پترونژن و سن‌سنگی رادیومتری U-Pb زیرکن در گرانیت هیرس (شمال غرب شیستر)، استان آذربایجان شرقی
مهران ادواردی ۱، جلال فلقمش ۲

۱- دانشگاه آزاد اسلامی، واحد اهر
۲- سازمان زمین شناسی و اکتشافات معدنی کشور

چکیده: تودهٔ نفوذی هیرس سازند که را قطع کرده و خود با روسوب‌های قاعدی پررنگ به‌صورت درشت‌تری آذرین یا پوشیده می‌شود. این توده‌ ترکیب گرانیتی - قلبی‌ای گرانیتی داشته و ماهیت ماتالومینوس‌های گرانیتی ضعیف تسانی می‌دهد. یکی از هنگامی منفی شدن Na در جدول از توده‌های جدول از توده‌های طبیعی در توده‌های نفوذی و طبیعی یک‌پاره‌های گرانیت‌های غیرکوه‌زا (نوع A)، از بافتی شدیده که از ذوب بخشی پک خاتمگاه تونالیتی-گرانودیوریتی و در یک محیط کشنده تشکیل شده است. سن‌سنگی رادیومتری به میلیون‌ها میلیون U-Pb زیرکن، سن ۳۰۳۴ میلیون سال را برای ترکیب این سنگ‌ها به دست داده است. این سن به کشی‌های آغازین کافی‌واری رؤی نخستین پوسته‌های قاره‌ای عربی - ایران سازگار است.

واژه‌های کلیدی: شیپتیر، گرانیت، قلبی‌ای، سن‌سنگی رادیومتری، زیرکن

مقدمه
تودهٔ هیرس در استان آذربایجان شرقی و در ۲۰ کیلومتری شمال غربی شهرستان شیستور واقع شده است (شکل ۱). این منطقه از شمال به رستم‌آباد شرق به شهرستان مرن و از جنوب به روستای هیرس و شرق شرکخانه از غرب به شهرستان شیستور و از جنوب شرقی به شهرستان شیستور محدود می‌شود (شکل ۱). توده‌های آذرین هیرس را می‌توان به دو گروهی تقسیم کرد: گروه‌های میشی در نظر گرفته شد. این توده سازند کوه و دومون‌های سلطانیه در قطع و درگذشته است. روسوب‌های قاعدی پررنگ روز سطح فرسایش یافته این توده آذرین گرفته

m-advay@iau-ahar.ac.ir

توضیحات مسئول، تلفن: ۰۹۱۲۱۴۳۱۵۱۵۰۰، تهماسب: ۰۹۱۲۲۴۴۴۷۲، پست الکترونیکی:
به روش ICP-MS به آزمایشگاه ALS-Chemex کانادا ارسال گردید. به منظور تعیین سن رادیومتري گرانیته‌های مورد بررسی، کانی‌های زیرکن موجود در آن‌ها انتخاب و برای سن‌سنجی
U به‌عنوان یکی از روش‌های شیمیایی SHRPMP Pb برای ارسال کردیم. در مراحلی اول بیش از 40 کانی زیرکن
از گرانیته‌های مورد بررسی با بررسی‌های SEM-EDS شناسایی شدند. سپس با بررسی‌های میکروسکوپی و تجزیه
U درستی آن‌ها به انتخاب رسیدند. این کانی‌ها برای تجزیه Pb زیرکن با استفاده از روش‌های نیزه یونی معنی‌دار و تعداد 24 نقطه در 19 بلور زیرکن در مرکز مطالعات ایران‌توپی
VSEGEI تجزیه شدند. همچنین با استفاده از نتایج بررسی‌های صحرایی و سنگ‌گاری، ویژگی‌های کلی توده را ارائه خواهیم داد. در
نهایت با نشان دادن نتایج دقیق تجزیه‌ی شیمیایی توده، و
پیشنهاد تزیینی عناصر اصلی و کمیاب توده هریسه، نوع
سنگ خاستگاه نژاد کرانیت و چاپگاه زمین‌ساختی آن را تعیین
می‌کنیم.

