سنگ شناسی و زئوشهی توده‌ی گرانیتونیکیدی مشیر آباد (جنوب قره‌و-کردستان)

سارا گرددی*، علی اصغر سپاهی، فرهاد آلبانی

گروه زمین شناسی، دانشکده علوم، دانشگاه پویان، سبزوار

(دریافت مقاله: 89/3/10، نسخه نهایی: 89/12/8)

چکیده: توده‌ی گرانیتونیکیدی مشیرآباد به‌خیال از توده‌های نفوذی زون سنجد - سیرجان را تشکیل می‌دهد و به‌صورت کشیده و طول‌پای روند شرقی - غربی رخ می‌دهد. بر اساس ماهورهای سنگ‌های کلیکی مشیرآباد آن وابسته به مجموعه‌های متنوعی از فنولی‌های گرانی‌زی گزارنده است. حاکم‌تبارهای دیروز این توده‌ها از زئوژمیک متنوعی که از طریق شیروانیهای مختلف در زمان‌های مختلف گزارنده است. توده‌ها از عناصر مختلفی متشکل شده‌اند که عناصر مولکولی (As) و مولکول‌های متنوع (FeOtotal + MgO + TiO2) و شوکر و نزدیک‌ترین عناصر نسبی سایر عناصر می‌توانند که از مکان‌های مختلف به‌دست آمده‌اند. توده‌های طیفی که شکل‌های مختلفی دارند، به‌صورت با آب و ناهنجاری‌های مختلفی می‌باشند. توده‌ها شامل حاکم‌تبارهای مختلفی هستند که به‌صورت در طول زمان‌های مختلف توسط توده‌های مختلف گزارنده است.

واژه‌های کلیدی: زئوشهی، گرانیتونیک، نفوذی، سنجد - سیرجان، شیروانیهای متنوع

مقدمه

مجموعه‌ی گرانی‌زی‌های مشیرآباد در بخش شمال غربی استان گیلان‌وزاکستان، در این محدوده‌های کوه‌های زئوشهی مشیرآباد، بر روی عناصر سنگی‌های کوه‌های زئوشهی مشیرآباد و توده‌های مختلف گزارنده است.

* توبیسنده مستند، تلفن: +98 518 8524347.
گرایش‌های مشترک‌آباد در ایران از ابتدای بوده و کمتر مورد توجه قرار گرفته است، لذا در این نوشته سعی شده است تا ویژگی‌های مختلف سنجش‌شناختی و روش‌شناسی آن مشخص شود.

موضوع جغرافیایی و زمین‌شناسی

منطقه‌سوزی بررسی در شمال بانکشای ایران (استان کردستان) و در جنوب غربی شهرستان قره‌باغ به عرض‌های جغرافیایی ۴۰°۵۰۰–۴۲°۵۰۰ شمالی و طول جغرافیایی ۵۲°۱۰۰–۵۵°۵۰۰ شرقی محدود شده است. این منطقه از ناحیه تبسی‌نیوندی زون‌های ساختمانی ایران جزیی از زون سندرچ، سیرجش آتشفشانی-پوستن‌کوی، دختر رنده و رنده‌های آبی، کمربند کوه‌زارگر است که خود بخشی از کمربند آبی-هیمالیا است و سفره‌های رانده فرض می‌شود که طی بسته سندرچ در جهتی خوبی می‌گردد.

توده‌گرایی مشترک‌آباد بر اساس تقسیم‌بندی

در جنوب زون داگوک‌پیچه واقع شده است از ویژگی‌های مهم این زون سندرچ-سیرجش در بالا کالراک و فرانا ناحیه تبسی‌نیوندی، دنیزی و ماکانکی است. به عقیده [9] این زون بین داشتن دو توده‌گرایی ناحیه اصلی یافته و برگز، اولی مورد پوستن‌پرتوی این پهنه جوان و ایجاد کمربند ایجاد شده، این توده‌گرایی بسیار ایجاد شده و واقع شده است از ویژگی‌های مهم این زون سندرچ-سیرجش نامیده می‌شود. در بالا کالراک و فرانا ناحیه تبسی‌نیوندی، دنیزی و ماکانکی است به عقیده [9] این زون بین داشتن دو توده‌گرایی ناحیه اصلی یافته و برگز، اولی مورد پوستن‌پرتوی این پهنه جوان و ایجاد کمربند گرایش‌های مشترک‌آباد در ایران از ابتدای بوده و کمتر مورد توجه قرار گرفته است، لذا در این نوشته سعی شده است تا ویژگی‌های مختلف سنجش‌شناختی و روش‌شناسی آن مشخص شود.
شکل 1 (الف) تصویر میکروسکوپیکی از دیوریت با بفت دانه‌ای که در پلاژیوکلاژ و برجی از هورتندها (Kfs) توزیع شده‌اند. (ب) تصویر میکروسکوپیکی از مونوز دیوریت با بفت دانه‌ای نیمه شکل‌دار، کانی ارتو بوصور بی شکل وجود دارد و فضای بین پلاژیوکلاژ و هورتندها بر کرده است. (ب) تصویر میکروسکوپیکی از کوارتز مونوز دیوریت با هورتندهای نیمه شکل و یا کبدی، پلاژیوکلاژ و کوارتز. (پ) پلاژیوکلاژ (Pl)، کوارتز (Qtz)، فلدسپار، Sph (سپهر).
آرتوکلژ: تا ۵ درصد و بیوتئین ۵ تا ۱۲ درصد است (شکل ۳). در نمونه‌های جی‌پی‌آر، بیوتئین ۲۵ تا ۳۰ درصد به صورت یک‌نیم‌نوری کشف می‌شود. در صورتی که نوری یک‌نیم‌نوری شود، نمونه‌های جی‌پی‌آر به صورت کلاسیک بالاتر (شکل ۳) در ناحیه میکروکولن تعبیر یافته و در ناحیه آن‌ها پیدا می‌شود. اغلب نمونه‌ها دیده می‌شود (شکل ۴الف). در ناحیه میکروکولن قلبی ای (آرتوکلژ) ۲۰ تا ۵۰ درصد میکروکولن یافته و در ناحیه آن‌ها پیدا می‌شود. اغلب نمونه‌ها دیده می‌شود (شکل ۴الف).
مشاهده می‌شود، از دیگر بی‌فوت‌های متداول در این سنگ‌ها، توان به پروبنیت و نیز میکروکانیت اشراز کردن (شکل 5، الف 1-الف 2)، کلایه‌ای نسبتاً تکامل دارده‌اند این سنگ‌ها فلورید بالایی به شکل 5 تا 15 درصد، کوارتز تا 40 درصد و پلازیکلاژ 15 تا 20 درصد است. در رسانه‌های پروبنیت، میکروکانیت، اسفن، زیرکن، آبیوانیت و اکسیدهای آهن در سنگ‌ها وجود دارند. برخی از لیوکولورانت‌های منطقه به دلیل درگیری‌های دینامیکی میلونیت شده‌اند (شکل 3).

