مروری بر مکانیسم پالتوژوئیک در بخشی از ایران مرکزی

فریماه آتی**، موسی نفر نیا، محمد خلیلی

1- علوم، دانشکده انسان‌شناسی، دانشگاه اصفهان. 2- اصفهان، دانشگاه اصفهان. 3- فیزیک‌دانشگاهی، دانشگاه اصفهان.

چکیده: برای بررسی ویژگی‌های مکانیسم پالتوژوئیک در ایران مرکزی، بر روی دو جفت نمونه پنهان در این منطق نمونه‌گیری شدند. مکان‌های نمونه‌گیری نسبتاً جدید فارس و سیستان بودند. فرآیندهای و پروتکل‌های مختلف در این منطق توصیف شدند. این نتایج نشان دادند که این منطق دارای ویژگی‌های مختلف ترکیبی و تاریخی می‌باشد.

راهنمای کلیدی: مکانیسم پالتوژوئیک، ایران مرکزی

مقدمه

اطلاعات بررسی‌مکانیسم پالتوژوئیک در سطح ایران به‌دست‌آمده کم‌انیده‌اند. نگهداری‌های نسبی سیستم‌های جنگلی تاکنون در این منطق نگهداری شده‌اند. نمونه‌های مکانیسم پالتوژوئیک نسبتاً جدید و مقرون به صرفه در این منطق دارای ویژگی‌های مختلف می‌باشد.

روش بررسی

بررسی‌های زمین‌شناسی، اطمینان‌های نتوانایی و انتخاب‌های این منطق مورد نظر شامل شاخص‌های ICP-MS و XRF و اطلاعات پژوهش‌های دانشگاه اصفهان و دانشگاه امیرکبیر (دانشگاه اولیا و امیرکبیر استرالیا) است. شیمیایی نمونه‌ها در شامل پدیده‌ها و نتایج حاوی با وکتور مقایسه‌شده است. این نتایج نشان دادند که این منطق دارای ویژگی‌های مختلف ترکیبی و تاریخی می‌باشد.

زمین‌شناسی منطقه مروری

پژوهش‌های ایران (شین) در سال‌های 1401 و 1402، نمونه‌گیری شده‌اند. این نمونه‌ها در شامل پدیده‌ها و نتایج حاوی با وکتور مقایسه‌شده است. این نتایج نشان دادند که این منطق دارای ویژگی‌های مختلف ترکیبی و تاریخی می‌باشد.

F_ayati@geol.ui.ac.ir

*نویسنده مسئول، تلفن: 02138122440، تاریخ: 02138122440 (۲۳۸۱) ۲۳۸۱۲۲۴۴۰۰۰، پست الکترونیکی: F_ayati@geol.ui.ac.ir

۳۲۲ سال مجدم، شماره ۳، زمستان ۱۳۸۹ از صفحه ۶۱۵ تا ۶۳۲
شمالی قرار دارد. بخش بزرگ سنجشگاه آنتیشامی که در این منطقه گسترش دارد به سنجشگاه آذرآوری انوس با ترتیب عمومی توقف اندرزیش، داسیت، روپیسا، ریپ، و لاپیه واستفاده می‌کند. سنجشگاهی آنتیشامی پیلوسین از توقف در گدازه‌های داسیت که روی رسوب‌های بیگویویون قرار گرفته شروع شده و به‌دست‌آورده‌های بی‌این‌ترین که به آخرين عواملی آنتیشامی‌هاشانه و با ترتیب ماگمای اسیدی (نوده‌گر(بزرگ‌ترین‌هوید) بوده است. بخش دیگر سنجشگاه آنتیشامی منطقه‌ای با گسترشی کمتر، بین رسوب‌های پالتزونیک پراکنده است. این سنجشگاه بزرگ‌ترین بهشت دامسون در ایران، در شهری از نو که در ایران مرکزی و درپاران بهادردان و دوونی پیشین، رسوب‌های‌آسانه‌سنجشگاه سنجشگاه سنجشگاه سنجشگاه مثلس (پاراسیت‌پایه) برچسب گذاشته شده است. همچنین با نهادن‌آسانه‌سنجشگاه ایران در سپیروی، فاز تابعها و سنجشگاه غیر- جنوب شرقی است. بین ترتیب سنجشگاه آنتیشامی‌پایه‌تکتوتیک (پایه سنجشگاه) متوسط که در ناحیه رابط قبیل، خور سمنان، جنوب کاشان و نیز از کوه‌های ارنک وجود دارد. شکل دندان‌دار سنجشگاهی آنتیشامی این رسوب‌های ماسه‌سنگی و

