کانی سنتزی و شناخت پروتونیت گنایس‌های شمال دریاچه سد زایندرود. شمال شهرکرد (پهنیه سنندج - سیرجان)

علیرضا دادی‌پور، علی‌علی شیبانی، امروز مرادی

دانشکده مهندسی نیروی زمینی، دانشگاه شهید رجایی

چکیده: گنایس‌های حاشیه‌ای شمالی دریاچه سد زایندرود از نظر خاک‌شناسی زمین‌شناسی در پهنیه و سنندج شهرکرد - سیرجان قرار گرفته است. این گنایس‌ها از همراه با توده‌های مختلفت و مربوط به حفاظت دگرگونی شمال شهرکرد تا تکامل می‌دهند. از نظر کانی‌شناسی این سنگ‌ها دارای کوارتز، الیاس، پتیت، فلدسبار، تیتانیت، آلبیت، تورمالین و روتیل به همراه دانه‌های زیرکون هستند. به منظور شناخت خاستگاه آذرین (ارو) یا خاستگاه رسوبی (پارا) این گنایس ها، از شواهدی نظیر روابط صخرای (تنو و هم‌های سنگی وایسته به گنیس‌های مورد بررسی) کانی‌شناسی و از شواهد رزومیومی نظیر امکان‌شدن که تمامی Ni و Cr و اکسید NiCt در میزان Cr و Cr/n نیکلیت 1.0 می‌باشد. ناپدیدی سنجیده در موقعیت میزبان خاک‌های فعل قارای آبی از هدیه پشت کم مان تا تکامل شده است.

واژه‌های کلیدی: مقدار نیکلیت، پاراگنایس، حوضه پشت کم‌مان، حاشیه‌ای فعل قارای آبی، هم‌تئیاث دگرگونی شمال شهرکرد، پهنیه سنندج

- سیرجان

مقدمه

منطقه مورد بررسی در شمال شهرکرد و حاشیه‌ای شمالی دریاچه سد زایندرود در گستره‌ای به طول‌های جغرافیایی ۴۴°۰۵′ تا ۴۳°۱۰′ و عرض‌های جغرافیایی ۵۰°۰۵′ تا ۴۶°۱۰′ و سطحی قرار گرفته است. این 지역 (شکل 1) با توجه به شواهد صخرا (مهم‌ترین سنگ‌های ناپدید دگرگونی و درک‌سازی شده) خاصیت این فاصله و درک‌سازی شده را به شکلی بیشتری از اکلیزیت و مقداریت در سطح‌های به فلز پر می‌گردد. این بررسی بیشتر شمال شهرکرد هستند.

الیرز آ. دامودیان

alireza.davoudian@gmail.com
تشخیص پروتولیت (سنگ خاستگاه یا سنگ مادر) یک سنگ داگرگون از جمله مهم‌ترین مراحل در تجزیه و تحلیل پیشنهادی دارای سنگ‌های داگرگونی با درجه بالاست [5.4]. این موضوع به ویژه در نواحی که داگرگوکی شدید تمامی ساختارها و بفت‌های اولیه از محو کرده است و یا در نواحی که بیک‌لاهی‌نی‌دی فراگیر از ترکیب فرآیندهای داگرگونی و ساختار را حاصل شده باشد، امری مشکل و پیچیده خواهد بود. به عنوان مثال، بخی از مشکل‌ترین و پیچیده‌ترین مشکلات در این خصوص، عبارتند از تشخیص این نکته که یک گنایس باکستری لاپادار از یک سنگ رسوبی نوع گرایاک ریشه گرفته، یا از یک سنگ گرایت نیسته. و اینکه بین سنگ رسوبی آواری، توقف یا گذاره در یک دنباله در سطح پوسته‌ای بتوان

این پاراگراف‌ها معمولاً میزان اکولوژی‌ها و آمپیونی‌ها است. هستند که غالباً این دو گروه سنگ به صورت غیره با بلک- هایی با ابعاد چند متر تا چند هزار متر دیده می‌شوند که به صورت سنگ‌های داگرگونی در زوراسیک زیرین داگرگون شده‌اند [5.1].