بعضی از پلازیکلاژ‌ها به دلیل شکل خردسکویی و دگرگشایی دیده می‌شوند. تاثیر نیروهای فشاری و کششی در پلازیکلاژ‌ها باعث تعیین شکل در بلورها و ایجاد بف آت راکنشی و مکان‌گذاری می‌شود که در پلازیکلاژ‌ها و سیلیس بفندکی نیز شباهت دارد. در پلازیکلاژ‌ها میکروکانیت و سیلیس بفندکی و رشد از طرف سطوح C های مکانیکی و تابو در ناحیه است. در راستای سطوح در پلازیکلاژ‌ها به سیلیس و سیلیس بفندکی معمولاً به دلیل تأثیر درکنگارهای این سنگ‌ها تشکیل شده است.

دایک‌های آسیدی (آلیت‌ها) توده‌های گرانیت‌وی‌شیب‌آباد با دایک‌های آسیدی قطع شده است. اختلاف دایک‌ها متفاوت از این 2 سانتی‌متر حداکثر 5 سانتی‌متر است. ایلیت‌ها در سایه‌های مختلف فازهای مانگمی اکسید می‌شوند که به صورت دایک و سیل درون واحدهای پیشین نفوذ کرده‌اند. آلیت‌ها با رنگ

![شکل 1](https://example.com/image1.png) تصویر میکروسكوبی از بفت پروبنیت در اکسید کردن (الیت‌ها) توده‌های گرانیت‌وی‌شیب‌آباد با رنگ پلازیکلاژ‌ها برای کلایه‌ای، اکسیژن، زیرکون و پروبنیت (B) گرانیت‌وی‌شیب‌آباد. این (الیت‌ها) باز می‌گردد که پلازیکلاژ‌ها در سیلیس بفندکی و رشد از طرف سطوح C های مکانیکی و تابو در ناحیه است. در راستای سطوح در پلازیکلاژ‌ها به سیلیس و سیلیس بفندکی معمولاً به دلیل تأثیر درکنگارهای این سنگ‌ها تشکیل شده است.

![شکل 2](https://example.com/image2.png)
زئوئیسی

نمونه آلپین بوده و بررسی توسط Newpet و ICP-MS سنجشی آنگام از نوع مایع متفاوت گرفته، نمونه مجموع قلبی سنجشی آنگام درونی به روش شیمیایی در (تکرار 6) ارائه شده است که نمونه‌های منطقه‌ی مورد بررسی در آن تصور شده‌اند.

جدول 1: نتایج آنالیز شیمیایی انواع سنگ‌های مورد بررسی (پکسیده‌ای عناصر اصلی بر حسب درصد وزنی و عناصر کمیاب بر حسب PPM)