روش بررسی
در این پژوهش نخست در ابتدا حدود 50 نمونه سنگی را به
ازمایشگاه سنگ‌شناسی ملی کردیم، و پس از تشخیص مناطق
نارنجی میکروسکوپی و انتخاب نمونه‌های سالمتر با استفاده از
میکروسکوپ، 10 نمونه از آن‌ها را برای تزیین و پیش‌
کردن، برای آنالیز شیمیایی و اندازه‌گیری عناصر اصلی و کمیاب

شکل 1 موقعیت منطقه‌ی مورد بررسی در شمال غربی ایران و راه‌های اصلی دسترسی به آن.

شکل 2 راه‌های دسترسی به منطقه‌ی مورد بررسی.
داسته و پیشتر ترکیب فلمسیر گرانیتی قلیایی در دنیا هیچ نوع برونوهم و یا دیگر در این دیده نمی‌شود. در این و دیگر نقاط همسایه در دنیا و گرانیت دردست دانش باشد. و در مورد دستی در نموده در سختی سخت گوشی یا صورتی دیده می‌شود. همچنین در اثر فعالیت‌های زمین ساخته شیداً در تکنیکی شده است. بعضاً که در پیشتر قسمتی به صورت ماسه گرانیتی دیده می‌شود. با توجه به شواهد یاد شده سن توده بسا کامبرین- پیش پرمین است.

زمین‌شناسی
توده‌های سیاه در نزدیکی و استه به پکامیبین کایانی و شش‌پنگی چهارک‌گونه است (شکل 3). سازنده کور به سن پر- کامبرین در شرق گستردگی مورد بررسی بر روی زیادی در داره و لیتوژی ان پیشتر به صورت شیل‌های میکادار، هورنفلس‌های لکه‌ای با میان‌راه‌هایی از هم بردن روش دگ‌گون شده و دولومیت نیمه رنگ است. این سازنده و سازنده سلطانیه در اثر نفوذ توده‌ی گرانیت‌هایی دگ‌گون و به هورنفلس‌ها تبدیل شده‌اند. از نظر ترکیب سنجش‌خانه‌ای این توده حالت همگن

Recent alluvium
Beded to massive limestone
Pale red conglomerate
Pale green shales, sandstone and limestone beds (Flysh type)
Dark gray limestone (Ruteh Formation)
Dark red to violet sandstone (Dorud Formation)
Granite
Red micaceous sandstone with dolomite (Barut Formation)
Micaceous shale with fine grain sandstone (Kahar Formation)

Sampling point

Fault
سنجشگری کانی‌های اصلی تشکیل دهنده این سنگ‌ها شامل فلدسپار، قلیایی و کوارتز بوده و کانی‌های فرعی آنها شامل پلاژیوکلایز، بیوتیت، زبرکن، آپانیت و اپیدوتاند. از مهم‌ترین کانی‌های تانوسی سنگ‌های کنتونیت، سرپسیت، کلریت و مسکوویت است. اشاره کرد. سنگ‌های مورد بررسی داشته‌اند در بوده، بافت‌های همزمان شامل بافت میکروپریتی و گرانوپریتی نیز به وفور در این سنگ‌ها دیده می‌شود (شکل ۴). نشان داده شده این سنگ‌ها از نوع فلدسپار گرانیت قلیایی هستند.

شکل ۴ تصاویر میکروسکوپیکی از توده‌ای کرانیت هریس:
الف) بافت دانای و ریز برنینی (PPL)، (ب) بافت میکروگرافی (XPL)، (پ) بافت میکروگرافی (PPL) و (ج) بافت میکروگرافی (XPL).

1. این سنگ‌ها به خود اختصاص داده و به صورت بلورهای نیمه شکنار ارتوپت‌های نیاپیت هستند. فراوانی کانی کوارتز ۲۵ تا ۳۵ درصد بوده و به دو صورت آزاد و همرشیدی با فلدسپار قلیایی دیده می‌شود. پلاژیوکلایز کمتر از ۱۰ درصد، بیوتیت کمتر از ۵ درصد و زبرکن، آپانیت و اپیدوت بیشتر به مقدار کمتر از ۱ درصد در این سنگ‌ها حضور دارند. بر اساس دیدگاه میدی سنگ‌های آذرین [۴] (نشان داده نشده) این سنگ‌ها از نوع فلدسپار گرانیت قلیایی هستند.
العنوان:

زننستیلی و شیمیایی عنوان اصلی:

جدول 1 نتایج حاصل از تجزیه شیمیایی 10 نمونه از سنگ-ICP-MS

اهی آذرین مورد بررسی را به روش شیمیایی 10 نمونه از سنگ-ICP-MS گرفته است.