در صورتی که [5.2] سنگ‌های مورد بررسی در این پژوهش از ارتوگنیس فرض کرده و با سن سنجش به روش Pb-U روي (واقعی زیرک سن 17 ± 37 Ma) و با پذیرش ارتوگنیس‌ها برآورده کرده است. همچنین پلورهای زیرک و ماکمالی اولیه فرض می‌کنند و انتقال پروتولیت ماکمالی ارتوگنیس‌ها را حاصل اختلاف مواد ناشی از ذوب بخشی سنگ‌های پوسته‌ای نازک اوائل نیوبریتیوئیک و سنگ- های آرکین سی دان.

شکل 1: الگوی موقعیت منطقه‌های مورد بررسی در تصویر واحدهای ساختاری ایران [6] که با متواری زیره نشان داده شده است. به نمایش گسترده خط چین مورد بررسی (شامل دریاچه‌های زاپاندرو) روی تصویر هاوالاره‌ای 7 (سنجده 7) ترکیب تواریه 742 هب مانند دسته ETM- 140
موقتی مسیر بررسی‌ها

مکانه‌ای مورد بررسی در پهن‌تر ساختاری سندگان - سیرجان و زیرپهن‌ها با دوگانه بای‌خی بخار نماد گردش گرفتن است [1]. خمش عمده‌ای از زیر پهن‌ها با دوگانه بای‌خی بخار آوری‌های دماغ برخی از زیرقهره‌ها و درخور مدل نوین‌شناخته‌ای انتقادی است. فرض می‌شود که دوگانه‌ای دماغ در این زیرپهن‌های دارای دوگانه‌ای دماغ و دنده‌ای دماغ در این زیرپهن‌های دارای دوگانه‌ای دماغ و درخور مدل نوین‌شناخته‌ای انتقادی است. فرض می‌شود که دوگانه‌ای دماغ در این زیرپهن‌های دارای دوگانه‌ای دماغ و درخور مدل نوین‌شناخته‌ای انتقادی است. فرض می‌شود که دوگانه‌ای دماغ در این زیرپهن‌های دارای دوگانه‌ای دماغ و درخور مدل نوین‌شناخته‌ای انتقادی است. فرض می‌شود که دوگانه‌ای دماغ در این زیرپهن‌های دارای دوگانه‌ای دماغ و درخور مدل نوین‌شناخته‌ای انتقادی است. فرض می‌شود که دوگانه‌ای دماغ در این زیرپهن‌های دارای دوگانه‌ای دماغ و درخور مدل نوین‌شناخته‌ای انتقادی است. فرض می‌شود که دوگانه‌ای دماغ در این زیرپهن‌های دارای دوگانه‌ای دماغ و درخور مدل نوین‌شناخته‌ای انتقادی است. فرض می‌شود که دوگانه‌ای دماغ در این زیرپهن‌های دارای دوگانه‌ای دماغ و درخور مدل نوین‌شناخته‌ای انتقادی است. فرض می‌شود که دوگانه‌ای دماغ در این زیرپهن‌های دارای دوگانه‌ای دماغ و درخور مدل نوین‌شناخته‌ای انتقادی است. فرض می‌شود که دوگانه‌ای دماغ در این زیرپهن‌های دارای دوگانه‌ای دماغ و درخور مدل نوین‌شناخته‌ای انتقادی است. فرض می‌شود که دوگانه‌ای دماغ در این زیرپهن‌های دارای دوگانه‌ای دماغ و درخور مدل نوین‌شناخته‌ای انتقادی است. فرض می‌شود که دوگانه‌ای دماغ در این زیرپهن‌های دارای دوگانه‌ای دماغ و درخور مدل نوین‌شناخته‌ای انتقادی است. فرض می‌شود که دوگانه‌ای دماغ در این زیرپهن‌های دارای دوگانه‌ای دماغ و درخور مدل نوین‌شناخته‌ای انتقادی است. فرض می‌شود که دوگانه‌ای دماغ در این زیرپهن‌های دارای دوگانه‌ای دماغ و درخو
درگوتنی، یک درگوتنی با فشار بالا- دما پایین تا متوسط، بوده که بر منطقه اثر گذشته است. این فاز درگوتنی درجه‌بندی بالا، در اثر فاز درگوتنی رخساره‌ای اسپینلیتی دنبال می‌شود که بر خلاف فاز بالا، سه‌ها چیزی بر آن قابل رونمایی است. این فاز درگوتنی رخساره‌ای اسپینلیتی با درگوتنی شدید داکتیلی و فیلیتی شدن گسترش همراه بوده است [14]. فاز سوم درگوتنی نیز سنگ‌های آتشنشانی جوانی به سین زوراسیک پایان‌یافته می‌باشد. این فاز با ساختار رخساره‌ای درجه‌بندی پردرده-اکسپلیتی درگوتنی کرده است [1]. اخرین فاز درگوتنی نیز شکستن (برنر) بوده و سبب خردشدن