<table>
<thead>
<tr>
<th>واحدهای گرینت</th>
<th>MSGI 42</th>
<th>MSGI 5</th>
<th>MSGI 12</th>
<th>KF 6</th>
<th>MSGI 34</th>
</tr>
</thead>
<tbody>
<tr>
<td>Major elements, wt%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SiO<sub>2</sub></td>
<td>72.80</td>
<td>75.10</td>
<td>73.20</td>
<td>71.90</td>
<td>74.20</td>
</tr>
<tr>
<td>Al<sub>2</sub>O<sub>3</sub></td>
<td>13.65</td>
<td>14.95</td>
<td>14.55</td>
<td>14.45</td>
<td>14.65</td>
</tr>
<tr>
<td>Fe<sub>2</sub>O<sub>3</sub></td>
<td>1.94</td>
<td>2.74</td>
<td>1.74</td>
<td>1.84</td>
<td>2.34</td>
</tr>
<tr>
<td>CaO</td>
<td>0.24</td>
<td>0.24</td>
<td>0.24</td>
<td>0.44</td>
<td>0.44</td>
</tr>
<tr>
<td>Na<sub>2</sub>O</td>
<td>3.64</td>
<td>3.64</td>
<td>3.94</td>
<td>3.94</td>
<td>4.94</td>
</tr>
<tr>
<td>MnO</td>
<td>0.19</td>
<td>0.19</td>
<td>0.19</td>
<td>0.19</td>
<td>0.19</td>
</tr>
<tr>
<td>MgO</td>
<td>0.36</td>
<td>0.36</td>
<td>0.36</td>
<td>0.36</td>
<td>0.36</td>
</tr>
<tr>
<td>K<sub>2</sub>O</td>
<td>3.77</td>
<td>3.77</td>
<td>3.77</td>
<td>3.77</td>
<td>3.77</td>
</tr>
<tr>
<td>Cr<sub>2</sub>O<sub>3</sub></td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>TiO<sub>2</sub></td>
<td>0.03</td>
<td>0.03</td>
<td>0.03</td>
<td>0.03</td>
<td>0.03</td>
</tr>
<tr>
<td>SiO<sub>2</sub></td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
</tr>
<tr>
<td>Trace elements, ppm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yb</td>
<td>0.36</td>
<td>0.36</td>
<td>0.36</td>
<td>0.36</td>
<td>0.36</td>
</tr>
<tr>
<td>Ce</td>
<td>4.59</td>
<td>4.59</td>
<td>4.59</td>
<td>4.59</td>
<td>4.59</td>
</tr>
<tr>
<td>Cs</td>
<td>0.28</td>
<td>0.28</td>
<td>0.28</td>
<td>0.28</td>
<td>0.28</td>
</tr>
<tr>
<td>Cu</td>
<td>4.31</td>
<td>4.31</td>
<td>4.31</td>
<td>4.31</td>
<td>4.31</td>
</tr>
<tr>
<td>Dy</td>
<td>0.16</td>
<td>0.16</td>
<td>0.16</td>
<td>0.16</td>
<td>0.16</td>
</tr>
<tr>
<td>Er</td>
<td>0.18</td>
<td>0.18</td>
<td>0.18</td>
<td>0.18</td>
<td>0.18</td>
</tr>
<tr>
<td>Eu</td>
<td>0.14</td>
<td>0.14</td>
<td>0.14</td>
<td>0.14</td>
<td>0.14</td>
</tr>
<tr>
<td>Gd</td>
<td>0.13</td>
<td>0.13</td>
<td>0.13</td>
<td>0.13</td>
<td>0.13</td>
</tr>
<tr>
<td>Lu</td>
<td>0.17</td>
<td>0.17</td>
<td>0.17</td>
<td>0.17</td>
<td>0.17</td>
</tr>
<tr>
<td>Nd</td>
<td>0.12</td>
<td>0.12</td>
<td>0.12</td>
<td>0.12</td>
<td>0.12</td>
</tr>
<tr>
<td>Nb</td>
<td>0.11</td>
<td>0.11</td>
<td>0.11</td>
<td>0.11</td>
<td>0.11</td>
</tr>
<tr>
<td>Pb</td>
<td>0.12</td>
<td>0.12</td>
<td>0.12</td>
<td>0.12</td>
<td>0.12</td>
</tr>
<tr>
<td>Rb</td>
<td>0.11</td>
<td>0.11</td>
<td>0.11</td>
<td>0.11</td>
<td>0.11</td>
</tr>
<tr>
<td>Sm</td>
<td>0.12</td>
<td>0.12</td>
<td>0.12</td>
<td>0.12</td>
<td>0.12</td>
</tr>
<tr>
<td>Sr</td>
<td>0.13</td>
<td>0.13</td>
<td>0.13</td>
<td>0.13</td>
<td>0.13</td>
</tr>
<tr>
<td>Ta</td>
<td>0.14</td>
<td>0.14</td>
<td>0.14</td>
<td>0.14</td>
<td>0.14</td>
</tr>
<tr>
<td>Tb</td>
<td>0.14</td>
<td>0.14</td>
<td>0.14</td>
<td>0.14</td>
<td>0.14</td>
</tr>
<tr>
<td>Th</td>
<td>0.14</td>
<td>0.14</td>
<td>0.14</td>
<td>0.14</td>
<td>0.14</td>
</tr>
<tr>
<td>Ti</td>
<td>0.14</td>
<td>0.14</td>
<td>0.14</td>
<td>0.14</td>
<td>0.14</td>
</tr>
<tr>
<td>Tm</td>
<td>0.14</td>
<td>0.14</td>
<td>0.14</td>
<td>0.14</td>
<td>0.14</td>
</tr>
<tr>
<td>U</td>
<td>0.15</td>
<td>0.15</td>
<td>0.15</td>
<td>0.15</td>
<td>0.15</td>
</tr>
<tr>
<td>V</td>
<td>0.16</td>
<td>0.16</td>
<td>0.16</td>
<td>0.16</td>
<td>0.16</td>
</tr>
<tr>
<td>W</td>
<td>0.17</td>
<td>0.17</td>
<td>0.17</td>
<td>0.17</td>
<td>0.17</td>
</tr>
<tr>
<td>Y</td>
<td>0.18</td>
<td>0.18</td>
<td>0.18</td>
<td>0.18</td>
<td>0.18</td>
</tr>
<tr>
<td>Yb</td>
<td>0.19</td>
<td>0.19</td>
<td>0.19</td>
<td>0.19</td>
<td>0.19</td>
</tr>
<tr>
<td>Zn</td>
<td>0.20</td>