جدول 1 نتایج آنالیز شیمیایی 10 نمونه از سنگ-ICP-MS
شکل 5. رسم شده شیمیایی سنگ‌های آذرین مورد بررسی بر اساس الک [۶]

بر پایه بررسی‌های صحرائی و سنگ‌نگاری، در ترکیب کانی‌شناسی این توده کانی‌های سرشار از آلومین (از قبل کرده‌تیت، گارنت و ...) وجود ندارد. به همین دلیل سنگ‌های توده شیشه‌آلومین به نظر می‌رسند. برای بررسی شاخه اشباع از آلومین سنگ‌های گرانیتی مورد بررسی از نسبتهای مولی از آلومین سنگ‌های گرانیتی مورد بررسی از نسبتهای مولی A/CNK به A/KNK استفاده شده است. بر این اساس نمونه‌های مورد بررسی ماهیت شبه آلومینوس و پرآلومینوس ضعیف دارند (شکل ۶). هیچگاه از نمونه‌ها در گستره پرآلومینوس قرار نگرفته است.

شگفت‌انگیزی عناصر نادر جاکی و کیمیایی محتوا مجموع عناصر در سنگ‌های مورد بررسی REE در سنگ‌های مورد بررسی (La/Yb) بالاست (بين 174 ppm تا 236 ppm). نسبت (La/Yb) از نمونه‌ها در ام‌بلاست (بين 0.8 تا 1.0) در محدوده تغییرات می‌باشد. این ام‌بلاست (بين 0.8 تا 1.0) در محدوده تغییرات می‌باشد.

شکل 6. بررسی شاخه اشباع از آلومین سنگ‌های نفوذی مورد بررسی با استفاده از نمونه‌های

این سنگ‌های بین ۳/۶ تا ۱۴/۴۴ است. نمودار REE رسم شده برای گرانیت‌های مورد بررسی (شکل ۷) نشان می‌دهد که بک شبی منفی در نمودارهای REE وجود دارد. به عبارت دیگر غنی‌شناختی بازی از عناصر نادر خاکی سیلی و غنی‌شناختی بازی از عناصر نادر خاکی سیلی نشان می‌دهد. همچنین به‌ضروری منفی شاخه در تمام نمونه‌ها دیده می‌شود که این نشانگر حضور پلاژیوکلاز در خاستگاه و یا جدايش پلاژیوکلاز در طول تکامل ماهک‌های تشکیل دهنده این سنگ‌های مورد بررسی (شکل ۷) نشان می‌دهد که دزد بخشی نمی‌توانسته در اعماق رخ داده باشد که گرانیت در این یک بافت پایدار باشد، این امر با پوسته نازک شده سازگاری دارد [۸].
در نمودارهای بعدی، سنگ‌های گرانیتی مشخصه، به‌همه‌پاره بر بیانی گرانیتی فرضی شش‌عمدی میان‌اقلیمی ORG [9] Rb و شیمیایی کاملاً مشخص از دیده Yb دیهد. این نشان می‌دهد (شکل 8). همچنین در این نمودار Ba بی‌همگری نسبت به عنصر Rb در منفی شدیدی را نشان می‌دهد و عنصر Th به طور متقابل با نشان می‌دهد. همچنین، نسبت به عنصر مجاور خود غنی شدگی نشان می‌دهد. چنین غنی شدگی‌های انتخابی به عنوان تسلیم یاد شده است [9]، و چنین اگری به عنوان تسلیم خواندنی شدگی شدگی نشان می‌دهد. این نمودارها هم‌کاری بسیار زیادی و به‌طور طبیعی سابلولوکا [10] دارد.

نمودارهای رادیومتری نشان دهنده برداری جدید زیرکن و نتایج سال‌سنگ

شکل 1 نمودارهای تغییرات فراوانی (عکس‌بندی) عنصر اصلی و کمیاب گرانیت‌های مورد بررسی به‌همه‌پاره نشان می‌دهد.