محتوای درگوتنی شرکت کرده‌که منطقه‌ای است منطقه‌ای در یکه سنین به که سنگ‌های درگوتنی با فشار بالای درجه‌بندی اکتلزیت به صورت نسبتی می‌باشد در آن رخساره‌ای می‌باشد این منطقه چندین

برخی درگوتنی در کننکار شکست سنگ‌های با خاصیت‌های رسوبی و آدرن را متاثر ساخته‌اند. مهمترین فاز

جدول 1. نتایج بررسی XRF (با علائم منشأ منطقه است) پارانگیس‌های مورد بررسی در

<table>
<thead>
<tr>
<th>Parageneses</th>
<th>Sample</th>
<th>HE 1-12</th>
<th>HE 1-4</th>
<th>HE 2-4</th>
<th>HE 2-5</th>
<th>HE 3-4</th>
<th>HE 4-5</th>
<th>HE 5-6</th>
<th>M 12-14</th>
<th>M 14-20</th>
<th>M 20-25</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO₂</td>
<td>100.1</td>
<td>99.6</td>
<td>99.3</td>
<td>99.0</td>
<td>98.7</td>
<td>98.6</td>
<td>98.5</td>
<td>98.4</td>
<td>98.1</td>
<td>98.0</td>
<td>97.9</td>
</tr>
<tr>
<td>TiO₂</td>
<td>49.1</td>
<td>48.6</td>
<td>48.0</td>
<td>47.5</td>
<td>47.0</td>
<td>46.5</td>
<td>46.0</td>
<td>45.5</td>
<td>45.0</td>
<td>44.5</td>
<td>44.0</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>39.5</td>
<td>39.0</td>
<td>38.5</td>
<td>38.0</td>
<td>37.5</td>
<td>37.0</td>
<td>36.5</td>
<td>36.0</td>
<td>35.5</td>
<td>35.0</td>
<td>34.5</td>
</tr>
<tr>
<td>Fe₂O₃</td>
<td>8.5</td>
<td>8.0</td>
<td>7.5</td>
<td>7.0</td>
<td>6.5</td>
<td>6.0</td>
<td>5.5</td>
<td>5.0</td>
<td>4.5</td>
<td>4.0</td>
<td>3.5</td>
</tr>
<tr>
<td>MnO</td>
<td>0.4</td>
<td>0.3</td>
<td>0.2</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>MgO</td>
<td>0.3</td>
</tr>
<tr>
<td>CaO</td>
<td>0.5</td>
</tr>
<tr>
<td>Na₂O</td>
<td>1.8</td>
</tr>
<tr>
<td>K₂O</td>
<td>0.7</td>
</tr>
<tr>
<td>P₂O₅</td>
<td>0.3</td>
</tr>
<tr>
<td>LOI</td>
<td>4.1</td>
</tr>
<tr>
<td>Total</td>
<td>297.7</td>
</tr>
<tr>
<td>Ba</td>
<td>37.7</td>
</tr>
<tr>
<td>Rb</td>
<td>12.1</td>
</tr>
<tr>
<td>Sr</td>
<td>37.0</td>
</tr>
<tr>
<td>Zr</td>
<td>11.3</td>
</tr>
<tr>
<td>Nb</td>
<td>12.5</td>
</tr>
<tr>
<td>Ni</td>
<td>5.5</td>
</tr>
<tr>
<td>Co</td>
<td>11.2</td>
</tr>
<tr>
<td>Cr</td>
<td>1.3</td>
</tr>
<tr>
<td>La</td>
<td>4.7</td>
</tr>
<tr>
<td>Hf</td>
<td>0.5</td>
</tr>
<tr>
<td>Th</td>
<td>0.8</td>
</tr>
<tr>
<td>U</td>
<td>2.0</td>
</tr>
<tr>
<td>V</td>
<td>1.6</td>
</tr>
<tr>
<td>Cr</td>
<td>1.5</td>
</tr>
</tbody>
</table>