<td>0.20</td>
<td>0.20</td>
<td>0.20</td>
<td>0.20</td>
</tr>
<tr>
<td>Zr</td>
<td>0.21</td>
<td>0.21</td>
<td>0.21</td>
<td>0.21</td>
<td>0.21</td>
</tr>
<tr>
<td>Samples Oxides</td>
<td>SGLG 1</td>
<td>SGLG 4</td>
<td>KP5</td>
<td>SGLG 7</td>
<td>MSGI 2</td>
</tr>
<tr>
<td>----------------</td>
<td>--------</td>
<td>--------</td>
<td>------</td>
<td>--------</td>
<td>--------</td>
</tr>
<tr>
<td>Major elements, wt%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SiO₂</td>
<td>72.1%</td>
<td>72.0%</td>
<td>71.2%</td>
<td>71.3%</td>
<td>73.0%</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>12.1%</td>
<td>12.0%</td>
<td>12.8%</td>
<td>12.4%</td>
<td>13.3%</td>
</tr>
<tr>
<td>Fe₂O₃</td>
<td>0.22%</td>
<td>0.29%</td>
<td>0.46%</td>
<td>0.29%</td>
<td>0.17%</td>
</tr>
<tr>
<td>CaO</td>
<td>1.4%</td>
<td>0.3%</td>
<td>0.6%</td>
<td>0.3%</td>
<td>0.2%</td>
</tr>
<tr>
<td>MgO</td>
<td>0.0%</td>
<td>0.1%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
</tr>
<tr>
<td>Na₂O</td>
<td>3.75%</td>
<td>4.88%</td>
<td>4.77%</td>
<td>4.75%</td>
<td>3.5%</td>
</tr>
<tr>
<td>K₂O</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
</tr>
<tr>
<td>Cr₂O₃</td>
<td><0.1%</td>
<td><0.1%</td>
<td><0.1%</td>
<td><0.1%</td>
<td><0.1%</td>
</tr>
<tr>
<td>TiO₂</td>
<td>0.0%</td>
<td>0.1%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
</tr>
<tr>
<td>MnO</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
</tr>
<tr>
<td>P₂O₅</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
</tr>
<tr>
<td>LOI</td>
<td>0.5%</td>
<td>0.3%</td>
<td>1.0%</td>
<td>0.3%</td>
<td>0.8%</td>
</tr>
<tr>
<td>Total</td>
<td>99.3%</td>
<td>99.3%</td>
<td>98.2%</td>
<td>99.1%</td>
<td>99.3%</td>
</tr>
<tr>
<td>Trace elements, ppm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ba</td>
<td>1.48%</td>
<td>0.1%</td>
<td>0.1%</td>
<td>0.1%</td>
<td>1.5%</td>
</tr>
<tr>
<td>Ce</td>
<td>0.2%</td>
<td>0.2%</td>
<td>0.2%</td>
<td>0.2%</td>
<td>0.2%</td>
</tr>
<tr>
<td>Cs</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
</tr>
<tr>
<td>Cu</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
</tr>
<tr>
<td>Dy</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
</tr>
<tr>
<td>Er</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
</tr>
<tr>
<td>Eu</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
</tr>
<tr>
<td>Gd</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
</tr>
<tr>
<td>Lu</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
</tr>
<tr>
<td>Nb</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
</tr>
<tr>
<td>Nd</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
</tr>
<tr>
<td>Pb</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
</tr>
<tr>
<td>Rb</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
</tr>
<tr>
<td>Sm</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
</tr>
<tr>
<td>Sr</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
</tr>
<tr>
<td>Ta</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
</tr>
<tr>
<td>Tb</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
</tr>
<tr>
<td>Th</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
</tr>
<tr>
<td>Ti</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
</tr>
<tr>
<td>Tm</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
</tr>
<tr>
<td>U</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
</tr>
<tr>
<td>V</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
</tr>
<tr>
<td>W</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
</tr>
<tr>
<td>Y</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
</tr>
<tr>
<td>Yb</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
</tr>
<tr>
<td>Zn</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
</tr>
<tr>
<td>Zr</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Samples Oxides</th>