نمودارهای رادیومتری نشان دهنده برداری جدید زیرکن و نتایج سال‌سنگ

شکل 1 نمودارهای تغییرات فراوانی (عکس‌بندی) عنصر اصلی و کمیاب گرانیت‌های مورد بررسی به‌همه‌پاره نشان می‌دهد.

نمودارهای رادیومتری نشان دهنده برداری جدید زیرکن و نتایج سال‌سنگ

شکل 1 نمودارهای تغییرات فراوانی (عکس‌بندی) عنصر اصلی و کمیاب گرانیت‌های مورد بررسی به‌همه‌پاره نشان می‌دهد.

شکل 9: تهیه یک مانند واحد از نمونه‌های زیرگون ارسالی به آمایشگاه سنت پیترزبورگ روسیه.

شکل 10: تصاویر BSE کانی‌های زیرگون تجزیه شده در گرانیت‌های موره بررسی. اندزه کانی‌های زیرگون در بعضی نمونه‌ها تا ۱۰۰ میکرون می‌رسد.

تفسیر داده‌های ایزوتوپی U-Pb و تعیین سن توده هریس

جدول ۲ داده‌های ایزوتوپی و سنی U-Pb زیرگون در گرانیت-های موره بررسی را نشان می‌دهد. در شکل ۱۱ نیز نمونه‌های U-Pb هماهنگ رسم شده با استفاده از داده‌های شونده در این نمونه‌ها خط چیزی‌ها. خط اتصال بین سرب معمولی و سرب رادیوئنیک است و خط ناهماهنگ به شمار نمی‌آید. در این نمونه‌ها بزرگی وسایل بالابر خط چیزی‌ها با نمونه‌ها هماهنگ وابسته به سن زیرگون بی‌معنی است و اساساً...
<table>
<thead>
<tr>
<th>Spot Name</th>
<th>% ppm comm</th>
<th>ppm U</th>
<th>ppm Th</th>
<th>232Th ppm</th>
<th>204corr 1s</th>
<th>207corr 1s</th>
<th>208corr 1s</th>
<th>Total %</th>
<th>Total %</th>
</tr>
</thead>
<tbody>
<tr>
<td>20-1-c.1</td>
<td>96.2</td>
<td>33</td>
<td>173</td>
<td>1.4</td>
<td>77.4</td>
<td>17.6</td>
<td>11.9</td>
<td>18.2</td>
<td>3.8</td>
</tr>
<tr>
<td>20-1-d.1</td>
<td>93.1</td>
<td>18.6</td>
<td>39</td>
<td>1.4</td>
<td>77.4</td>
<td>17.6</td>
<td>11.9</td>
<td>18.2</td>
<td>3.8</td>
</tr>
<tr>
<td>20-1-d.2</td>
<td>95.9</td>
<td>24.6</td>
<td>247</td>
<td>1.4</td>
<td>77.4</td>
<td>17.6</td>
<td>11.9</td>
<td>18.2</td>
<td>3.8</td>
</tr>
<tr>
<td>20-1-d.3</td>
<td>96.0</td>
<td>24.6</td>
<td>253</td>
<td>1.4</td>
<td>77.4</td>
<td>17.6</td>
<td>11.9</td>
<td>18.2</td>
<td>3.8</td>
</tr>
<tr>
<td>20-1-d.4</td>
<td>96.0</td>
<td>24.6</td>
<td>247</td>
<td>1.4</td>
<td>77.4</td>
<td>17.6</td>
<td>11.9</td>
<td>18.2</td>
<td>3.8</td>
</tr>
<tr>
<td>20-1-f.1</td>
<td>98.5</td>
<td>17.7</td>
<td>62</td>
<td>1.4</td>
<td>77.4</td>
<td>17.6</td>
<td>11.9</td>
<td>18.2</td>
<td>3.8</td>
</tr>
<tr>
<td>20-1-f.2</td>
<td>94.5</td>
<td>22.7</td>
<td>147</td>
<td>1.4</td>
<td>77.4</td>
<td>17.6</td>
<td>11.9</td>
<td>18.2</td>
<td>3.8</td>
</tr>
<tr>
<td>20-1-g.1</td>
<td>95.5</td>
<td>11.9</td>
<td>94</td>
<td>1.4</td>
<td>77.4</td>
<td>17.6</td>
<td>11.9</td>
<td>18.2</td>
<td>3.8</td>
</tr>
<tr>
<td>20-1-a.1</td>
<td>97.7</td>
<td>17.7</td>
<td>62</td>
<td>1.4</td>
<td>77.4</td>
<td>17.6</td>
<td>11.9</td>
<td>18.2</td>
<td>3.8</td>
</tr>
<tr>
<td>20-4-b.1</td>
<td>98.5</td>
<td>17.7</td>
<td>62</td>
<td>1.4</td>
<td>77.4</td>
<td>17.6</td>
<td>11.9</td>
<td>18.2</td>
<td>3.8</td>
</tr>
<tr>
<td>20-4-a.2</td>
<td>94.5</td>
<td>22.7</td>
<td>147</td>
<td>1.4</td>
<td>77.4</td>
<td>17.6</td>
<td>11.9</td>
<td>18.2</td>
<td>3.8</td>
</tr>
<tr>
<td>6-2-a.1</td>
<td>98.5</td>
<td>17.7</td>
<td>62</td>
<td>1.4</td>
<td>77.4</td>
<td>17.6</td>
<td>11.9</td>
<td>18.2</td>
<td>3.8</td>
</tr>
<tr>
<td>6-2-a.2</td>
<td>94.5</td>
<td>22.7</td>
<td>147</td>
<td>1.4</td>
<td>77.4</td>
<td>17.6</td>
<td>11.9</td>
<td>18.2</td>
<td>3.8</td>
</tr>
<tr>
<td>6-2-b.1</td>
<td>95.5</td>
<td>11.9</td>
<td>94</td>
<td>1.4</td>
<td>77.4</td>
<td>17.6</td>
<td>11.9</td>
<td>18.2</td>
<td>3.8</td>
</tr>
<tr>
<td>6-2-a.2</td>
<td>94.5</td>
<td>22.7</td>
<td>147</td>
<td>1.4</td>
<td>77.4</td>
<td>17.6</td>
<td>11.9</td>
<td>18.2</td>
<td>3.8</td>
</tr>
<tr>
<td>6-2-b.2</td>
<td>91.7</td>
<td>26.7</td>
<td>184</td>
<td>1.4</td>
<td>77.4</td>
<td>17.6</td>
<td>11.9</td>
<td>18.2</td>
<td>3.8</td>
</tr>
<tr>
<td>6-2-b.3</td>
<td>89.7</td>
<td>38.7</td>
<td>268</td>
<td>1.4</td>
<td>77.4</td>
<td>17.6</td>
<td>11.9</td>
<td>18.2</td>
<td>3.8</td>
</tr>
</tbody>
</table>