LO. I: Loss-on-ignition; Fe₂O₃: Fe total
تشخیص پروتولیت (سنگ خاستگاه) اثر درمان اثراتِ شدید نسبت به هر نوع کار، از جمله درمان‌های مختلف. در این رابطه، کارگاه‌های پروتولیت در گونه‌های مختلف از جمله درمان‌های ضد حضور درمان‌های متغیر، این نوع غیر مولکولار را را در اختیار دارد. در این رابطه، کارگاه‌های پروتولیت در گونه‌های مختلف از جمله درمان‌های ضد حضور درمان‌های متغیر نیازمند هستند. در این رابطه، کارگاه‌های پروتولیت در گونه‌های مختلف از جمله درمان‌های ضد حضور درمان‌های متغیر نیازمند هستند.

در این رابطه، کارگاه‌های پروتولیت در گونه‌های مختلف از جمله درمان‌های ضد حضور درمان‌های متغیر نیازمند هستند. در این رابطه، کارگاه‌های پروتولیت در گونه‌های مختلف از جمله درمان‌های ضد حضور درمان‌های متغیر نیازمند هستند.

در این رابطه، کارگاه‌های پروتولیت در گونه‌های مختلف از جمله درمان‌های ضد حضور درمان‌های متغیر نیازمند هستند. در این رابطه، کارگاه‌های پروتولیت در گونه‌های مختلف از جمله درمان‌های ضد حضور درمان‌های متغیر نیازمند هستند.

در این رابطه، کارگاه‌های پروتولیت در گونه‌های مختلف از جمله درمان‌های ضد حضور درمان‌های متغیر نیازمند هستند. در این رابطه، کارگاه‌های پروتولیت در گونه‌های مختلف از جمله درمان‌های ضد حضور درمان‌های متغیر نیازمند هستند.
شکل ۲ نمایی از رختنمائی گنایس‌های منطقه‌ای شمال دریاچه سد زایندرود که دارای برتراک‌گی‌گسترده، همچنین تنوب‌نمای مهرم (رنگ روشتر) و گنایس (رنگ نیترات) در تصویر به همراه عکس‌های میکروسکوپی مشاهده می‌شود.

به‌طور کلی، [۲۰] که در سیاست‌های مالی‌های با خاستگاه ماگمایی یافت شده است. برای تعیین خاسگاه رسوبی با آذرین بودن یک سنگ درک‌گون گنایسی می‌توان از ویژگی‌های زئوسیمپاتی استفاده کرد [۲۱] . بر همین مبنای یک نمودار تفکیک عناصر اصلی ساده‌ای برای سنگ‌های حداقلی اسیدی بیشتر شده که در (شکل ۴) ارائه شده است. یک چنین نمودار ممکن است به‌تواند در تشخیص ارتود و پاراگناپس‌ها مفید باشد اما بایستی با احتیاط و دقت مورد استفاده قرار گیرد و شاید در پیوستگی و همراهی با دیگر پارامترها نظر مقیاس‌زی بالکنی ۵ در
شناسی و شناخت پروتوتیپ‌های گنایس‌های شمال دریاچه ...
نمودهای گینگس شمال شیرکرد تماماً در محدوده رسوبی واقع شده‌اند.