<th>MSGI 44</th>
<th>MSGI 9</th>
<th>MSGI 2</th>
<th>MSGI 33</th>
<th>MSGI 22</th>
</tr>
</thead>
<tbody>
<tr>
<td>Major elements, wt%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SiO₂</td>
<td>65.0</td>
<td>65.0</td>
<td>67.0</td>
<td>68.0</td>
<td>68.0</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>17.5</td>
<td>17.5</td>
<td>18.2</td>
<td>18.2</td>
<td>16.2</td>
</tr>
<tr>
<td>Fe₂O₃</td>
<td>3.5</td>
<td>2.2</td>
<td>0.1</td>
<td>0.1</td>
<td>5.5</td>
</tr>
<tr>
<td>CaO</td>
<td>5.0</td>
<td>3.7</td>
<td>2.3</td>
<td>4.9</td>
<td>5.2</td>
</tr>
<tr>
<td>MgO</td>
<td>1.1</td>
<td>1.1</td>
<td>1.1</td>
<td>1.1</td>
<td>1.1</td>
</tr>
<tr>
<td>Na₂O</td>
<td>0.2</td>
<td>0.8</td>
<td>0.1</td>
<td>0.2</td>
<td>0.7</td>
</tr>
<tr>
<td>K₂O</td>
<td>1.4</td>
<td>1.5</td>
<td>2.0</td>
<td>1.9</td>
<td>1.5</td>
</tr>
<tr>
<td>Cr₂O₃</td>
<td><0.1</td>
<td><0.1</td>
<td><0.1</td>
<td><0.1</td>
<td><0.1</td>
</tr>
<tr>
<td>TiO₂</td>
<td>0.8</td>
<td>0.5</td>
<td>0.8</td>
<td>0.8</td>
<td>0.8</td>
</tr>
<tr>
<td>MnO</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>P₂O₅</td>
<td>1.8</td>
<td>1.8</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
</tr>
<tr>
<td>LOI</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>Total</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
</tr>
<tr>
<td>Trace elements, ppm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ba</td>
<td>240</td>
<td>210</td>
<td>880</td>
<td>520</td>
<td>480</td>
</tr>
<tr>
<td>Ce</td>
<td>1200</td>
<td>990</td>
<td>1270</td>
<td>590</td>
<td>570</td>
</tr>
<tr>
<td>Cs</td>
<td>1.9</td>
<td>2.1</td>
<td>1.4</td>
<td>1.4</td>
<td>2.4</td>
</tr>
<tr>
<td>Cu</td>
<td>13.0</td>
<td>20.0</td>
<td>9.0</td>
<td>21.0</td>
<td>21.0</td>
</tr>
<tr>
<td>Dy</td>
<td>4.5</td>
<td>7.8</td>
<td>7.8</td>
<td>7.8</td>
<td>7.8</td>
</tr>
<tr>
<td>Er</td>
<td>2.5</td>
<td>2.5</td>
<td>2.5</td>
<td>2.5</td>
<td>2.5</td>
</tr>
<tr>
<td>Eu</td>
<td>1.6</td>
<td>1.3</td>
<td>1.5</td>
<td>1.5</td>
<td>1.5</td>
</tr>
<tr>
<td>Gd</td>
<td>7.0</td>
<td>6.7</td>
<td>6.7</td>
<td>6.7</td>
<td>6.7</td>
</tr>
<tr>
<td>Lu</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
</tr>
<tr>
<td>Nb</td>
<td>24.0</td>
<td>24.0</td>
<td>28.0</td>
<td>24.0</td>
<td>24.0</td>
</tr>
<tr>
<td>Nd</td>
<td>1.1</td>
<td>1.1</td>
<td>1.1</td>
<td>1.1</td>
<td>1.1</td>
</tr>
<tr>
<td>Pb</td>
<td>1.2</td>
<td>1.2</td>
<td>1.2</td>
<td>1.2</td>
<td>1.2</td>
</tr>
<tr>
<td>Rb</td>
<td>7.9</td>
<td>7.9</td>
<td>7.9</td>
<td>7.9</td>
<td>7.9</td>
</tr>
<tr>
<td>Sm</td>
<td>8.5</td>
<td>8.5</td>
<td>8.5</td>
<td>8.5</td>
<td>8.5</td>
</tr>
<tr>
<td>Sr</td>
<td>58.0</td>
<td>58.0</td>
<td>58.0</td>
<td>58.0</td>
<td>58.0</td>
</tr>
<tr>
<td>Ta</td>
<td>1.1</td>
<td>1.1</td>
<td>1.1</td>
<td>1.1</td>
<td>1.1</td>
</tr>
<tr>
<td>Tb</td>
<td>0.9</td>
<td>0.9</td>
<td>0.9</td>
<td>0.9</td>
<td>0.9</td>
</tr>
<tr>
<td>Th</td>
<td>1.9</td>
<td>1.9</td>
<td>1.9</td>
<td>1.9</td>
<td>1.9</td>
</tr>
<tr>
<td>Ti</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>Tm</td>
<td>0.4</td>
<td>0.4</td>
<td>0.4</td>
<td>0.4</td>
<td>0.4</td>
</tr>
<tr>
<td>U</td>
<td>3.8</td>
<td>3.8</td>
<td>3.8</td>
<td>3.8</td>
<td>3.8</td>
</tr>
<tr>
<td>V</td>
<td>5.0</td>
<td>3.0</td>
<td>4.0</td>
<td>4.0</td>
<td>4.0</td>
</tr>
<tr>
<td>W</td>
<td>6.0</td>
<td>6.0</td>
<td>6.0</td>
<td>6.0</td>
<td>6.0</td>
</tr>
<tr>
<td>Y</td>
<td>2.9</td>
<td>2.9</td>
<td>2.9</td>
<td>2.9</td>
<td>2.9</td>
</tr>
<tr>
<td>Yb</td>
<td>2.3</td>
<td>2.3</td>
<td>2.3</td>
<td>2.3</td>
<td>2.3</td>
</tr>
<tr>
<td>Zn</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
</tr>
<tr>
<td>Zr</td>
<td>2.5</td>
<td>2.5</td>
<td>2.5</td>
<td>2.5</td>
<td>2.5</td>
</tr>
</tbody>
</table>
جدول 1