Errors are 1s, error of standards is 0.63%
بحث و بررسی
بررسی نوع گرانیت‌های سنگ خاستگاه
در گرانیت‌های سنگ بررسی گرچه کلیه‌ها مافیک قلبی از قبیل ازبین-اوزیت و رپیدت-آردونسوت دیده نمی‌شوند، ولی این سنگ‌ها با داشتن یک فرسایش پتیتینی کلیکی فراوان می‌توانند به عنوان گرانیت‌های قلبی‌ای تلقی شوند. سنگ‌های I، A، B، گرانیت‌های اساس و یزیگی‌های سنگ خاستگاه به گروه‌های M و S بخشیده می‌شوند. گرچه نلاح‌های زیادی برای جدای کردن گرانیت‌های نوع A از انواع دیگر صورت گرفته است [14-18] ولی تشخیص گرانیت‌های نوع A از گرانیت‌های نوع I شدیداً تفريعی داشته است. بطور کلی گرانیت‌های نوع I.Ga/Al, Fe/Mg, Na2O + K2O + مقادیر بالاتری از A و مقادیر بالاتری از Eu و Sr و CaO و نسبت به انواع HREEs و Eu و Sr. و CaO نوع I (آفریقا 16٪) این ویژگی‌ها تماماً در گرانیت‌های مصری بررسی-بیده می‌شوند. همچنین در مجموعه از نمودارها (1000 Ga/Al) که بر اساس عناصر اصلی و کمیاب (به ویژه A

[۱۷] شکل ۱۲ نمودارهای تشخیص انواع گرانیت‌ها بر اساس عناصر اصلی و قرارگیری آنها در گستردگی نوع A
[I & S = unfractionated I & S-type granites]
بررسی محیط زمین‌ساختی

براساس بررسی‌های ذخیره‌سازی، گرانیت‌های مورد بررسی از نوع گرانیتهای نوع A هستند. این گرانیت‌ها برخلاف انواع دیگر گرانیت‌های S-type (I-, S-type) در محیط‌های کشنده ظاهر می‌شوند. در این محیط‌ها کشنده‌شان به دو محیط کشنده پس از برخورد و کشنده‌شان به وابسته به تشكل رفتاری درهم‌نشسته در این محیط رفتاری ژئولوژی انتفاعی دانه به طوری که در نمونه‌های حجمی افزایشی از سسامه‌های پیشین قابل توجهی نیست. از طرف دیگر گرانیتهای آرام‌شکنی و ژئولوژی‌ساختی این می‌تواند به گرانیت‌های نوع A در دمای بیش از ۱۵۰°C تشکیل شده باشد. بنابراین نشان می‌دهد تحلیل چگالی‌بیان از یک خاستگاه مافیکی مافیکی نمی‌تواند خاستگاه محتمل برای زئن گرانیت‌های نوع A باشد.

بررسی‌های اخیر توسط [۷۲] نشان می‌دهد که مافی‌های A نوع در نتیجه ی ذوب سنگ ماده تومنیتی گرانیت‌هایی که هم فشار کم به وجود می‌اید به نظر می‌رسد این مدال زئن‌ساختی قابل قبول برای گرانیت‌های مورد بررسی باشد. این مدل یادگیری که از ویژگی‌های گرانیت‌های نوع A است و به خوبی توجیه می‌کند. در فشار ۴ کیلوبار و ذوب بخی ۲۰تا ۴۰ درصد ماده آذرآذری و اروپولیکس فازهای قابلاینده از ذوب سنگ ماده آذرآذری در دست است. تحلیل گستردگی پلاریزاسیون در طول مرحله اولیه جدايش، یپشیدگی هیدربریتی را مشاهده گرانیت‌های نوع A می‌شود. گذشته از ذوب پلاریزاسیون موج‌های عمودی در Ga/Al نسبت به و در نتیجه با آن رفتار نسبت Ga/Al در گرادیت گرانیت‌های نوع A نشان می‌دهد [۸۰].

یک نظر بررسی‌های [۶۲] نشان می‌دهد گرانیت‌هایی نفوذی هرسی حاصل ذوب بخشی پوسته تحت تأثیر با ترکیب نویل‌اکسید گرانیت‌های نوع A یک نشان می‌دهد.
مراجع

شکل 12. نمودارهای تمیزی زمین‌شناسی بر اساس عناصر کمیاب [19].

میزان مول‌های U/Pb روی کانی‌های زیرک‌توهدی هرس، زمان 4.24 میلیون سال معادل کربنیکی‌بانی برای تبلور زیرک‌بزن و به این بروی از این بار سرد شدن توده‌گرایی را نشان می‌دهد. این سری با کشش‌های آغازگی کافی‌زایی روی تخته‌گرایی بوسته قاره‌ای اروپای باز در ایران صورت‌گرفت.

سازگاری قدرتی

این مقاله حاصل از طرح پژوهشی است که در دانشگاه آزاد اسلامی واحد اهواز به تصویب رسیده است. لذا از حمایت های مالی معاونت پژوهشی آن واحد محتوم تقدیر و تشکر می‌شود. از آقای دکتر محسن مسند استاد دانشگاه تبریز از بابت راهنمایی‌های ارزش‌آمیز و کمک در ارسال نمونه‌های ایزوتوپی به روش سیاست‌گذاری می‌شود. همچنین از دیگر‌های سازندگان داوران محتوم این مجله تقدیر و تشکر می‌شود.

[28] Malvin D. J., Drake M. J., "Experimental determination of crystal/melt Partitionning of Ga and Ge in the system forsterite-anorthite-