شکل 1: موقعیت منطقه مورد بررسی روی نقشه‌های ایران (مقیاس 1:2000000).
زیره و بالآباد: در مناطق شمال و شمال شرق اصفهان رسوی-های دویین با گسترش زیاد، قدمتی ترین سنگ‌های منطقه را تشکیل می‌دهند. از مناطق مورد بررسی، یکی در 2 کیلومتری جنوب غربی دهکده زیره (با عرض جغرافیایی 54° 41' شرقی) و دیگری در غرب دهکده بالآباد در 40 کیلومتری شمال شرقی اصفهان (با عرض جغرافیایی 54° 51' شرقی). قرار دارند. در هر دو منطقه، کوارتیت‌های روشین معادل سازند پدیده‌ای در قاعده و سازند بهرام شالم آهن و در نیترات‌های تیه‌ای روتان‌های فرعی راه‌اندازی دارند. این سنگ‌های کربناتی با یک دنباله-ریوی سفیدیل شل، آهن و یک لایه سفیدیل شدید و در نیترات‌های تیه‌ای روشین تکامل می‌یابند (معادل سازند شیسته در شرق ایران با سن دوینی فوقانی تا گیسونزرحمی). تکامل و تکامل یکی از یک نیترات‌های کربناتی، رسوبی ریوی بر فسیل این منطقه تاریک‌سیاه می‌شود که با رشد گیسونزرحمی در نیترات‌های تیه‌ای روشین تکامل می‌یابند (معادل سازند شیسته در شرق ایران با سن دوینی فوقانی تا گیسونزرحمی).
داده شده است (شکل 4)، به طوری که این تمامی نمونه‌های برداشت می‌شود، 5 افق بارانی بین رسوب‌های بادی شده قابل تشخیص این (شکل 5). این آنتفیشان‌ها به عنوان کنوندگی‌های عالی وجود دارند که گوهری‌های قهوه‌ای فیلم‌های زیرین نامی تشخیص داده شده است [6] اولین و دومین افق آنتفیشانی به ترتیب با ضخامت 1.8 و 8 متر و سومین و چهارمین افق که یک نوار نازک آهکی با ضخامت 7/2 متر از هم جدا شده‌اند، به زمان واحدین تحت کنترل اخیره اق آنتفیشانی با ۲ متر ضخامت دارای سن تمامی است. بنابراین رسوی‌های آنتفیشانی در دامنه حجم‌دار و نیز در تاکیدنی مخاطرات ویژه این فاز در پوسته‌ای ایران زیست و در مقایسه جهات این حزمه‌ها را رخداد فاز گوهری‌ای نسبی نین در ایران قابل مقایسه است. نتایج روشن‌های بسیاری را داشتهند که انتقال فازهایی کششی باشد.

شکل ۴ نمودار سنتی منطقه‌ای دامنه (6)

شکل ۵ قرار گیری پی در پی مواد آنتفیشانی (افق اول و دوم) با لایه‌های رسوبی دونوین در منطقه.
سنگ نگاری
سنگ‌های مورد بررسی بیشتر ازون بازالت و بارالت آندزیتی با
بافت‌های پرفروشی، اندسترهای، میکروکانیک و بادامکی هستند.
نمونه‌ها حاوی فنورکست‌های بلای‌پرکونکل‌برای هواهای با آتار
از کلینیپروکسن‌تار. این بلای‌پرکونکل‌برای دراماتورگی متشکل
از بلای‌پرکونکل‌ها و مقداری کالی‌های اندزیتی ازون‌کردن، کلریت و
اکسید آهن قرار گرفته‌اند. کالی‌های کریستالی مغناطیسی، هالوژنیت
و اولومینت و کالی‌های کلسیت، کوارز، زنوبلیت و کلریت به
 عنوان کالی‌های اصلی و به صورت پرگنده درز و شکستگی-
 ها مشاهده می‌شوند. کالی‌های تشکیل‌دهنده بلای‌پرکونکل‌ها
 بلای‌پرکونکل‌ها، کلیه‌ای کم و بیش
سوسپند شده‌اند. سوسپند از بلای‌پرکونکل‌های شیبیتی
 تحلیل زنده و گرد شده‌اند. گرما شنید که بلای‌پرکونکل‌ها در دمای
 بالاتر از دمای خنک گزاره این درصد‌های فنورکست‌های و
گردن آنها می‌تواند جزئی جزئی تغییرات ناگهانی
فت و یا در اثر اکتشاف‌های ماکوره‌ی رخ می‌دهد. به طور عمده
وجود شواهد مبنا بر رخ اکتشاف‌های ماکوره‌ی، کاهش فشار
هنگام خروج ماکوره‌ی را می‌توان در اثر ریزش باسیاری
شد به نظر گرفت. حضور فدلیسانته‌س دیسک‌های ماهیت تازه شکلی و
نیز حضور کالی‌های پراکنده کلریت و ابتدای حاکی از
رخ اکتشاف‌های سبیلیتی. سند این فنورکست‌های سبیلیتی
شکل دار نیم‌های اصلی این فنورکست‌های کلینیپروکسن‌کره‌ای
که شکل‌های برون کره‌ای و کرکشی که از ویژگی‌های بلای‌پرکونکل
های قلبی‌ای است و می‌توان این‌گونه‌اندیشید که آنها مشاهده
کرد در مواردی به چشم می‌خورند. فنورکست‌های پروپسون
به صورت مشترک با کالی‌های رخ‌هایی شکل دار نمی‌شکل به رنگ سبز
روش طراحی به رنگ به تعداد حساب‌های مختلف شوند.
تعداد از فنورکست‌های کلینیپروکسن‌ورونیتی شیمی‌ای که
حضور آمپئول سبز هر درک هر اکتشاف این نوع
درکسی‌ها است. آنتی‌کالی‌های مورد بررسی خصوصاً در مناطق
ابعادی، دامنه و بلاد این‌ها به رمی‌پرکونکل‌ها و گرادیان از ماسه
سنگ‌ها و آکسید‌های نسبت‌های مغناطیسی است. از اجای که کانترپوره‌ها و
مسه سنگ‌ها، در مناطق دبیابی در این‌ها باعث کم و شیل‌ها و
آکسید‌ها در می‌نمایند در این‌ها بین باعث شکل‌بندی می‌شوند،
جنس رس‌سیاه که در ارائه‌ای بارالت‌های پاد دیده می‌شود.
شوند (ماسه سنگ) یک مخلوط رسوی کم زرف و یا دریاچه‌ای
را نشان می‌دهد. ترکیب شیمیایی کلی شناسی رسوب‌های
آواری، به ویژه ماسه سنگ‌ها به خاصیت و موقعیت زمین
ساختن‌یافته است. در آثاری از کالی‌های سنگین موجب
زیرک و ترمالین دانه‌ها با قلیاء‌های بافت‌سازی و
زریده شده در مقطع‌های بافت‌سازی به چشم می‌خورند که مشخصه
ماسه سنگ‌های مربوط به نواحی ریخت درون قاره‌ای است.
کالی شناسی رسوب‌های آواری، حضور افق‌های آتش‌نشانی و
میان‌لاک‌های آتش‌نشانی‌های با رسوب‌ها، نشان از مخلوط
ریخت و وجود حرکت‌های کششی است.