![Table](image)

واحد سنجش‌های حد واسط

<table>
<thead>
<tr>
<th>عناصر سنتز</th>
<th>MSGI 26</th>
<th>MSGI 7</th>
<th>MSGI 38</th>
<th>MSF 37</th>
<th>MSGI 40</th>
</tr>
</thead>
<tbody>
<tr>
<td>مرحله اصلی</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>مس</td>
<td>%</td>
<td>%</td>
<td>%</td>
<td>%</td>
<td>%</td>
</tr>
<tr>
<td>SiO₂</td>
<td>56.00</td>
<td>56.00</td>
<td>53.30</td>
<td>54.50</td>
<td>50.00</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>15.55</td>
<td>18.90</td>
<td>13.95</td>
<td>14.50</td>
<td>14.30</td>
</tr>
<tr>
<td>Fe₂O₃</td>
<td>6.25</td>
<td>6.49</td>
<td>8.95</td>
<td>6.87</td>
<td>7.22</td>
</tr>
<tr>
<td>CaO</td>
<td>7.18</td>
<td>7.50</td>
<td>9.16</td>
<td>11.00</td>
<td>10.80</td>
</tr>
<tr>
<td>MgO</td>
<td>5.33</td>
<td>6.16</td>
<td>8.14</td>
<td>11.15</td>
<td>8.21</td>
</tr>
<tr>
<td>Na₂O</td>
<td>3.19</td>
<td>3.90</td>
<td>3.32</td>
<td>2.88</td>
<td>2.57</td>
</tr>
<tr>
<td>K₂O</td>
<td>1.30</td>
<td>1.29</td>
<td>1.04</td>
<td>1.13</td>
<td></td>
</tr>
<tr>
<td>Cr₂O₃</td>
<td>0.01</td>
<td>0.02</td>
<td>0.08</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TiO₂</td>
<td>0.26</td>
<td>0.29</td>
<td>0.43</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MnO</td>
<td>0.12</td>
<td>0.13</td>
<td>0.12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P₂O₅</td>
<td>0.22</td>
<td>0.33</td>
<td>0.14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LOI</td>
<td>1.88</td>
<td>1.39</td>
<td>1.10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>10.00</td>
<td>9.90</td>
<td>9.90</td>
<td>10.00</td>
<td></td>
</tr>
<tr>
<td>عناصر نسبتهای</td>
<td>ppm</td>
<td>ppm</td>
<td>ppm</td>
<td>ppm</td>
<td>ppm</td>
</tr>
<tr>
<td>Ba</td>
<td>217.00</td>
<td>257.00</td>
<td>212.00</td>
<td>517.00</td>
<td></td>
</tr>
<tr>
<td>Ce</td>
<td>27.00</td>
<td>30.00</td>
<td>25.00</td>
<td>33.00</td>
<td></td>
</tr>
<tr>
<td>Cs</td>
<td>2.67</td>
<td>1.47</td>
<td>0.78</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cu</td>
<td>1.00</td>
<td>0.99</td>
<td>0.93</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dy</td>
<td>1.55</td>
<td>3.05</td>
<td>2.65</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Er</td>
<td>1.55</td>
<td>0.30</td>
<td>0.50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eu</td>
<td>1.02</td>
<td>0.24</td>
<td>0.10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gd</td>
<td>3.75</td>
<td>3.15</td>
<td>3.65</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lu</td>
<td>0.38</td>
<td>0.29</td>
<td>0.09</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nb</td>
<td>1.14</td>
<td>2.20</td>
<td>9.30</td>
<td>0.90</td>
<td>14.30</td>
</tr>
<tr>
<td>Nd</td>
<td>1.88</td>
<td>4.90</td>
<td>14.00</td>
<td>17.50</td>
<td></td>
</tr>
<tr>
<td>Pb</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rb</td>
<td>0.87</td>
<td>4.65</td>
<td>16.00</td>
<td>28.00</td>
<td></td>
</tr>
<tr>
<td>Sm</td>
<td>1.29</td>
<td>0.00</td>
<td>0.43</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sr</td>
<td>4.31</td>
<td>21.00</td>
<td>39.00</td>
<td>51.00</td>
<td></td>
</tr>
<tr>
<td>Ta</td>
<td>0.08</td>
<td>0.07</td>
<td>0.80</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tb</td>
<td>0.29</td>
<td>0.43</td>
<td>0.65</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Th</td>
<td>0.68</td>
<td>8.55</td>
<td>2.13</td>
<td>3.28</td>
<td></td>
</tr>
<tr>
<td>Ti</td>
<td>0.5</td>
<td>0.50</td>
<td>0.50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tm</td>
<td>0.27</td>
<td>0.53</td>
<td>0.49</td>
<td></td>
<td></td>
</tr>
<tr>
<td>U</td>
<td>0.39</td>
<td>0.70</td>
<td>0.99</td>
<td></td>
<td></td>
</tr>
<tr>
<td>V</td>
<td>1.29</td>
<td>1.00</td>
<td>0.40</td>
<td>1.20</td>
<td>1.50</td>
</tr>
<tr>
<td>W</td>
<td>0.40</td>
<td>0.20</td>
<td>0.20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Y</td>
<td>0.45</td>
<td>0.40</td>
<td>0.40</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yb</td>
<td>1.44</td>
<td>3.5</td>
<td>1.91</td>
<td>1.29</td>
<td>1.78</td>
</tr>
<tr>
<td>Zn</td>
<td>77.00</td>
<td>73.00</td>
<td>8.00</td>
<td>7.00</td>
<td></td>
</tr>
<tr>
<td>Zr</td>
<td>10.1</td>
<td>84</td>
<td>8.7</td>
<td>11</td>
<td></td>
</tr>
</tbody>
</table>

Downloaded from ijcm.ir at 3:58 +0430 on Saturday March 28th 2020
نمودار تقسیم‌بندی ماغماها بر اساس درجه اشباع از آلومینا
معروف است [16]. نیز در تعبین خاستگاه ماغماهای
گرانیونی اهمیت ویژه‌ای دارد. بنابر این نموودار سنگ‌های
موردن بررسی در مجموعه پلوتونیک مشابه‌اند در قلمرو
گرانیونی‌های نوع ۱ و در گسترده مناطقی که در پالیسیون
نوزع شدند (شکل ۷ب)، با توجه به خصوصیات کانی‌های تریور
کانی‌های فلزی و پویزیت سنگ‌های منطقه و عدم حضور
کانی‌های فلزی در آل‌های نانی از Al مانند کریدریت، کرونودوم و توبیاز در این
سنگ‌های ماهی پرالومنوس آن را نمی‌توان به فرآیندهای
هضم در بخش‌های میانی و بالایی پوسته‌های قارآوی و باسئه
دانست. بنابراین باید این سنگ‌های اصلی نمودار، با توجه به
شکل ۷ب، منطقه و عدم حضور کانی‌های فلزی و پویزیت
سنگ‌های ماهی پرالومنوس آن را نمی‌توان به میزان آب در ناحیه‌های گداخته
شدن نسبت داد [18].

نمودار نماد کلی‌ترین تغییرات عنصری کمی نسبت به SiO2
۵۰ درصد (شکل ۱۰) ترسمین Rb شده است. کمی کمی نسبت به Mo
و با افزایش محتواهای آلی در بالای حدی می‌توان به فرآیندهای
عسکری تغییر نیز مانند دگرگونی و یا افزایش میزان کمی
زا می‌توان به فرآیندهای جدایی بلوری نسبت داد.

نمودار نماد کلی‌ترین تغییرات عنصری کمی نسبت به SiO2
۵۰ درصد (شکل ۱۰) ترسمین Rb شده است. کمی کمی نسبت به Mo
و با افزایش محتواهای آلی در بالای حدی می‌توان به فرآیندهای
عسکری تغییر نیز مانند دگرگونی و یا افزایش میزان کمی
زا می‌توان به فرآیندهای جدایی بلوری نسبت داد.
شکل 7 نمودار جدایی قلبانی‌های سیلیسی از به سیلیس (FeOtot/MgO) نسبت به SiO۲ برای جدایی گستره‌های آهکی-قلبا و طلایی [13]. نمونه‌ها در گستره نیمه قلبانی و آهکی-قلبایی قرار دارند.

