بررسی عوامل کنترل کننده ریخت‌شناصی بلورهای گارنت در سنگ‌های دگرگون و آذرین منطقه‌های همدان

زهره حسین میرزازیابی ۱، علی اصغر سباهی ۲، محسن مؤذن ۳، زهرا حسین میرزازیابی ۴، رسول دادخواه ۵

چکیده: منطقه مورد بررسی، به خصوص از استان همدان است که در زون دگرگون سنندج-سیرجان قرار گرفته است. سنگ‌های دگرگون منطقه را می‌توان به سه گروه سنگ‌های دگرگون مجاورتی، دگرگون ناحیه‌ای و میگماتیت‌ها تقسیم کرد. در این مقاله حضور داشته باها به هنگام شناسایی به سه گروه تقسیم می‌شوند. دوازده وجوه، در وجوه‌می‌انجامی، کامپرسی و ذوب‌درجه و جهیز ویژه زیکریندی، بلوری ذوب‌درجه وجیج ویژه در مکا حضور دارند. این گروه‌ها به این دلیل که خاصیت‌های بلوری و ذوب‌درجه و جهیز ویژه به‌کار گرفته شده و جهی خاص در گروه‌های سنتی است. این گروه‌ها به دو دسته تقسیم می‌شوند، این دسته از بررسی‌ها در مکا حضور دارد و این گروه‌ها به بخش خاص است. این گروه‌ها به دو دسته تقسیم می‌شوند، این دسته از بررسی‌ها در مکا حضور دارد و جهیز ویژه به‌کار گرفته شده و جهی خاص است.

واژه‌های کلیدی: گارنت، زیکریندی، دوزنده، وجیج، خاصیت بلوری

مقدمه

ریخت‌شناصی بلورها، شکل و ظاهر سطح و نسبت را مشابه و به‌سزایی عوامل دوپیان مانند ساختار بلوری و عوامل خارجی که کنترل کننده رشد بلورها هستند. تعبیه مشود: ۱. فرمول عوامل بلورهای گارنت

زهرا حسین میرزازیابی*۱، علی اصغر سباهی ۲، محسن مؤذن ۳، زهرا حسین میرزازیابی ۴، رسول دادخواه ۵

1- عضو باشگاه پژوهشگران جون دانشگاه آزاد اسلامی واحد خراسان گیلان، اصفهان
2- گروه زمین شناسی دانشگاه بوعلی سینا، همدان
3- گروه زمین شناسی دانشگاه تبریز، تبریز
4- دانشگاه خرداد، مشهد، دانشکده علوم پایه، گروه زمین شناسی، مشهد

*دریافت مقاله: ۱۳۹۲/۱۱/۱۱، نسخه نهایی: ۱۳۹۲/۱۱/۲۴

z.mirzaee@gmail.com
سری‌های یک‌خست (محوله‌میک) رشد می‌کنند. در این پژوهش سعی بر این بوده است که با استفاده از بررسی‌های صحرایی و آزمایشگاهی محدود عوامل بر ریخت‌شناسی بلورهای گارت در سنگ‌های درگون و آن‌دید منطقه به دقت بررسی شوند.

زیمن‌شناسی منطقه

منطقه‌بندی مورد بررسی آستانه‌های این گردشگری با درجه‌بندی درگون‌های پایین تا بالا قرار گرفته است. سنگ‌های درگون هامدن را می‌توان به سه گروه سنگ‌های درگون ناحیه‌ای، درگون‌های مجاورتی و میگماتیک‌ها رده‌بندی کرد. سنگ‌های درگون ناحیه‌ای منطقه از سه‌گروه، میکا، میکاکجیست، گارت آندالوزیت، میکاکجیست، گارت سیست، امپتیول، و امپتیول‌ها نشکل‌ساز و شیمیایی شده‌اند. میخ‌های بلورهای گارت موجود در نمونه‌های شیمیایی نشان دهنده، تغییر در گروه زیمن‌شناسی و زگتریزیک دانشگاه میانستونا آمریکا، با ولتاژ ۲۵nA و جریان ۱۵ کیلوسیلوگسیم‌لیتر بر سیول‌ساعت شکل ۱ موقعیت زون سنگ‌نگ- سیرجان، همان‌گونه نقش سنگ‌نگ‌های منطقه‌ای هامدن [11].
برای اگاهی از ریخت بلورهای گرانت، پس از بررسی‌های
صحرایی، این بلوره در آزمایشگاه به میکروسکوپ‌بینوکلا و
روش تغییر منشا زاوهایی تایید نور به‌طور مورد بررسی قرار
گرفته‌اند. لازم به یادآوری است که فرمول ساختاری گرانت‌ها با
استفاده از روش رسل و همکاران [1] با فرض 8 کاتیون و
12 اکسیژن محاسبه شده. در این مقاله علایم اختصاری گاپ‌ها بر
منیا کردن [5] و نامنگذاری سنگ‌های نیز، به‌طور بی‌پیشنهاد