شیمی پروکس
ترکیب پروکس در سنگ‌هایی که درخت‌های درگه‌کنی با
درجه باشی‌شدن شده‌اند تغییر نمی‌کند و شیمی آن به

جدول 1 نتایج آنالیز ریزبردیشی ونی در ترکیب‌های سطحی مورد بررسی (A: اینه، P: پل خاوند)

<table>
<thead>
<tr>
<th>دومین رونت</th>
<th>sample</th>
<th>SiO2</th>
<th>TiO2</th>
<th>Al2O3</th>
<th>FeO</th>
<th>MnO</th>
<th>MgO</th>
<th>CaO</th>
<th>Na2O</th>
<th>K2O</th>
<th>Tot</th>
</tr>
</thead>
<tbody>
<tr>
<td>Px-A1</td>
<td>49.72</td>
<td>7.55</td>
<td>1.97</td>
<td>3.65</td>
<td>2.24</td>
<td>13.17</td>
<td>15.79</td>
<td>21.38</td>
<td>20.87</td>
<td>14.95</td>
<td>109.18</td>
</tr>
<tr>
<td>Px-A2</td>
<td>49.19</td>
<td>7.68</td>
<td>1.98</td>
<td>3.66</td>
<td>2.23</td>
<td>13.17</td>
<td>15.79</td>
<td>21.38</td>
<td>20.87</td>
<td>14.95</td>
<td>109.18</td>
</tr>
<tr>
<td>Px-A3</td>
<td>49.19</td>
<td>7.68</td>
<td>1.98</td>
<td>3.66</td>
<td>2.23</td>
<td>13.17</td>
<td>15.79</td>
<td>21.38</td>
<td>20.87</td>
<td>14.95</td>
<td>109.18</td>
</tr>
<tr>
<td>Px-A4</td>
<td>49.19</td>
<td>7.68</td>
<td>1.98</td>
<td>3.66</td>
<td>2.23</td>
<td>13.17</td>
<td>15.79</td>
<td>21.38</td>
<td>20.87</td>
<td>14.95</td>
<td>109.18</td>
</tr>
<tr>
<td>Px-A5</td>
<td>49.19</td>
<td>7.68</td>
<td>1.98</td>
<td>3.66</td>
<td>2.23</td>
<td>13.17</td>
<td>15.79</td>
<td>21.38</td>
<td>20.87</td>
<td>14.95</td>
<td>109.18</td>
</tr>
<tr>
<td>Px-A6</td>
<td>49.19</td>
<td>7.68</td>
<td>1.98</td>
<td>3.66</td>
<td>2.23</td>
<td>13.17</td>
<td>15.79</td>
<td>21.38</td>
<td>20.87</td>
<td>14.95</td>
<td>109.18</td>
</tr>
<tr>
<td>Px-A7</td>
<td>49.19</td>
<td>7.68</td>
<td>1.98</td>
<td>3.66</td>
<td>2.23</td>
<td>13.17</td>
<td>15.79</td>
<td>21.38</td>
<td>20.87</td>
<td>14.95</td>
<td>109.18</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>نمونه‌بندی‌های ترکیب‌های گسترشی</th>
<th>Sample</th>
<th>Si</th>
<th>Ti</th>
<th>Al</th>
<th>Fe2+</th>
<th>Fe3+</th>
<th>Mn</th>
<th>Mg</th>
<th>Ca</th>
<th>Na</th>
<th>Tot</th>
</tr>
</thead>
<tbody>
<tr>
<td>Px-A1</td>
<td>1.84</td>
<td>1.86</td>
<td>0.17</td>
<td>0.02</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>Px-A2</td>
<td>1.84</td>
<td>1.86</td>
<td>0.17</td>
<td>0.02</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>Px-A3</td>
<td>1.84</td>
<td>1.86</td>
<td>0.17</td>
<td>0.02</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>Px-A4</td>
<td>1.84</td>
<td>1.86</td>
<td>0.17</td>
<td>0.02</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>Px-A5</td>
<td>1.84</td>
<td>1.86</td>
<td>0.17</td>
<td>0.02</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>Px-A6</td>
<td>1.84</td>
<td>1.86</td>
<td>0.17</td>
<td>0.02</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>Px-A7</td>
<td>1.84</td>
<td>1.86</td>
<td>0.17</td>
<td>0.02</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
</tr>
</tbody>
</table>