شکل 8 نمودارهای تیترهای اکسید‌های اصلی نسبت به سیلیس گرافیت‌های مشابه‌های مشابه [13]. (علامت مشابه شکل 7).
باید این امر را به نحوی درک کنید که کاملاً از این فاصله‌ها مسدب این ا fillColor=rgb(255,255,255)

از آنجا که فاصله‌های گذشته و گذشته‌ی هر

دو منجر به ایجاد بی‌پردازه‌ی نهایی‌ی مشابهی در شکل‌گیری

سنگ‌های ماهواره، بنابراین با واکنشات ارتباط

خوب‌سازی‌ی نمونه‌ها، یک چک که کدام یک از این فاصله‌ها

مسباب این ارتباط هستند؟ برای پاسخ به این سوال لازم است

از نمونه‌ها است. در اعضای از نمونه‌ها

تغییرات دو عنصر ناسازگار نسبت به یکدیگر رسم می‌شود. اگر

دو عنصر ناسازگار روند خلی مشتبه که از سیلان مخته‌تنی

بگذرد نشان دهد. در این صورت فاقد اصل ارتباط بین

سنگ‌ها تیلور جدایی‌شکل است. در این صورت گذشتن

بخش متناسق با فاصله‌گاه عامل اصلی ارتباط است.

11) نمونه‌ها

تنوع در با شیمی اثر برای نمونه

واینگ، با توجه به گراک‌نتی‌گری می‌دانست نشان می‌ده که

نشان دهنده تیلور جدایی‌شکل در شکل‌گیری این نمونه‌ها

هستند. نمونه‌های TiO2-Fe و گروه‌های

TiO2-Fe در نمونه‌های

سنج‌های حد‌دست منطقه‌های مورد بروز زیاد و در سنگ‌های

نیز طی کمین. این نمونه در نمونه

TiO2-Fe و TiO2-Fe در نمونه

شکل 11) لایه‌ی تغییرات سینی در

روند دیگری داشته، که این می‌تواند به تغییرات مگنتیت

یافته این دو عنصر به جای آهن در شکل‌های مگنتیت طی

روند دیگری واصل بوده است. (شکل 11).
پی هنرگری منفی Nb نیز شاخص مناطق وابسته به فرورانش و واکنشهای فعال قارباها است [۲۴]. این نمودهای یک گنی شدگی در عنصر نادر خاکی سبک (LREE) و یک تپی شدگی (HREE) در نشان می‌دهند. و نیز پی هنرگری منفی در Eu را نشان می‌دهد.

شکل ۱۰ نمودارهای تغییرات اکسیدهای عنصر کمبود نسبت به سیلیس گرانیونه‌هاي مشیری‌باد [۱۴]. (علائم مشابه شکل ۷)

شکل ۱۱ بررسی روند تفرق در نمونه‌های گرانیونه‌های مشیری‌باد [۱۹] (علائم مشابه شکل ۷ می‌باشد).
عکس ۱۲ این گرایش تغییرات های نوع I و S از هم‌دیگر [۱۵]. گرانیت‌نیتهای مشابه‌اکنار در گستردگی گرانیت‌های نوع I قرار می‌گیرند (عکس)

ب) مقایسه تمرکز بخشی از عناصر در گرانیت‌های مشابه‌اکنار با گرانیت‌نیتهای قوس آنفشن‌شانی نوع اکنار روند نمونه‌ها مشابه با گرانیت‌نیتهای قوس‌های آنفشن‌شانی شیلی است (نمودار) نسبت به گرانیت‌های [۱۶]

شکل ۱۲ این عکس‌نیتهای زمین لازم برای نمونه‌های گرانیت‌نیتهای و گرانیت‌نیتهای منطقه‌ای مورد بررسی بر اساس داده‌های کنترلی [۱۷]

با توجه به ویژگی‌های کانی شناسی و داده‌های زیست

شیمیایی (چگونگی تمرکز عناصر اصلی، توزیع و فراوانی عناصر ناسازگار)، گرانیت‌نیتهای منطقه‌ای که نوع I هستند و برای خاستگاه این سنجش‌ها از سوی [۲۷] سه بیشترز سبک اثره

شده است:

۱- دو زمان ابزار وسیله قرار آورده شده

۲- دو زمان ابزار وسیله قرار آورده شده در بالای صفحه

۳- دو زمان ابزار وسیله قرار آورده شده در اثر نفوذ

درنمونه‌های [۲۷] گرانیت‌های نزد ذرات زمین ساخته

به چهار گروه، شامل: گرانیت‌های زنر گسترش (ORG) و (Syn-COLG) گرانیت‌های هم زمان با برخورد قرار دارای (WPG) و گرانیت‌های کمیبندهای زون اورانیوم (VAG) تشخیص شده، نمونه‌های گرانیت‌نیتهای مشابه‌اکنار در گستردگی قوس آنفشن‌شانی (VAG) قرار می‌گیرند و نمونه‌های گرانیت‌نیتهای این گسترده و گرانیت‌نیتهای گرایش و به گرانیت‌های قاره‌ای فعال نیا تمدن که دارای بیوتیت و

هورنلند بوده و از گرانیت‌نیتهای نوع I هستند (شکل ۱۲).
زیبایی سنگ‌های آذرین درگوون نشده (حداکثر)،
در پوسته‌ای زیری به‌واسطه‌ای ذوب بدون آب آمفیبولیتی می‌تواند منجر به تشکیل مینه‌های نوارانی (دیورتیت) شود. به نظر می‌رسد خاستگاهِ این سنگ‌های متنوعه‌ی منطقه‌ای ثباتی از نظر این سنگ‌های دیده‌کنگین، به‌وسیله‌ی این ذوب بدون آب می‌تواند یک روش مکانیکی باشد، تا ساختار منطقه‌ای مورد بررسی تبدیل به منطقه‌ای مورد بررسی شود.