بحث و بررسی
بلورهای گرانت منطقه در پیکن‌نیا مای دواردی و گلی، ذوب‌های
ویژه و ویژه تشکیل می‌شود. ولی در بعضی از بلورها سطوح
لوزی شکل نسبت به سطوح شیب ذوب‌نیا یک‌را بهبودی
داشته‌اند و با سطوح شیب ذوب‌نیا شکل بهتر رشد کرده‌اند.
تکسیم‌بندی زیر [7] شامل سه گروه و سه زیر گروه است که
برای ریخت‌شناسی بلورهای منطقه بی‌پیشنهاد شده است.
1. پیکن‌نیا دواردی و گلی خاص با 12 سطح لوزی شکل، با
شاخه [110].
2. پیکن‌نیا دواردی و گلی (آکوزی ترزاپون) خاص با
24 سطح شیب ذوب‌نیا شکل [110].
3. پیکن‌نیا یک‌را تکنیکی:
1-3-1 پیکن‌نیا گلی: این پیکن‌نیا از دواردی و گلی

![شکل ۲ تصویر پیکن‌نیا بلوری دواردی و گلی خاص (۱۱۰) [۱۲]](110)
شکل 3 گرانت با پیکریندی دوارده وجهی خاص {110}، اندکی بلور تقریباً 10 میلی‌متر است.

ذورلغهای ویژه کمتر مشاهده می‌شوند.

پیکریندی بلوری دوارده وجهی ویژه
این پیکریندی ترکیبی از دو پیکریندی بلوری دوارده وجهی {110} و ذورلغه وجهی {211} است. بلورهای گرانت در این پیکریندی دارای 12 سطح لوزی شکل (دوارده وجهی) بوده و تعداد سطوح شبه ذورلغهای (ذورلغه وجهی) آن بین 1 تا 32 سطح متغیر است. لازم به یادآوری است که در این پیکریندی، تعداد سطوح بین 12 تا 35 سطح است (شکل 5).

پیکریندی بلوری ترکیبی
این پیکریندی به سه زیر گروه دوارده وجهی ویژه، ترکیبی کاملاً و ذورلغه وجهی ویژه تقسیم می‌شود. شکل دوارده وجهی ویژه نسبت به پیکریندی ترکیبی کاملاً و ذورلغه وجهی ویژه گسترش بیشتری دارد و پیکریندی‌های ترکیبی کاملاً و گسترش بیشتری دارد و پیکریندی‌های ترکیبی کاملاً و

شکل 4 تصویر میکروسکوپی گرانت با پیکریندی دوارده وجهی خاص {110}، در گرانت آمفیبول شیست (تصویر در نور).

شکل 5 تصویر پیکریندی بلوری دوارده وجهی ویژه، نشان داده از دو پیکریندی دوارده وجهی {110} و ذورلغه وجهی {211}.
در این پیکربندی دو‌رنگ و چهار رنگ سطوح بلوری جدید (دو‌رنگی و چهار رنگ) در پیوند گاه سطوح به‌صورت لوزی ظاهر می‌شوند. ممکن است سطوح جدید در تمام بال‌ها ظاهر نشده باشند و نسبت به پیکربندی دو‌رنگ و چهار رنگ خاص چند سطح پیش‌دارشته باشد. این سطوح گسترش چندانی نداشته و به سختی قابل رؤیت هستند.

پیکربندی بلوری ترکیبی کامل

این پیکربندی ترکیبی از پیکربندی دو‌رنگ و چهار رنگ (۱۱۰) و دو‌رنگ و چهار رنگ (۲۲۴) است. بلورهای گسترش در این پیکربندی دارای ۱۲ سطح لوزی شکل (پیکربندی دو‌رنگ و چهار رنگ) و ۲۴ سطح شبیه دو‌رنگ‌های شکل (دو‌رنگ و چهار رنگ) هستند و در مجموع این گسترش‌ها دارای ۶۶ سطح‌اند (شکل ۴) در این پیکربندی بلوری سطوح جدید (دو‌رنگ و چهار رنگ) در تمام بال‌ها ظاهر شده و گسترش یافته‌اند.