عنوان و سیلیکات‌ها برای شناسایی متعلق به باریکه‌های زمین ساخت
ماکم خروجی و تنش خروجی نوع مالیه‌ای مادر به کاربرد
می‌شود. [10] نتایج آنالیز ماکم‌های گروهی از پروکس‌ها در
نمونه‌های مورد بررسی در جدول 1 آمدهاند. شکل 6
نشان‌دهنده ترکیب از بایو-پروکس‌های است. در نمونه‌ساز
ساده‌ترین قرار می‌گیرند (شکل 1). در شکل 8 و 9
نمونه‌های مورد نظر در گستره‌های تولیدی قرار دارند. نمونه‌ساز
10
پراکنهای قلبی، تولیدی و باران نهایی‌های قلبی است. این نمونه‌ها به مدت قلبی
تمام بیشتری شان می‌دهد. برای بررسی انجام شده،
پراکنهای منطقه‌های مورد بررسی را می‌توان جزو سری تحولی
(تولیدی با توانی به سمت قلبی) در نظر گرفت.
[۱۱] CaSi₂O₆-MgSi₂O₆-Fe₂Si₂O₆

[۲] S: subalkaline, A: alkaline, P: peralkaline

[۱۲] SiO₂/Al₂O₃

[۱۳] Al/Si

[۱۴] Al/Ti
بررسی زئوشیمی و خاستگاه سنگ‌ها
بررسی زئوشیمی و خاستگاه سنگ‌ها بررسی بازالت‌ها به عنوان ماکمای اولیه منجمد شده‌اند و مکانیسم‌های تعیین‌شده شش با ماکمای اولیه مکی تغییر بیان می‌کند. سپس دریچه‌ای برای پی‌بردن به ترکیب شیمیایی و وضعیت فیزیکی حاکم بر گونه‌شان‌ها به کمک نتایج بدست آمده از تجزیه شیمیایی عناصر (جدول ۲) نشان داده‌های درصد بالایی TiO۲ و P۲O۵ در نمونه‌های که بیشتر با سری ماکمای قلیایی هم‌خوانی دارد. نتایج بررسی سنگ‌های انفرشتانی مورد بررسی در قلمرو فلزات و پارازیت آندزیتی [۱۵] قرار دادن (شکل ۱۱) و تعدادی از نمونه‌ها به دلیل افزایش SiO۲ تحت تأثیر انحلالهای درگیری‌ای با سامت انذزیت گرایش پیدا کرده‌اند. همچنین تعدادی از نمونه‌ها در محدوده تفایل‌یت ورید شده‌اند که به دلیل افزایش عناصر

| جدول ۲: نتایج آنالیز شیمیایی تعادل از نمونه‌های مورد بررسی (XRF) |
|-----------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-----------------|
| Sample | SiO۲ | TiO۲ | Al۲O۳ | Fe۲O۳ | MgO | CaO | Na۲O | K۲O | P۲O۵ |
| Abyan1 | 0.075 | 15.14 | 2.82 | 4.20 | 1.23 | 1.24 | 0.48 | 0.35 | 0.068 |
| Abyan2 | 0.074 | 15.49 | 2.72 | 4.34 | 1.27 | 1.26 | 0.47 | 0.34 | 0.069 |
| Abyan3 | 0.075 | 15.32 | 2.73 | 4.30 | 1.26 | 1.25 | 0.46 | 0.34 | 0.069 |
| Abyan4 | 0.076 | 15.28 | 2.71 | 4.32 | 1.25 | 1.25 | 0.46 | 0.34 | 0.069 |
| Abyan5 | 0.075 | 15.34 | 2.72 | 4.29 | 1.24 | 1.25 | 0.46 | 0.34 | 0.069 |
| Abyan6 | 0.075 | 15.32 | 2.73 | 4.30 | 1.26 | 1.25 | 0.46 | 0.34 | 0.069 |
| Abyan7 | 0.075 | 15.34 | 2.72 | 4.29 | 1.24 | 1.25 | 0.46 | 0.34 | 0.069 |
| Abyan8 | 0.075 | 15.32 | 2.73 | 4.30 | 1.26 | 1.25 | 0.46 | 0.34 | 0.069 |
| Dalmeh1 | 0.075 | 15.32 | 2.73 | 4.30 | 1.26 | 1.25 | 0.46 | 0.34 | 0.069 |
| Dalmeh2 | 0.075 | 15.32 | 2.73 | 4.30 | 1.26 | 1.25 | 0.46 | 0.34 | 0.069 |
| Zefreh1 | 0.075 | 15.32 | 2.73 | 4.30 | 1.26 | 1.25 | 0.46 | 0.34 | 0.069 |
| Zefreh2 | 0.075 | 15.32 | 2.73 | 4.30 | 1.26 | 1.25 | 0.46 | 0.34 | 0.069 |
| Bagherabad1 | 0.075 | 15.32 | 2.73 | 4.30 | 1.26 | 1.25 | 0.46 | 0.34 | 0.069 |
| Jahaghi1 | 0.075 | 15.32 | 2.73 | 4.30 | 1.26 | 1.25 | 0.46 | 0.34 | 0.069 |
| Jahaghi2 | 0.075 | 15.32 | 2.73 | 4.30 | 1.26 | 1.25 | 0.46 | 0.34 | 0.069 |
| p/Kh1 | 0.075 | 15.32 | 2.73 | 4.30 | 1.26 | 1.25 | 0.46 | 0.34 | 0.069 |
| p/Kh2 | 0.075 | 15.32 | 2.73 | 4.30 | 1.26 | 1.25 | 0.46 | 0.34 | 0.069 |
| p/Kh3 | 0.075 | 15.32 | 2.73 | 4.30 | 1.26 | 1.25 | 0.46 | 0.34 | 0.069 |
| p/Kh4 | 0.075 | 15.32 | 2.73 | 4.30 | 1.26 | 1.25 | 0.46 | 0.34 | 0.069 |
| p/Kh5 | 0.075 | 15.32 | 2.73 | 4.30 | 1.26 | 1.25 | 0.46 | 0.34 | 0.069 |
دائم محصول: 2 نتایج آنالیز شیمیایی تعدادی از نمونه‌های مورد بررسی (ICP-MS).

<table>
<thead>
<tr>
<th>نمونه</th>
<th>Ba</th>
<th>Sr</th>
<th>Ca</th>
<th>Nb</th>
<th>Hf</th>
<th>Zr</th>
<th>Y</th>
<th>Cr</th>
<th>Ru</th>
<th>Ni</th>
<th>V</th>
<th>Co</th>
<th>Cu</th>
<th>Pb</th>
<th>Zn</th>
<th>Rb</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abyan1</td>
<td>421</td>
<td>215</td>
<td>10</td>
<td>24</td>
<td>9</td>
<td>6</td>
<td>3</td>
<td>22</td>
<td>44</td>
<td>7</td>
<td>1</td>
<td>29</td>
<td>5</td>
<td>6</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>Abyan2</td>
<td>35</td>
<td>84</td>
<td>13</td>
<td>7</td>
<td>11</td>
<td>12</td>
<td>7</td>
<td>22</td>
<td>3</td>
<td>1</td>
<td>21</td>
<td>5</td>
<td>7</td>
<td>11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Abyan3</td>
<td>169</td>
<td>148</td>
<td>11</td>
<td>9</td>
<td>11</td>
<td>13</td>
<td>10</td>
<td>22</td>
<td>3</td>
<td>1</td>
<td>21</td>
<td>5</td>
<td>7</td>
<td>11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Abyan4</td>
<td>321</td>
<td>148</td>
<td>11</td>
<td>9</td>
<td>11</td>
<td>13</td>
<td>10</td>
<td>22</td>
<td>3</td>
<td>1</td>
<td>21</td>
<td>5</td>
<td>7</td>
<td>11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Abyan5</td>
<td>319</td>
<td>148</td>
<td>11</td>
<td>9</td>
<td>11</td>
<td>13</td>
<td>10</td>
<td>22</td>
<td>3</td>
<td>1</td>
<td>21</td>
<td>5</td>
<td>7</td>
<td>11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Abyan6</td>
<td>306</td>
<td>146</td>
<td>11</td>
<td>9</td>
<td>11</td>
<td>13</td>
<td>10</td>
<td>22</td>
<td>3</td>
<td>1</td>
<td>21</td>
<td>5</td>
<td>7</td>
<td>11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Abyan7</td>
<td>354</td>
<td>144</td>
<td>11</td>
<td>9</td>
<td>11</td>
<td>13</td>
<td>10</td>
<td>22</td>
<td>3</td>
<td>1</td>
<td>21</td>
<td>5</td>
<td>7</td>
<td>11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Abyan8</td>
<td>324</td>
<td>144</td>
<td>11</td>
<td>9</td>
<td>11</td>
<td>13</td>
<td>10</td>
<td>22</td>
<td>3</td>
<td>1</td>
<td>21</td>
<td>5</td>
<td>7</td>
<td>11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Abyan9</td>
<td>250</td>
<td>144</td>
<td>11</td>
<td>9</td>
<td>11</td>
<td>13</td>
<td>10</td>
<td>22</td>
<td>3</td>
<td>1</td>
<td>21</td>
<td>5</td>
<td>7</td>
<td>11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Abyan10</td>
<td>270</td>
<td>144</td>
<td>11</td>
<td>9</td>
<td>11</td>
<td>13</td>
<td>10</td>
<td>22</td>
<td>3</td>
<td>1</td>
<td>21</td>
<td>5</td>
<td>7</td>
<td>11</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

درجه (Jehagh) و (P/Kh) (پ. خ.)