با دخالت موثر منابع پوسته‌ای و با استناد داشتش باشیم [22] بر اساس نتایج حاصل از ذوب یک سنگ‌های پوسته‌ای این مگامیهای گیاه‌شناسی آهکی (قلیایی) نوع 1 می‌تواند از ذوب یک سنگ‌های درگوون مافیک تا حد واسط از آبادان و پوسته‌ای به‌وجود آیند. از طرف دیگر گذراه‌های مشتق شده از سنگ‌های مافیک را از نسبتی (Na2O+K2O)/Fe2O3 + MgO + TiO2) پایین تری نسبت به گذراه‌های حاصل از ذوب منابع‌های مستند (شکل 15) به‌ارای گیاه‌شناسی دارای نسبت‌های پایین (Na2O+K2O)/Fe2O3 + MgO + TiO2) می‌تواند از ذوب چنین سنگ‌های پوسته‌ای حاصل شود. در نمونه‌های طراحتی شده بر اساس بررسی تجاری [21-23] نمونه‌های مافیک به عنوان ترکیب مگامیهای اولیه در قلب‌های ترکیبی گذراه‌های تجویز مشتق شده از ذوب منابع‌های متگریافکها و آمفیبولیت‌ها نشان داده شده است (شکل 15).

شکل 14 موقعیت زمین‌ساختی نمونه‌های گیاه‌شناسی مشابه در نمونه‌های [21-23] این نمونه‌ها نشان می‌دهند که اکثر نمونه‌های منطقه‌ای مورد بررسی در گسترده‌ی گیاه‌شناسی فوسه‌ها انتخابی قرار می‌گیرند (عکس مشابه شکل 2).
برداشت
مجموعه پلوتوتکی مشابهی واحدهاست که دستگاه مختلفی در
خود جای داده است. طبق دستگاه‌های موجود در این مجموعه
از چپینه تا گرانوتودیورت و گرانیت تغییر می‌کند. روابط
محیطی این توده‌ها نشان می‌دهد که معنی‌های مختلفه
مناطق به‌صورت تدریجی و نتایج تبیین جدایی‌کننده
ساسنده و خاسگره گرفته‌اند از یک مکانیابی مشترک است
که با توجه به بررسی‌های کمی سلسله‌ای و
زئوئولوژی می‌توان این مجموعه را حامل مafka‌الی با ترکیب
حدود (دیورتینی) حاصل از چوب بخش پروتوتودی
پوسته‌ی زیرین داستان نموده‌ای زئوئولوژی می‌توان می‌دهند
که سگن‌های این مجموعه از نوع گرانوتودیورت نوع 1. اهمیت
قابلیت از نظر درجه اشباع از الومینیوم (ASI) مталوئید تا
کمی برآورده‌های هستند. به نظر می‌رسد که این سگن‌ها با
مکان‌های اصلی از فرودنی پوسته‌ی ابقاییونی نتیجه‌اند. به بر
صفحه ایران مرکزی وایسته‌بوده و در کمی محوطه زمین
ساخته، وایسته به گرانه‌های قاره‌ای فعل تشکیل شده‌اند.

مراجع
[1] نوکیان، "مطالعه پرتوگرافی و پترولوژی گرانیت‌های
البرز همدان،" پایان‌نامه کارشناسی ارشد، گرایش پترولوژی
دانشگاه تهران (1372)
تل‌رود، این توده‌ها، پایان‌نامه دکتری، دانشگاه
دریافت معلم تهران (1378)
شناسی و اکتشافات سنگه (1376)
بروجرد، پایان‌نامه دکتری، دانشگاه تهران (1386)
شهرستان قروه، پایان‌نامه کارشناسی ارشد، دانشگاه تهران
[6] شیخ ذکریان،(1985)، پترولوژی سنگ‌های آدریان
قره، پایان‌نامه دکتری، دانشگاه آزاد تهران (1377)
[7] (1985)، نویز هم، "پیاده‌سازی آدریان
زمین‌شناسی و اکتشافات سنگ‌های لبران، دانگاه
زئوئولوژی می‌توان این مجموعه را حامل مafka‌الی با ترکیب
حدود (دیورتینی) حاصل از چوب بخش پروتوتودی
پوسته‌ی زیرین داستان. نموده‌ای زئوئولوژی می‌توان می‌دهند
که سگن‌های این مجموعه از نوع گرانوتودیورت نوع 1. اهمیت
قابلیت از نظر درجه اشباع از الومینیوم (ASI) مталوئید تا
کمی برآورده‌های هستند. به نظر می‌رسد که این سگن‌ها با
مکان‌های اصلی از فرودنی پوسته‌ی ابقاییونی نتیجه‌اند. به بر
صفحه ایران مرکزی وایسته‌بوده و در کمی محوطه زمین
ساخته، وایسته به گرانه‌های قاره‌ای فعل تشکیل شده‌اند.

مراجع
[1] نوکیان، "مطالعه پرتوگرافی و پترولوژی گرانیت‌های
البرز همدان،" پایان‌نامه کارشناسی ارشد، گرایش پترولوژی
دانشگاه تهران (1372)
تل‌رود، این توده‌ها، پایان‌نامه دکتری، دانشگاه
دریافت معلم تهران (1378)
شناسی و اکتشافات سنگه (1376)
بروجرد، پایان‌نامه دکتری، دانشگاه تهران (1386)
شهرستان قروه، پایان‌نامه کارشناسی ارشد، دانشگاه تهران
[6] شیخ ذکریان،(1985)، پترولوژی سنگ‌های آدریان
قره، پایان‌نامه دکتری، دانشگاه آزاد تهران (1377)
[7] (1985)، نویز هم، "پیاده‌سازی آدریان
زمین‌شناسی و اکتشافات سنگ‌های لبران، دانگاه

شکل 15 قلمرو ترکیب گرانه‌های ترجیح مشتق از گدایت پلیت‌ها، منافع برنده‌های مافیک منطقه به
عنصر ترکیب ماهی‌اند (علاقه مندی شکل 7).

