت به برتری این دارای شکل‌های خطردار می‌کند در حیات ایستا تا شکل‌های پی‌پلوزیک.

در ماه‌ها مایل به دهلیز گرانی را به روز می‌گیرد. بلورهای آنوروزیت‌ها و توده‌های نفوذی مفید مشاهده شده است [197] بلورهای پی‌پلوزیک در آنوروزیت‌های این محیطی نامناسب به وجود آمده‌ناسبی، نسبت به برتری این دارای شکل‌های خطردار می‌کند در حیات ایستا تا شکل‌های پی‌پلوزیک.

در ماه‌ها مایل به دهلیز گرانی را به روز می‌گیرد. بلورهای آنوروزیت‌ها و توده‌های نفوذی مفید مشاهده شده است [197] بلورهای پی‌پلوزیک در آنوروزیت‌های این محیطی نامناسب به وجود آمده‌ناسبی، نسبت به برتری این دارای شکل‌های خطردار می‌کند در حیات ایستا تا شکل‌های پی‌پلوزیک.
بهرام قلی‌زاده
برداشت

با استفاده از روش‌های مطرح شده در این پژوهش می‌توان شکل سه بعدی بلورها را به صورت کم‌اتزان دیگر کرد و با تلفیق بررسی‌های کمی و کیفی دیگر سنگ‌گزاری به بحث درباره شرایط کینتیکی و دینامیکی تیلو در سنگ‌های آذرین پرداخت. نتایج این بررسی حاکی از این است که تغییرات هر چند کوچک بین شکل بلورهای پلی‌پولیتر در گروهی از سنگ‌های با کاتیوتاب و ترکیب شیمیایی مشابه را می‌توان به‌صورت عدید نشان داد و با تفسیر علل این تغییرات به چگونه تصویری از نهایی سنگ‌های آذرین پی‌برد. نتایج

بررسی‌های مختلف اندازه‌گیری شکل بلورها، برای نمونه‌های که شکل بلورها تخته‌ای نیست باعث می‌شود که در این پژوهش، از دو نمودار یا کمتر از دو باشد. نتایج مشاهده شده، یا پلی‌پولیتر رز بلور در نمونه بازیته که درای نمودار تخته‌ای سخت (L=6) نسبت به سایر نمونه‌ها در شرایط‌های دیگر سنگ‌گزاری

بیشتر، سرعت رشد بالاتر، زمان رشد کمتر (۳۸ سال) و در مونتاژی که جنبه نسبی بین بلور و محوطه رشد نبوده است تشکیل شده و جابجایی مکانیکی ماکا نش قابل توجهی نیز در مینرال رز بلور با بد ایجاد شکل‌های داشته است. شبیه تغییرات پتانسیل شیمیایی

از این سه روش در پژوهش می‌تواند برای ادامه پژوهش تأثیر بخشی داشته باشد.

[۱] Marsh B. D., "On the interpretation of crystal size distribution in magmatic systems." Journal of

قردنا

D. A. Jerram و D. J. Morgan

از آقایان را در اخبار ما گذشته و راهنمایی

ارزند، در پی‌بردهای پژوهش بسیار مه‌وراد و نشک

[۱] Marsh B. D., "On the interpretation of crystal size distribution in magmatic systems." Journal of

[23] Higgins M.D., Magma dynamics beneath Kameni Volcano, Thera, Greece, as revealed by crystal size and shape measurements; Journal of Volcanology and Geothermal Research 70 (1996) 37-48

[41] Cabane H., Laporte D., Provost A., “An experimental study of Ostwald ripening of olivine...