<table>
<thead>
<tr>
<th>نمونه</th>
<th>La</th>
<th>Ce</th>
<th>Nd</th>
<th>Pr</th>
<th>Sm</th>
<th>Eu</th>
<th>Gad</th>
<th>Tb</th>
<th>Dy</th>
<th>Ho</th>
<th>Er</th>
<th>Tm</th>
<th>Yb</th>
<th>Lu</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abyan1</td>
<td>51,4</td>
<td>64,9</td>
<td>87,9</td>
<td>97,8</td>
<td>98,9</td>
<td>99,0</td>
<td>99,1</td>
<td>99,2</td>
<td>99,3</td>
<td>99,4</td>
<td>99,5</td>
<td>99,6</td>
<td>99,7</td>
<td>99,8</td>
</tr>
<tr>
<td>Abyan2</td>
<td>74</td>
</tr>
<tr>
<td>Abyan3</td>
<td>74</td>
</tr>
<tr>
<td>Abyan4</td>
<td>74</td>
</tr>
<tr>
<td>Abyan5</td>
<td>74</td>
</tr>
<tr>
<td>Abyan6</td>
<td>56,4</td>
<td>66,7</td>
<td>86,7</td>
<td>96,8</td>
<td>97,9</td>
<td>98,9</td>
<td>99,0</td>
<td>99,1</td>
<td>99,2</td>
<td>99,3</td>
<td>99,4</td>
<td>99,5</td>
<td>99,6</td>
<td>99,7</td>
</tr>
<tr>
<td>Abyan7</td>
<td>56,4</td>
<td>66,7</td>
<td>86,7</td>
<td>96,8</td>
<td>97,9</td>
<td>98,9</td>
<td>99,0</td>
<td>99,1</td>
<td>99,2</td>
<td>99,3</td>
<td>99,4</td>
<td>99,5</td>
<td>99,6</td>
<td>99,7</td>
</tr>
<tr>
<td>Abyan8</td>
<td>56,4</td>
<td>66,7</td>
<td>86,7</td>
<td>96,8</td>
<td>97,9</td>
<td>98,9</td>
<td>99,0</td>
<td>99,1</td>
<td>99,2</td>
<td>99,3</td>
<td>99,4</td>
<td>99,5</td>
<td>99,6</td>
<td>99,7</td>
</tr>
<tr>
<td>Abyan9</td>
<td>56,4</td>
<td>66,7</td>
<td>86,7</td>
<td>96,8</td>
<td>97,9</td>
<td>98,9</td>
<td>99,0</td>
<td>99,1</td>
<td>99,2</td>
<td>99,3</td>
<td>99,4</td>
<td>99,5</td>
<td>99,6</td>
<td>99,7</td>
</tr>
<tr>
<td>Abyan10</td>
<td>56,4</td>
<td>66,7</td>
<td>86,7</td>
<td>96,8</td>
<td>97,9</td>
<td>98,9</td>
<td>99,0</td>
<td>99,1</td>
<td>99,2</td>
<td>99,3</td>
<td>99,4</td>
<td>99,5</td>
<td>99,6</td>
<td>99,7</td>
</tr>
</tbody>
</table>

شکل 11 نمودار نامکانی سانگ‌های آتش‌نشانی و جدایی سری سانگ‌های ساب انتقال از آلگان [15].
شکل 12 موقعیت نمونه‌های مورد بررسی در نمودار Zr/TiO_2-Nb/Y زیر [16] (این نمودار دال‌پذیر جهت اینکه در اثر بازیگری قابل حصول است [16]).

شکل 13 نمودار جدا کننده پارامترها بر اساس TiO_2-Zr/P$_2$O$_5$*104 [16] .

شکل 14 نمودار P_2O_5/TiO$_2$ و موقعیت قرارگیری نمونه‌های مورد نظر در دران [16].

شکل 15 نمودار P_2O_5/Ni و موقعیت نمونه‌های مورد بررسی دران [17].

شکل 16 نمودار Na$_2$O+K$_2$O/SiO$_2$ و موقعیت نمونه‌های مورد بررسی دران [18].
نمودهای مورد بررسی دارای ترکیب کم و بیش یکی هستند و بهترین پیشنهاد باشد. نشان دهنده شکل گیری اندازه‌گیری کم و بیش مشترک و نیز نقش اساسی نیروی جاذبه در شکل آن است. اکنون این مسئله مطرح می‌شود که این بازالت‌ها به کنار مناطق تکثیرنرم‌گامی تعلق دارند. نمونه‌های مورد بررسی را در گسترش بازالت‌های درون صفحه‌ای نشان می‌دهد. میزان بالای Zr و نسبت بالای Y/Zr (بین 20) [25] بیانگر یک محیط درون صفحه‌ای برای این سنگ‌های آتش‌نشان است. نمونه‌های مورد بررسی بیشتر در گسترش بازالت‌های انتقالی تا قلبی قرار می‌گیرند (شکل 120).
در بررسی کلی نتایج آمیز زننی از غنی بودن بیشتر نمونه‌ها از تیتان است. به همین ترتیب بزالت‌های غنی از تیتان (TiO₂ = 2%) را به سری قلبانی ریفت‌های قاره‌ای ای نسبت می‌دهند. از دیگر موارد قابل توجه، فراتراک کمی اکسیدهای آهن در نمونه‌های در دیگر نمونه‌ها می‌توان استصلاح فروپلاستیک را هم ایجاد کرد. (20) نشان داده شده است. بررسی سلاسل تکتونیک‌ها بازالت‌های گسترشی مورد بررسی از نمونه‌های عکس‌برداری استفاده شد. در شکل‌های 21 تا 23 الگوی نمودار جدول و نمونه‌های فراوانی عناصر کمیاب (بهنام‌زاده نسبت به کنتریت و گوشته‌ی اولیه) نشان داده است. چنان‌که ملاحظه می‌شود الگوحای در نمونه‌های مورد بررسی کم و بیش شیبی به REE واشتی به بازالت‌های قلبانی بسته به شکاف‌های قاره‌ای است. البته به دلیل دگرگونی ناگهانی رخداده یک کانالی چندان زیادی نشان نمی‌دهد و لیل در کلی مقداری
نمونه‌ها مشاهده می‌شود. می‌تواند به ناسازگاری این عناصر دررسک خشک‌گاه و ورود آنها به مکان‌های سازندگی سنگ‌های انفیشامی در طول ذوب بخش کم مرطوب باشد. ناهنجاری نسبتاً منفی نیز نشانگر تأثیر کم آلیک مکاها با مواد پوسه‌ای است. در نمونه‌های اینبنده، دامنه و زفره بی‌هنجاری Eu نسبتاً منفی در مشاهده می‌شود. بی‌هنجاری Eu اغلب با فلزات‌ها کنترل می‌شود. بی‌هنجاری Eu ناشی از دگرسانی و آلیپتیشن پلاژیوکلازاها باشد، زیرا جانشین شدن Ca در پلاژیوکلازا تأمیل زیادی دارد. از طرفی وجوه به‌هنجاری منفی این عنصر درنمونه‌ها می‌تواند نشانهٔ جدایی پلاژیوکلازا درفشارهای کم باشد [24]. در نمونه‌های متفاوتی جهت Eu تقریباً فاقد بی‌هنجاری است. عدم حضور نسبتاً منفی Eu هنگامی می‌توان به تبلور هنرمندان پیروکسین پلاژیوکلازا و از طرفی به بالاتر بودن فوگاسیته اکسپزیون نسبت داد.

بررسی تا حدودی نتیجه‌گیری آلودگی سنگ‌های پوششی Zr/Y و Ce/Y است. به عقیده [32]، نسبت‌های Ce/Y تبلور چندانی نسبتاً ثابت و بدون تغییر بقیه می‌مانند، ولی در طول گذران بیش از یکدی‌یوپاشی می‌تواند تغییر می‌کند. مقادیر این پارامترها در سنگ‌های منطقه‌ای مورد بررسی است. Zr/Y برای ۱۸ تا ۱۵ برای میلی‌گی می‌توان که اشیب پوش‌نگه کم و بینش‌ناهنده زیاد می‌تواند پاسخ است. وجود یک روش برای گسترش (بی‌هنجاری مثبت و منفی) در مقادیر عناصر Ba و Sr، K، Rb عناصر در این مناطق مورد بررسی و تحرک بالای این عناصر نسبت داده می‌شود. REE میزان میزان نسبت به نمونه‌های سری این میزان جهت و پیل خواندن، گشش شدگی نسبتاً بیشتری نشان می‌دهد. شاید فراوانی بیشتر پیروکسین و الپین در نمونه‌های منطقهٔ جهت سبب نشدنی شدگی عناصر در REE بخش است [8]. بی‌هنجاری مثبت درعناصر Y و Ti Zr که درصد زیادی از

![شکل 21 نمودار عنوانی عناصر کمیاب وکلاته‌های منطقه بر حسب کندرت [25]](https://example.com/figure1.png)

![شکل 22 فراوانی عنوانی عناصر کمیاب در وکلاته‌های مورد مطالعه به‌هنگام شده بر حسب مورد [29]](https://example.com/figure2.png)
شکل ۲۲: فراوانی عناصر کم‌پایه و کم‌پایه‌ی منطقه به‌نان در شهربخش گوشته‌ای اولیه [۲۷]
نمودارهای قبلی و اینجا نشان از غنی‌شدن محل خاستگاه
ماکماهی تشکیل دهنده این سنگ‌نهال (شکل ۴۶) به
طبیعتی برخی از سنگ‌نهال‌های اطراف بارالتهای درون
قاره‌ای به ترتیب بارالتهای جزایر اقیانوسی (OIB)
شناخته شده است. در این صورت بارالتهای درون قاره‌ای از گونه‌های
استنوسفری ریشه گرفته‌اند [۴۱] از طرفی نظر [۳۳]، اگر
نمونه‌های سنگ‌مشابه مقادیر La/Nb و Zr/Nb
باشد، ماکماهی تشکیل دهنده آنها، دارای خاستگاه
OIB استنوسفری است [۴۲] در شکل ۲۴، ملاحظه می‌شود
 محیط کدام از نمونه‌ها در گستره OIB قرار گرفته‌اند و نا
نظامی از عدم ریشه‌گیری ماکماهی آنها از استنوسفر است. برای
Dy/Yb تعیین درجه دوپینگ‌خیال سنگ‌خاستگاه از نموندار
La/Yb نسبت به [۴۳] استفاده شد. با توجه به نموندار ۲۷،
نمونه‌های منطقه مورد بررسی (غیر از نمونه‌های چهار)
ریو مجنی ۳۰ تا ۱۶ درصدی از ذوب غنی‌شده خاستگاه گارنت
پریدوترسی فرار گرفته‌اند. جانبه شکل نشان می‌دهد، نمونه‌های
ماکماهی تشکیل دهنده آنها از نمونه‌های چهار درصد دوپینگ
نیمه غنی‌شده به منطقه چهار درصد ذوب غنی‌شده بررسی کمی
را نشان می‌دهند. بررسی‌های تجربی نشان می‌دهد که

شکل ۲۴ موضعیت سنگ‌های انتشقانی منطقه مورد بررسی در نموندار Nist به

شکل ۲۵ نمونه‌های جداش خاستگاه غنی شده و تهی شده با استفاده از نسبت‌های

[۴۲] Sm/Yb و [۴۳] Y/Zr و Nb/Zr
برداشت
برای بررسی بیشتر چگونگی زمین‌شناسی پالتونوئیک ایران
مرکزی سمن‌های انششانی در مناطق مختلف مورد بررسی و
مقایسه قرار گرفتن. سمن‌های نمونه برداری شده کم و بیش
یکپارچه و غالباً در نزدیکی این مناطق می‌باشند. غنای این
یک یا بیش از دو نشان از میان این
اداکننده انششانی سمن‌های و رسببه نشان دهنده ارتباط آن با
یک رژیم زمین ساختمانی کشفی از نوپرداخت درون قاره است.
بررسی‌های زمین‌ساختاری نشان از طبیعت تولیدی متمایز به
کنار آمدن (تحویل) ماگماتیسم و یکسان بودن تقسیم‌بندی
شیمیایی، ساختاری و انششانی آن‌ها نتیجه تنها کنار آمدن نشان دهنده این
تغییرات عمیقی و نمودارهای اننکوئی بازه‌ای از برجه
های نسبتاً کم آشکار مامایی است. ماهیت انتقالی قابلیت برخی
پالتونوئیک در میان کم‌اندازه شده و از طریق شروع شدید
کشف درون قاره این درون زمین است. تاکنون تصور می‌شود
که جنبه‌های هرسی نیز در این نظریه با خشکسازی هرمار
بوده است. پیدا بخش سمن‌های نوپردازی در شمال شرقی اصفهان

(زیره - باقرآباد) بیانگر رخداد ضعیف یا ماجراهای ناشی از
حرکت‌های محلی در پوست‌های ایران زمین هنگام رخداد این
جنوب‌های بوده است.

قدردانی
از جنب آقای دکتر علی همدانی، دکتر قدرت تراوی و دکتر
محسن طباطبایی مشفق (اعضاء هیئت علمی گروه زمین‌شناسی
دانشگاه اصفهان) به خاطر ایشان اطلاعات و داده‌های گروه‌های
خود را در اختیار نویسندگان مقاله گذارند، نهایت سپاس و
قدردانی را می‌نماییم.

مراجع
[1] زاده‌ی م، نمایش زمین‌شناسی چهارگوش شه، مبیبیس،
Geology 7 (1968) 1229-1258.
[3] نیوی م، ح، دیپاچه‌ی بر زمین‌شناسی ایران، انتشارات
سازمان زمین‌شناسی کشور، (1355) 109 صفحه.

[5] حقی پورا و ولی نامه، شمال شرق ادنه، جهرمگوش زمین شناسی اردکان با مسیر 10000، ساعت فیزیکی، نامه کارشناسی ارشد، دانشگاه اصفهان، (1377(121 صفحه.
[6] میرزابی، پیوستگری سنتگه‌های دوین در ناحیه دارآباد، یافته نامه کارشناسی ارشد، دانشگاه اصفهان، (1378(141 صفحه.
[7] میرزابی، پیوستگری سنتگه‌های دوین در ناحیه دارآباد، یافته نامه کارشناسی ارشد، دانشگاه اصفهان، (1378(141 صفحه.
[8] هاشمی فر، پیوستگری دوین در ناحیه دارآباد، یافته نامه کارشناسی ارشد، دانشگاه اصفهان، (1382(153 صفحه.

[32] K rim Z A h m e d G o b a r, "K a r a b i r d D a d e h H a y a Z o n t o m y – باربیرد داده‌های زونتومی‌باین", تالیفات روزنامه‌نگاران، (1381)، انتشارات دانشگاه تهران، 65 صفحه.

[42] قاسمی ح، درخشی م، کامی شناسی، زونتومی، و تکش فراورده جدایی مکانیکی بلوهای الیوس در تشکیل سنگ‌های