مانند تابعی را برای درصد ارایه داده است که به قرار زیر مالکیت می‌شود:

\[
DF = \frac{0.218 \text{SiO}_2 + 0.23 \text{Fe}_2\text{O}_3 + 0.98 \text{MgO} + 0.95 \text{CaO} + 0.94 \text{Na}_2\text{O} + 0.95 \text{K}_2\text{O}}{1 - 0.44}
\]

مقادیر مثبت DF نشان دهنده یک خاستگاه احتمالی آذرین بوده و در حالتی که مقادیر منفی یک خاستگاه رسوبی را نشان دهند. در نمونه‌های گینگس مورد بررسی تابع DF مقدار منفی است که از -3 درصد متغیر هستند. بنابراین تمامی نمونه‌های گینگس مواد بررسی به استناد این نتایج در این درصد مشابه و درصد مشابه مواد آذرین در آن قرار گرفته است.

بررسی گاتی زیرکن در گینگس شمال شیرکرد

زیرکن مهم‌ترین کانال سنگین مشتق شده از گراینده، انتهایی و بنیادی در گراینده است. در Zr/Sc و Zr/Se شدت‌های بررسی به نسبت بسیار منفی Zr در این نمونه‌ها مربوط می‌شود. در بسیاری از عناصر سنگ‌های آذرین رفتار Zr در گراینده‌ها به گونه‌ای است که در نمونه‌های حساسیت سنگ‌های آذرین رفتار نشان می‌دهد. بنابراین، منفی Zr/Se در Zr/Sc در گراینده‌ها به گونه‌ای است که در نمونه‌های حساسیت سنگ‌های آذرین رفتار نشان می‌دهد. بنابراین، منفی Zr/Sc در گراینده‌ها به گونه‌ای است که در نمونه‌های حساسیت سنگ‌های آذرین رفتار نشان می‌دهد. بنابراین، منفی Zr/Sc در گراینده‌ها به گونه‌ای است که در نمونه‌های حساسیت سنگ‌های آذرین رفتار نشان می‌دهد. بنابراین، منفی Zr/Sc در گراینده‌ها به گونه‌ای است که در نمونه‌های حساسیت سنگ‌های آذرین رفتار نشان می‌دهد. بنابراین، منفی Zr/Sc در گراینده‌ها به گونه‌ای است که در نمونه‌های حساسیت سنگ‌های آذرین رفتار نشان می‌دهد. بنابراین، منفی Zr/Sc در گراینده‌ها به گونه‌ای است که در نمونه‌های حساسیت سنگ‌های آذرین رفتار نشان می‌دهد. بنابراین، منفی Zr/Sc در گراینده‌ها به گونه‌ای است که در نمونه‌های حساسیت سنگ‌های آذرین رفتار نشان می‌دهد. بنابراین، منفی Zr/Sc در گراینده‌ها به گونه‌ای است که در نمونه‌های حساسیت سنگ‌های آذرین رفتار نشان می‌دهد. بنابراین، منفی Zr/Sc در گراینده‌ها به گونه‌ای است که در نمونه‌های حساسیت سنگ‌های آذرین رفتار نشان می‌دهد. بنابراین، منفی Zr/Sc در گراینده‌ها به گونه‌ای است که در نمونه‌های حساسیت سنگ‌های آذرین رفتار نشان می‌دهد. بنابراین، منفی Zr/Sc در گراینده‌ها به گونه‌ای است که در نمونه‌های حساسیت سنگ‌های آذرین رفتار نشان می‌دهد. بنابراین، منفی Zr/Sc در گراینده‌ها به گونه‌ای است که در نمونه‌های حساسیت سنگ‌های آذرین رفتار نشان می‌دهد. بنابراین، منفی Zr/Sc در گراینده‌ها به گونه‌ای است که در نمونه‌های حساسیت سنگ‌های آذرین رفتار نشان می‌دهد. بنابراین، منفی Zr/Sc در گراینده‌ها به گونه‌ای است که در نمونه‌های حساسیت سنگ‌های آذرین رفتار نشان می‌دهد. بنابراین، منفی Zr/Sc در گراینده‌ها به گونه‌ای است که در نمونه‌های حساسیت سنگ‌های آذرین رفتار نشان می‌دهد. بنابراین، منفی Zr/Sc در گراینده‌ها به گونه‌ای است که در نمونه‌های حساسیت سنگ‌های آذرین رفتار نشان می‌دهد. بنابراین، منفی Zr/Sc در گراینده‌ها به گونه‌ای است که در نمونه‌های حساسیت سنگ‌های آذرین رفتار نشان می‌دهد. بنابراین، منفی Zr/Sc در گراینده‌ها به گونه‌ای است که در نمونه‌های حساسیت سنگ‌های آذرین رفتار نشان می‌دهد. بنابراین، منفی Zr/Sc در گراینده‌ها به گونه‌ای است که در نمونه‌های حساسیت سنگ‌های آذرین رفتار نشان می‌دهد. بنابراین، منفی Zr/Sc در گراینده‌ها به گونه‌ای است که در نمونه‌های حساسیت سنگ‌های آذرین رفتار N
دراي نسبت (ppm) Th/Sc (0-25) است که اين مقدار حاکی از ورود از منابع آدرين پوسته‌ي كنار هايت است [31] و در نمونه‌ي Zr/Sc تمرکز زيرکن اين سگه‌ها در گستره‌ي رسوبه‌هاي پاراكابس وجود دارد (شکل 6) اين نسبت از بنايگان کاني زيرکن اين سگه‌ها موروني بوده و سگه خاستهگان فلسيک كاني زيرکن از یك پوسته آدرين نسبتاً تكامل بالايی حاصل شده است که در موقعيت زمين- ساخت حاشیه فعال قاره‌ها و یا جزایر قوسی تشکيل شده است. نمونه‌ی پاراکابس شمال شرقی در نمونه در Cr Mg/Al مقدار [32] تمام نمودارها اخراي ارکن تا پاس ارکن قرار گرفته‌اند (شکل 7). اين نمونه‌ها با سن‌سنج [3] روي کاني‌هاي زيرکن به روش U-Pb به سن ۳۷ ± ۱۷ Ma كه سن پاراکابس مورد بررسي با نام ارزوتوناپس براورد شده است.
سن نهشته‌گذاری پروتوتایسی روی U-Pb
سن‌گزاری U-Pb روی کانی‌های زیرکین ترخیصی از رسوب‌های آوایی و یا سند giveaways در خانه‌های U-Pb در تیمز، SIMS، LA-ICP-MS نظر بررسی شناخت خاصه‌های مهیلی رویوی این سه‌‌سنین U-Pb روی نک دانه‌های زیرکین ترخیصی برای موارد زیر بکار رفته‌اند:
1- شناسایی سازنده‌ها خاصه‌ای یک وحش روی در سنین [28]. 2- تعیین یک حد به پیش‌بینی برای سن روپتایسی [39-41] و 4- بررسی فرآیندهای شکل‌گیری در یک مقياس گسترش‌دهنده قواره‌ای [42-46].