پیکربندی بلوری دو‌رنگ و چهار رنگ

این پیکربندی بلوری نیز ترکیبی از پیکربندی دو‌رنگ و چهار رنگ (۱۱۰) و دو‌رنگ و چهار رنگ (۲۲۴) است، با این تفاوت که بلورهای گسترش در این پیکربندی دارای ۲۴ سطح شبیه دو‌رنگ‌های دو‌رنگ و چهار رنگ (دو رنگ دو رنگ و چهار رنگ) و پیوسته‌ها دیده می‌شوند (شکل ۹) در جدول ۱ پیکربندی بلوری گسترش در سنجش منطقه آورده شده است.

شکل ۶ تصویر پیکربندی بلوری ترکیبی کامل، تشکیل شده از دو پیکربندی دو‌رنگ و چهار رنگ (۱۱۰) و دو‌رنگ و چهار رنگ (۲۲۴) [۱۲].

شکل ۷ تصویر پیکربندی بلور دو‌رنگ و چهار رنگ (دو رنگ دو رنگ و چهار رنگ) و پیوسته‌ها دیده می‌شوند (شکل ۹) در جدول ۱ پیکربندی بلوری گسترش در سنجش منطقه آورده شده است. [۱۲]
شکل 8 تصویر پیکریندی بلوژ زنگنه وچهی خاص، (211) [12].

شکل 9 تصویر مکروسکوپی از بلوژ گرانت با پیکریندی زنگنه وچهی خاص (211).

جدول 1 پیکریندی بلوژ گرانت در انواع سنگ‌های گرانت‌دار منطقه.

<table>
<thead>
<tr>
<th>انواع سنگ‌های گرانت‌دار منطقه</th>
<th>فرم بلوژی گرانت در این سنگ‌ها</th>
</tr>
</thead>
<tbody>
<tr>
<td>گرانت میکا لیزیت</td>
<td>پیکریندی ترکیبی کاهی با پیکریندی دوارده وچهی خاص</td>
</tr>
<tr>
<td>گرانت گرافیت شیست</td>
<td>پیکریندی ترکیبی</td>
</tr>
<tr>
<td>گرانت آنالوژیت شیست</td>
<td>پیکریندی ترکیبی</td>
</tr>
<tr>
<td>گرانت استرولیت شیست</td>
<td>پیکریندی ترکیبی</td>
</tr>
<tr>
<td>گرانت سیلیمانیت شیست</td>
<td>پیکریندی ترکیبی</td>
</tr>
<tr>
<td>گرانت امپیبول شیست</td>
<td>پیکریندی ترکیبی</td>
</tr>
<tr>
<td>گرانت میگماتیت (لیوکوس، مروئی، ملاونوس)</td>
<td>بخش در منطقه</td>
</tr>
<tr>
<td>پیکریندی ترکیبی کاهی پیکریندی دوارده وچهی خاص (بیشتر در منطقه)</td>
<td>گرانت میکا هورفلس</td>
</tr>
<tr>
<td>پیکریندی ترکیبی</td>
<td>گرانت کایتان آنالوژیت استرولیت هورفلس</td>
</tr>
<tr>
<td>پیکریندی ترکیبی</td>
<td>گرانت استرولیت هورفلس</td>
</tr>
<tr>
<td>پیکریندی ترکیبی</td>
<td>گرانت کردنیت هورفلس</td>
</tr>
<tr>
<td>استرولیت گردنیت هورفلس</td>
<td>گرانت سیلیمانیت ناسیم فلدسبار هورفلس</td>
</tr>
<tr>
<td>پیکریندی ترکیبی</td>
<td>گرانت کردنیت ناسیم فلدسبار هورفلس</td>
</tr>
<tr>
<td>دوزنیت وچهی خاص</td>
<td>اپیتیت</td>
</tr>
<tr>
<td>پیکریندی ترکیبی</td>
<td>دوزنیت وچهی خاص</td>
</tr>
<tr>
<td>پیکریندی ترکیبی</td>
<td>مونومورفیت</td>
</tr>
</tbody>
</table>
تاثیر ترکیب شیمیایی بر ریخت‌شناسی بلورهای گارنت

ترکیب شیمیایی بلورهای گارنت نسبت کاتیون‌های دو‌ظرفیتی به سه ظرفیتی و اندازه‌ی از عوامل مؤثر بر پیکربندی بلوری گارنت هستند [8]. شکل‌های 10 و 11، با توجه به نمودارهای پیشنهادی کاستف، رسل و بررسی تغییر درصد کاتیون‌های عناصر در پیکربندی دو‌ظرفیتی وصوصومه‌های خاص و ذوزنقه وصوصومه‌های دو بلورهای گارنت منطقه، می‌توان به این نکته اشاره کرد که نسبت کاتیون‌های $Mn^{2+} - Ca$ و بیشترین نقش را در تعیین پیکربندی بلورهای گارنت دارند، به این صورت که با افزایش نسبت $\frac{(Mn+Mg)}{Ca}$ و $\frac{Mn}{Ca}$ تغییر پیکربندی بلورهای گارنت وابسته به نسبت کاتیون‌های دو ظرفیتی به سه ظرفیتی و اندازه‌ی از عوامل مؤثر بر پیکربندی بلوری گارنت هستند [8].

شکل 10 تغییر پیکربندی بلورهای گارنت وابسته به نسبت کاتیون‌های دو ظرفیتی به سه ظرفیتی و اندازه‌ی از عوامل مؤثر بر پیکربندی بلوری گارنت هستند [8].

شکل 11 تغییر ترکیب شیمیایی بلورهای گارنت وابسته به نسبت کاتیون‌های دو ظرفیتی به سه ظرفیتی و اندازه‌ی از عوامل مؤثر بر پیکربندی بلوری گارنت هستند [8].
جدول ۲ بررسی تأثیر درصد کاتیون‌ها و اعضای گرانیت در پیکریندی بلوری گرانت‌ها.

<table>
<thead>
<tr>
<th>Samples/Oxides</th>
<th>Grt Yschist</th>
<th>Grt Yschist</th>
<th>Grt Yschist</th>
<th>Grt Yschist</th>
<th>Grt Yschist</th>
<th>mig</th>
<th>Hrf</th>
<th>Aplite ۱</th>
<th>Aplite ۲</th>
<th>Aplite ۳</th>
<th>Aplite ۴</th>
</tr>
</thead>
<tbody>
<tr>
<td>Garnet crystalforms</td>
<td>ddk</td>
<td>ddk</td>
<td>ddk</td>
<td>mixed</td>
<td>mixed</td>
<td>mixed</td>
<td>mixed</td>
<td>ddk</td>
<td>tpz</td>
<td>tpz</td>
<td>tpz</td>
</tr>
<tr>
<td>Mn/Ca</td>
<td>1.0</td>
<td>0.9</td>
<td>0.9</td>
<td>0.9</td>
<td>0.9</td>
<td>0.9</td>
<td>0.9</td>
<td>1.0</td>
<td>0.9</td>
<td>0.9</td>
<td>0.9</td>
</tr>
<tr>
<td>(Mn+Mg)/Ca</td>
<td>8.0</td>
</tr>
<tr>
<td>Ca/Mn</td>
<td>50.0</td>
</tr>
<tr>
<td>Ca/(Mn+Mg)</td>
<td>3.0</td>
</tr>
<tr>
<td>XGr/XSp</td>
<td>8.0</td>
</tr>
<tr>
<td>/ (XGr/XSp)</td>
<td>8.0</td>
</tr>
<tr>
<td>/ (XGr/XSp)</td>
<td>8.0</td>
</tr>
</tbody>
</table>

پیلیت‌سیت بوده و بیشتر پیکریندی‌های دوازده و جهی و ترکیبی با توجه به محیط بالا مقدار کاتیون‌ها

بیشترین تأثیر یا برعکشت‌شناسی بلورهای گرانت دارد و مقدار کاتیون‌های

Mg۲⁺ و Ca۲⁺ و Ca۲⁺ در این سنگ‌های دیده می‌شود. سنگ‌های آدین اسیدی نیز به

دو گروه تقسیم می‌شوند: موئیت‌گرایه‌گر دار: گرانه‌های موجود در این سنگ‌ها

غیب از الگوی دو و دارای مراحل جدیدنگرینهای استوانه‌ای. این

گرانه‌ها اغلب در بالا و هم‌اکنون تولید و کلیدت باید در بالا

بلورهای گرانه می‌گیرند. در ترتیب تشخیص پیکریندی

بلوری آنها مشکل است. ولی در بعضی از بلورهای گرانه

تعداد از سطوح لوزی شکل و شباهت نهایی با اندازه‌های

می‌تواند این خاصیت یا پیکریندی ایجاد کنند. پیکریندی بلوری گرانه در

اپیتی‌ها و چگال‌ترین‌ها گرانه‌دار. پیکریندی بلوری گرانه در

اپیتی‌ها و گرانت‌های گرانه‌دار. پیکریندی بلوری گرانه در

دهکده‌ها و جهی و ترکیبی

عضاویت در این سنگ‌های از چند

میلی‌متر تا چند سانتی‌متر متغیر بوده و دارای خاصیت‌های

آدرین

هستند (شکل ۱۲).
<table>
<thead>
<tr>
<th>Samps/Oxides (C)</th>
<th>SiO2</th>
<th>Al2O3</th>
<th>Na2O</th>
<th>MgO</th>
<th>K2O</th>
<th>TiO2</th>
<th>MnO</th>
<th>CaO</th>
<th>P2O5</th>
<th>Fe2O3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Garnetite</td>
<td>58.49</td>
<td>13.65</td>
<td>3.07</td>
<td>2.24</td>
<td>0.77</td>
<td>0.73</td>
<td>0.12</td>
<td>0.24</td>
<td>0.74</td>
<td>0.21</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Samps/Oxides (ppm)</th>
<th>Ba</th>
<th>Ca</th>
<th>Co</th>
<th>Cr</th>
<th>Cu</th>
<th>Nb</th>
<th>Mo</th>
<th>U</th>
<th>Th</th>
<th>Cl</th>
</tr>
</thead>
<tbody>
<tr>
<td>Garnetite</td>
<td>13.5</td>
<td>94</td>
<td>44</td>
<td>12</td>
<td>42</td>
<td>0.8</td>
<td>0.8</td>
<td>11</td>
<td>10</td>
<td>11</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Samples/Oxides</th>
<th>Garnet sch</th>
<th>Aplite1</th>
<th>Aplite2</th>
<th>Monzogranite</th>
<th>Grt-Mica Hf</th>
</tr>
</thead>
<tbody>
<tr>
<td>Garnetite</td>
<td>142.6</td>
<td>53.53</td>
<td>24.15</td>
<td>4.95</td>
<td>8.33</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Numbers of cations on the basis of 12 Oxygens</th>
</tr>
</thead>
<tbody>
<tr>
<td>Si**</td>
</tr>
<tr>
<td>Fe**</td>
</tr>
<tr>
<td>Cr**</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Crystals forms</th>
<th>Garnet sch</th>
<th>Aplite1</th>
<th>Aplite2</th>
<th>Monzogranite</th>
<th>Grt-Mica Hf</th>
</tr>
</thead>
<tbody>
<tr>
<td>Garnetite</td>
<td>2.16</td>
<td>1.37</td>
<td>3.08</td>
<td>3.08</td>
<td>1.44</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Amounts of garnet end members</th>
</tr>
</thead>
<tbody>
<tr>
<td>XAlm</td>
</tr>
</tbody>
</table>
جدول 5
نتایج آنالیز شیمیایی بلورهای گارنوت به روش EPMA

<table>
<thead>
<tr>
<th></th>
<th>Grt-KH</th>
<th>Leucosome Migmatite</th>
<th>Melanosome Migmatite</th>
<th>Schist</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Core</td>
<td>Rim</td>
<td>Core</td>
<td>Rim</td>
</tr>
<tr>
<td>SiO₂</td>
<td>37.4</td>
<td>37.4</td>
<td>37.3</td>
<td>37.3</td>
</tr>
<tr>
<td>TiO₂</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>21.6</td>
<td>21.6</td>
<td>21.5</td>
<td>21.5</td>
</tr>
<tr>
<td>Fe₂O₃</td>
<td>37.8</td>
<td>37.8</td>
<td>37.7</td>
<td>37.7</td>
</tr>
<tr>
<td>MnO</td>
<td>19.4</td>
<td>19.4</td>
<td>19.3</td>
<td>19.3</td>
</tr>
<tr>
<td>MgO</td>
<td>1.86</td>
<td>1.86</td>
<td>1.85</td>
<td>1.85</td>
</tr>
<tr>
<td>CaO</td>
<td>1.86</td>
<td>1.86</td>
<td>1.85</td>
<td>1.85</td>
</tr>
<tr>
<td>Total</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
</tr>
</tbody>
</table>

Number of cations on the basis of 12 Oxygens

<table>
<thead>
<tr>
<th></th>
<th>Grt-KH</th>
<th>Leucosome Migmatite</th>
<th>Melanosome Migmatite</th>
<th>Schist</th>
</tr>
</thead>
<tbody>
<tr>
<td>Si</td>
<td>2.95</td>
<td>2.95</td>
<td>2.95</td>
<td>2.95</td>
</tr>
<tr>
<td>Ti</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Al</td>
<td>3.77</td>
<td>3.77</td>
<td>3.77</td>
<td>3.77</td>
</tr>
<tr>
<td>Fe</td>
<td>3.77</td>
<td>3.77</td>
<td>3.77</td>
<td>3.77</td>
</tr>
<tr>
<td>Mn</td>
<td>0.80</td>
<td>0.80</td>
<td>0.80</td>
<td>0.80</td>
</tr>
<tr>
<td>Mg</td>
<td>0.70</td>
<td>0.70</td>
<td>0.70</td>
<td>0.70</td>
</tr>
<tr>
<td>Ca</td>
<td>0.70</td>
<td>0.70</td>
<td>0.70</td>
<td>0.70</td>
</tr>
<tr>
<td>Total</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
</tr>
</tbody>
</table>

Amounts of garnet end members

<table>
<thead>
<tr>
<th></th>
<th>Grt-G1</th>
<th>Grt-G2</th>
<th>Amph-sch1</th>
<th>Amph-sch2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Core</td>
<td>Rim</td>
<td>Core</td>
<td>Rim</td>
</tr>
<tr>
<td>SiO₂</td>
<td>37.9</td>
<td>37.9</td>
<td>37.9</td>
<td>37.9</td>
</tr>
<tr>
<td>TiO₂</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>21.8</td>
<td>21.8</td>
<td>21.8</td>
<td>21.8</td>
</tr>
<tr>
<td>Fe₂O₃</td>
<td>37.8</td>
<td>37.8</td>
<td>37.8</td>
<td>37.8</td>
</tr>
<tr>
<td>MnO</td>
<td>19.4</td>
<td>19.4</td>
<td>19.4</td>
<td>19.4</td>
</tr>
<tr>
<td>MgO</td>
<td>1.86</td>
<td>1.86</td>
<td>1.86</td>
<td>1.86</td>
</tr>
<tr>
<td>CaO</td>
<td>1.86</td>
<td>1.86</td>
<td>1.86</td>
<td>1.86</td>
</tr>
<tr>
<td>Total</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
</tr>
</tbody>
</table>

Number of cations on the basis of 12 Oxygens

<table>
<thead>
<tr>
<th></th>
<th>Grt-G1</th>
<th>Grt-G2</th>
<th>Amph-sch1</th>
<th>Amph-sch2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Si</td>
<td>2.95</td>
<td>2.95</td>
<td>2.95</td>
<td>2.95</td>
</tr>
<tr>
<td>Ti</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Al</td>
<td>3.77</td>
<td>3.77</td>
<td>3.77</td>
<td>3.77</td>
</tr>
<tr>
<td>Fe</td>
<td>3.77</td>
<td>3.77</td>
<td>3.77</td>
<td>3.77</td>
</tr>
<tr>
<td>Mn</td>
<td>0.80</td>
<td>0.80</td>
<td>0.80</td>
<td>0.80</td>
</tr>
<tr>
<td>Mg</td>
<td>0.70</td>
<td>0.70</td>
<td>0.70</td>
<td>0.70</td>
</tr>
<tr>
<td>Ca</td>
<td>0.70</td>
<td>0.70</td>
<td>0.70</td>
<td>0.70</td>
</tr>
<tr>
<td>Total</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
</tr>
</tbody>
</table>

Amounts of garnet end members

<table>
<thead>
<tr>
<th></th>
<th>Grt-G1</th>
<th>Grt-G2</th>
<th>Amph-sch1</th>
<th>Amph-sch2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Core</td>
<td>Rim</td>
<td>Core</td>
<td>Rim</td>
</tr>
<tr>
<td>SiO₂</td>
<td>37.9</td>
<td>37.9</td>
<td>37.9</td>
<td>37.9</td>
</tr>
<tr>
<td>TiO₂</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>21.8</td>
<td>21.8</td>
<td>21.8</td>
<td>21.8</td>
</tr>
<tr>
<td>Fe₂O₃</td>
<td>37.8</td>
<td>37.8</td>
<td>37.8</td>
<td>37.8</td>
</tr>
<tr>
<td>MnO</td>
<td>19.4</td>
<td>19.4</td>
<td>19.4</td>
<td>19.4</td>
</tr>
<tr>
<td>MgO</td>
<td>1.86</td>
<td>1.86</td>
<td>1.86</td>
<td>1.86</td>
</tr>
<tr>
<td>CaO</td>
<td>1.86</td>
<td>1.86</td>
<td>1.86</td>
<td>1.86</td>
</tr>
<tr>
<td>Total</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
</tr>
</tbody>
</table>
مقایسه ریخت‌شناختی بلورهای گارتنر در سنگ‌های
derگرون ناحیه‌ای با دگرگون مجاورتی
پیکرین‌بندی بلوری گارتنر در سنگ‌های دگرگون ناحیه‌ای و
دگرگون مجاورتی باکسنی است. این بلورهای در سنگ‌های
derگرون ناحیه‌ای و مجاورتی در پیکرین‌بندی دوازده و جهیج
خاص و ترکیبی مشابه می‌شوند.
لازم به بیان داشت که زیر دامنه دگرگون‌های ناحیه‌ای و
دگرگون مجاورتی در منطقه تقریباً یکسان است و فشار
لیتوسنتیک در دگرگون ناحیه‌ای تا 4 کیلوبار در دگرگون
مجاورتی حدود 2.5 کیلوبار است (100 میلی‌متری گمی)
در دگرگون ناحیه‌ای سرعت رشد بلورها کمتر از دگرگون
مجاورتی است. با توجه به مطالعه باکسی می‌توان یپردازه
که عامل فشار، تغییرات دما و زمان (سرعت رشد بلورها) تأثیر
چندانی بر ریخت‌شناختی بلورهای گارتنر ندارد.

مقاله‌ی ریخت‌شناختی بلورهای گارتنر در سنگ‌های
dمای
پایین و دامی بالا در کرکون‌های ناحیه‌ای
پیکرین‌بندی بلوری گارتنر در دماهای پایین دگرگون‌های (گارتنر
میکا شیست) ترکیبی است و در موارد کمتری دوازده و جهیج خاص
است. در درجرات بالایی دگرگون (گارتنر استوارتیونی شیست و
میگماتیته) نری پیکرین‌بندی بلوری گارتنر ترکیبی است و در موارد
کمتری دوازده و جهیج خاص (در مزمین میگماتیته) است. با
استفاده به مطالعه باکسی می‌توان یپردازه که دمای
درگرگون و دما دامنی تغییرات سنگ‌ها تأثیر چندانی بر
ریخت‌شناختی بلورهای گارتنر ندارد.

تغییرات پیکرین‌بندی بلوری گارتنر در لیتوالوژی‌های غنی و فقیر
از کلسیم
گارتنر‌های تاکتیل شده در سنگ‌های غنی از
أمین‌سیل، Amphi-schist، سندرم می‌شوند.
در نهایت ریخت‌شناختی آن‌ها است.
در سنگ‌های غنی از کلسیم (گارتنر
Ca) گارتنر‌ها تاکتیل شده در سنگ‌های غنی از
Amphi-schist، و سندرم می‌شوند.
در نهایت ریخت‌شناختی آن‌ها است.

(1985) 596.
[2] Li Li H., Kuang X., Mao A., Li Y., Wang S., "Study of local structures and optical spectra for
octahedral Fe⁺⁺ centers in a series of garnet crystals A₇B₅C₃O₁₂ (A = Cd, Ca; B = Al, Ga, Sc;
در سه‌ماد مادی گیک از عوامل اصلی در کنترل ترکیب
شیمیایی گارتنرها و در نهایت ریخت‌شناختی آنها است.

پررن عوامل کنترل کننده ریخت‌شناختی بلورهای...