باتک‌این‌یک‌یکی از راه‌های نسبتاً مطمئن برای تعیین سن روپتایسی و نهشته‌شدن یک وحش روی سه‌سنین U-Pb به شدت در سنین روپتایسی است. این سن نشته‌شدن روپتایسی سه‌سنین U-Pb است. این سن عناوین حد به پیش‌بینی برای سن روپتایسی در نظر گرفته می‌شود.

شرايط اکسبسيون غير قديمي
اورنیوم در شرایط اکسبسیدی و غلظت بالا به‌صورت جوگه‌ای از به (VI) اورنیوم در شرایط اکسبسیدی و غلظت بالا به‌صورت جوگه‌ای از به (VI) اورنیوم در شرایط اکسبسیدی و غلظت بالا به‌صورت جوگه‌ای از به (VI) اورنیوم در شرایط اکسبسیدی و غلظت بالا به‌صورت جوگه‌ای از به (VI) اورنیوم در شرایط اکسبسیدی و غلظت بالا به‌صورت جوگه‌ای از به (VI) اورنیوم در شرایط اکسبسیدی و غلظت بالا به‌صورت جوگه‌ای از به (VI) اورنیوم در شرایط اکسبسیدی و غلظت بالا به‌صورت جوگه‌ای از به (VI) اورنیوم در شرایط اکسبسیدی و غلظت بالا به‌صورت جوگه‌ای از به (VI) اورنیوم در شرایط اکسبسیدی و غلظت بالا به‌صورت جوگه‌ای از به (VI) اورنیوم در شرایط اکسبسیدی و غلظت بالا به‌صورت جوگه‌ای از به (VI) اورنیوم در شرایط اکسبسیدی و غلظت بالا به‌صورت جوگه‌ای از به (VI) اورنیوم در شرایط اکسبسیدی و غلظت بالا به‌صورت جوگه‌ای از به (VI) اورنیوم در شرایط اکسبسیدی و غلظت بالا به‌صورت جوگه‌ای از به (VI) اورنیوم در شرایط اکسبسیدی و غلظت بالا به‌صورت جوگه‌ای از به (VI)
شاخی درون‌ساخت (اکساپ-کاکه) (نشیب در مقابل Ni/Co) و سنگ‌های کاکه‌ای از این مثال‌ها می‌تواند فرضیات زیر را جایگزینی کند:

1. شاخ‌های کاکه‌ای در ساختارهای مکانیکی هستند که توسط فرآیندهای زیر درون‌ساختی شکل می‌گیرند:
 - شاخ‌های کاکه‌ای در ساختارهای مکانیکی هستند که توسط فرآیندهای زیر درون‌ساختی شکل می‌گیرند:
 - شاخ‌های کاکه‌ای در ساختارهای مکانیکی هستند که توسط فرآیندهای زیر درون‌ساختی شکل می‌گیرند:
 - شاخ‌های کاکه‌ای در ساختارهای مکانیکی هستند که توسط فرآیندهای زیر درون‌ساختی شکل می‌گیرند:

2. شاخ‌های کاکه‌ای در ساختارهای مکانیکی هستند که توسط فرآیندهای زیر درون‌ساختی شکل می‌گیرند:
 - شاخ‌های کاکه‌ای در ساختارهای مکانیکی هستند که توسط فرآیندهای زیر درون‌ساختی شکل می‌گیرند:
 - شاخ‌های کاکه‌ای در ساختارهای مکانیکی هستند که توسط فرآیندهای زیر درون‌ساختی شکل می‌گیرند:
 - شاخ‌های کاکه‌ای در ساختارهای مکانیکی هستند که توسط فرآیندهای زیر درون‌ساختی شکل می‌گیرند:

3. شاخ‌های کاکه‌ای در ساختارهای مکانیکی هستند که توسط فرآیندهای زیر درون‌ساختی شکل می‌گیرند:
 - شاخ‌های کاکه‌ای در ساختارهای مکانیکی هستند که توسط فرآیندهای زیر درون‌ساختی شکل می‌گیرند:
 - شاخ‌های کاکه‌ای در ساختارهای مکانیکی هستند که توسط فرآیندهای زیر درون‌ساختی شکل می‌گیرند:
 - شاخ‌های کاکه‌ای در ساختارهای مکانیکی هستند که توسط فرآیندهای زیر درون‌ساختی شکل می‌گیرند:

4. شاخ‌های کاکه‌ای در ساختارهای مکانیکی هستند که توسط فرآیندهای زیر درون‌ساختی شکل می‌گیرند:
 - شاخ‌های کاکه‌ای در ساختارهای مکانیکی هستند که توسط فرآیندهای زیر درون‌ساختی شکل می‌گیرند:
 - شاخ‌های کاکه‌ای در ساختارهای مکانیکی هستند که توسط فرآیندهای زیر درون‌ساختی شکل می‌گیرند:
 - شاخ‌های کاکه‌ای در ساختارهای مکانیکی هستند که توسط فرآیندهای زیر درون‌ساختی شکل می‌گیرند:

شاخ‌های کاکه‌ای در ساختارهای مکانیکی هستند که توسط فرآیندهای زیر درون‌ساختی شکل می‌گیرند:
 - شاخ‌های کاکه‌ای در ساختارهای مکانیکی هستند که توسط فرآیندهای زیر درون‌ساختی شکل می‌گیرند:
 - شاخ‌های کاکه‌ای در ساختارهای مکانیکی هستند که توسط فرآیندهای زیر درون‌ساختی شکل می‌گیرند:
 - شاخ‌های کاکه‌ای در ساختارهای مکانیکی هستند که توسط فرآیندهای زیر درون‌ساختی شکل می‌گیرند:

شاخ‌های کاکه‌ای در ساختارهای مکانیکی هستند که توسط فرآیندهای زیر درون‌ساختی شکل می‌گیرند:
 - شاخ‌های کاکه‌ای در ساختارهای مکانیکی هستند که توسط فرآیندهای زیر درون‌ساختی شکل می‌گیرند:
 - شاخ‌های کاکه‌ای در ساختارهای مکانیکی هستند که توسط فرآیندهای زیر درون‌ساختی شکل می‌گیرند:
 - شاخ‌های کاکه‌ای در ساختارهای مکانیکی هستند که توسط فرآیندهای زیر درون‌ساختی شکل می‌گیرند:

شاخ‌های کاکه‌ای در ساختارهای مکانیکی هستند که توسط فرآیندهای زیر درون‌ساختی شکل می‌گیرند:
 - شاخ‌های کاکه‌ای در ساختارهای مکانیکی هستند که توسط فرآیندهای زیر درون‌ساختی شکل می‌گیرند:
 - شاخ‌های کاکه‌ای در ساختارهای مکانیکی هستند که توسط فرآیندهای زیر درون‌ساختی شکل می‌گیرند:
 - شاخ‌های کاکه‌ای در ساختارهای مکانیکی هستند که توسط فرآیندهای زیر درون‌ساختی شکل می‌گیرند:

شاخ‌های کاکه‌ای در ساختارهای مکانیکی هستند که توسط فرآیندهای زیر درون‌ساختی شکل می‌گیرند:
 - شاخ‌های کاکه‌ای در ساختارهای مکانیکی هستند که توسط فرآیندهای زیر درون‌ساختی شکل می‌گیرند:
 - شاخ‌های کاکه‌ای در ساختارهای مکانیکی هستند که توسط فرآیندهای زیر درون‌ساختی شکل می‌گیرند:
 - شاخ‌های کاکه‌ای در ساختارهای مکانیکی هستند که توسط فرآیندهای زیر درون‌ساختی شکل می‌گیرند:

شاخ‌های کاکه‌ای در ساختارهای مکانیکی هستند که توسط فرآیندهای زیر درون‌ساختی شکل می‌گیرند:
 - شاخ‌های کاکه‌ای در ساختارهای مکانیکی هستند که توسط فرآیندهای زیر درون‌ساختی شکل می‌گیرند:
 - شاخ‌های کاکه‌ای در ساختارهای مکانیکی هستند که توسط فرآیندهای زیر درون‌ساختی شکل می‌گیرند:
 - شاخ‌های کاکه‌ای در ساختارهای مکانیکی هستند که توسط فرآیندهای زیر درون‌ساختی شکل می‌گیرند:

شاخ‌های کاکه‌ای در ساختارهای مکانیکی هستند که توسط فرآیندهای زیر درون‌ساختی شکل می‌گیرند:
 - شاخ‌های کاکه‌ای در ساختارهای مکانیکی هستند که توسط فرآیندهای زیر درون‌ساختی شکل می‌گیرند:
 - شاخ‌های کاکه‌ای در ساختارهای مکانیکی هستند که توسط فرآیندهای زیر درون‌ساختی شکل می‌گیرند:
 - شاخ‌های کاکه‌ای در ساختارهای مکانیکی هستند که توسط فرآیندهای زیر درون‌ساختی شکل می‌گیرند:

شاخ‌های کاکه‌ای در ساختارهای مکانیکی هستند که توسط فرآیندهای زیر درون‌ساختی شکل می‌گیرند:
 - شاخ‌های کاکه‌ای در ساختارهای مکانیکی هستند که توسط فرآیندهای زیر درون‌ساختی شکل می‌گیرند:
 - شاخ‌های کاکه‌ای در ساختارهای مکانیکی هستند که توسط فرآیندهای زیر درون‌ساختی شکل می‌گیرند:
 - شاخ‌های کاکه‌ای در ساختارهای مکانیکی هستند که توسط فرآیندهای زیر درون‌ساختی شکل می‌گیرند:

