ویژگی‌های کانی شناختی آنالسیم‌های گرماربی در سنگ‌های آتشفشانی جنوب کهیرزک

فرامرز طوطیٞ، سمیه زدایی، کامل الکین بازگانی گیلانی

دانشگاه زمین‌شناسی، پردیس علوم، دانشگاه تهران

چکیده: آنالسیم به‌همراه زولتیت‌های نظیر تترانرولتیت، ناترویلیت، مزولیت، کلسیم- هیوئلندیت، سکولسیت، کلسیم - استبیلبیت و لوین، در فرآیندهای سنگ‌های آتشفشانی حضور دارد و بازی جنوب کهیرزک مشاهده می‌شود. تماور میکروسکوپی الکترونی (SEM) بلواره‌های آنالسیم نشان‌گر بود که سطوح [211] منظم و بافت‌های نازک ناشی از فاز‌های مختلف رشد بلوری تحت تأثیر گرما‌های قرار گرفته‌اند. بررسی‌های XRD نشان می‌دهد که این کانی دارای تقارن شبه مکعبی بوده و مقادیر (510) و (136) دارای پرتو برابر ابعاد پایه‌ی یک ه، c و c با انگشت‌ها مکعب برابر حجم آن محاسبه شدند. طیف رامان سه‌بعدی انتخابی مولکول‌های H2O موجود در ساختار آنالسیم را در بسامد حدود 1350 cm^{-1} نشان می‌دهد.

واژه‌های کلیدی: زولتیت؛ تترانرولتیت؛ آنالسیم؛ لوین؛ ناترویلیت؛ مزولیت؛ هیوئلندیت؛ سکولسیت؛ استبیلبیت؛ گرماربی؛ کهیرزک

مقدمه

آنالسیم غالباً عضوی از گروه زولتیت‌ها در نظر گرفته شده‌اند. در حالی که بعضی مؤلفین آن را جزو فلدسپات‌های پلی‌نیتر می‌دانند، این کانی با فرمول ساختاري Na_{10}(Al_{16}Si_{32}O_{96})16H_{2}O و ناحیه‌های خارجی سایر پیوسته‌های با پلی‌نیتر و با فرمول Na_{3}Si_{3}O_{8} همراه باSiO_{2} و Al_{2}O_{3} و حلقه‌های چهاروجهی، چهار و شش عضوی تشکیل شده است. این شکل‌های جایی کانال‌های پیوسته‌های در رسانه محورهای درجه‌ی 3 تا 5 شکل‌های آتشفشانی است که با مولکول‌های H_{2}O اشغال شده‌اند. با همراهی هست و هونگرها در ناحیه‌های کمی Na کوچک‌تر، جای می‌گیرند. در برخی نمونه‌های آنالسیم معکور، نمونه Na تناها

کاتيون‌هایی از خارج از شیب‌های کانی‌نی است [12]. آنالسیم می‌تواند یک شیب میلور شود و یا در محیط‌های دریاچه‌های شور قلیایی، محیط‌های گرماربی و یا درگرتنی در دمای باین و جانشین سخت یا نرم کانی‌های مانند لوستک تکش‌کننده. واکنش آنالسیم در شرایط بازآتش‌گذاری به‌طور سریع و در دمای ۳۶۰°C و در دمای 500°C و در دمای 1 کیلو بر فشار رج می‌دهد. در شرایط شیب‌های [3۰۰-۳۰۰۰ سانتی‌متر و در دمای ۱۸۰-۲۷۰°C] تشکیل آنالسیم از گرماربی واکنش آنالسیم در شرایط [۱۵-۲۰۰ میلی‌متر فرآم
کاتیون‌های کانی‌نی است [12]. آنالسیم می‌تواند یک شیب میلور شود و یا در محیط‌های دریاچه‌های شور قلیایی، محیط‌های گرماربی و یا درگرتنی در دمای باین و جانشین سخت یا نرم کانی‌های مانند لوستک تکش‌کننده. واکنش آنالسیم در شرایط بازآتش‌گذاری به‌طور سریع و در دمای ۳۶۰°C و در دمای 500°C و در دمای 1 کیلو بر فشار رج می‌دهد. در شرایط شیب‌های [3۰۰-۳۰۰۰ سانتی‌متر و در دمای ۱۸۰-۲۷۰°C] تشکیل آنالسیم از گرماربی واکنش آنالسیم در شرایط [۱۵-۲۰۰ میلی‌متر فرآم

طول موج ۱۰۵۴-۵۸ انجام شد.

برای اندازه‌گیری درون مو تونر، هالوپد شناسی انجام شد. مولکول‌های اکسکوپیکی اوپسالا (سوند) فشرده شدند، سیستم رامان مورد استفاده مجهز به طیف‌سنج، تصویری و شبکه‌های عبور شناخته شدند استفاده برای این‌ها می‌تواند فضاهای زنده‌بینی شود. این‌ها به‌طور میدانی و با تغییر در طول زمان، تغییر در فرخشه گرفته شدند.

(۱)SEM، (۲)Kaiser، (۳)Andor CCD و (۴)HoloPlex

ZnO نانوذرات، نانوذرات در دستگاه‌های حذف‌سازی و بازی آن‌ها به وفور یافته می‌شود. همچنین این زنولت‌ها شامل: رامان‌سیم، الکترننشسته، دو نت‌ریست، کلسیم - هیولیندیت، اکسکورلیت و کلسیم - استیلیت هستند که در این پژوهش و برای کن. شناخته‌ای انالیزی این را با استفاده از روش های مختلف بررسی می‌کنیم.

نمونه برداری و روش‌های آزمایشگاهی

پیش از همه ۳۷۰ نمونه دستی از سنگ‌های منطقه‌ای در ۵ مسیر مشقوک کوهر چربکرک، ۱۴ نمونه غیر هوازده سنگ‌های انتخابی از همان مسیرها انتخاب و پس از پروکیش از آزمایشگاه ICP-ES، کانال‌های سلولی که روش ACME کلاسی و ۴۰ نمونه زنولتی موجود در سمنگ‌های حذف‌سازی، در این پژوهش و برای کن. شناخته‌ای انالیزی این را با استفاده از روش های مختلف بررسی می‌کنیم.

برای تدوین این کتاب، مدل‌های XRD CuKα و چشم‌های XD-5A، Shimadzu می‌باشد.
ماکا هنگام تبلور را نشان می‌دهد. در بررسی زتونشیما، هدایته گزارش‌های منطقه، غنی شدگی گزارش‌های در مقایسه با LREE و با توجه به بیشترین عناصر ناسازگاری و HFSE نسبت به گزارش‌های در مقایسه با Ta و Ti، Nb نیز برخی از تحقیق‌ها با استفاده از شناسه‌گذاری التراها با مجموعه مس، شایع‌ترین تشکیلات محلولی در گزارش‌های منطقه به سمت سیری قلبی احتمالاً نشانگر یک رژیم کوانتی مشابه حویضتی قطع می‌شود.

بحث و بررسی

آلاسیم‌ها که به صورت درشت بلوهرهای یوت هلر با وجود بهره‌برداری با رنگ‌های تیری روند هستند که انتقال آن‌ها جدایی به سری سنتز نیست، ولی تاکید بلوهرهای ریز توده‌ای را در بادام‌های سنگ‌های آنتنشیفی منطقه‌ای مورد بررسی تشکیل می‌دهند. آلاسیم عموماً با ترکنولیت و ناتورتول استفاده هستند. نتایج این‌ها نشان دهنده پیشنهادی های ترتیبی به آن‌ها برمی‌گردد. در نتیجه شایع‌ترین تشکیلات م محلولی در آن‌ها Si = Si + Al، ترکیبی است که Si و Al به شکل Na و Al فراوان آلاسیم ۰۷/% می‌شود [۰۷/۵۰]. این نسبت برای آلاسیم موجود در منطقه‌ای مورد بررسی با توجه به تجزیه شیمی انجام گرفته، روی آن [۰۷/۵۰] آب‌بر بر. [۰۷/۵۰] آب‌بر بر. اسنادی از معنای محدودیت‌های آلاسیم‌ها در ترکیب تربیتی این‌ها نشان دهنده تأثیر الیاف Tsi = S i + Al، ترکیبی است که Si و Al فراوان آلاسیم ۰۷/% می‌شود [۰۷/۵۰]. این نسبت برای آلاسیم موجود در منطقه‌ای مورد بررسی با توجه به تجزیه شیمی انجام گرفته، روی آن [۰۷/۵۰] آب‌بر بر. [۰۷/۵۰] آب‌بر بر. اسنادی از معنای محدودیت‌های آلاسیم‌ها در ترکیب تربیتی این‌ها نشان دهنده تأثیر الیاف Tsi = S i + Al، ترکیبی است که Si و Al فراوان آلاسیم ۰۷/% می‌شود [۰۷/۵۰]. این نسبت برای آلاسیم موجود در منطقه‌ای مورد بررسی با توجه به تجزیه شیمی انجام گرفته، روی آن [۰۷/۵۰] آب‌بر بر. [۰۷/۵۰] آب‌بر بر. اسنادی از معنای محدودیت‌های آلاسیم‌ها در ترکیب تربیتی این‌ها نشان دهنده تأثیر الیاف Tsi = S i + Al، ترکیبی است که Si و Al فراوان آلاسیم ۰۷/% می‌شود [۰۷/۵۰]. این نسبت برای آلاسیم موجود در منطقه‌ای مورد بررسی با توجه به تجزیه شیمی انجام گرفته، روی آن [۰۷/۵۰] آب‌بر بر. [۰۷/۵۰] آب‌بر بر. اسنادی از معنای محدودیت‌های آلاسیم‌ها در ترکیب تربیتی این‌ها نشان دهنده تأثیر الیاف Tsi = S i + Al، ترکیبی است که Si و Al فراوان آلاسیم ۰۷/% می‌شود [۰۷/۵۰]. این نسبت برای آلاسیم موجود در منطقه‌ای مورد بررسی با توجه به تجزیه شیمی انجام گرفته، روی آن [۰۷/۵۰] آب‌بر بر. [۰۷/۵۰] آب‌بر بر. اسنادی از معنای محدودیت‌های آلاسیم‌ها در ترکیب تربیتی این‌ها نشان دهنده تأثیر الیاف Tsi = S i + Al، ترکیبی است که Si و Al فراوان آلاسیم ۰۷/% می‌شود [۰۷/۵۰]. این نسبت برای آلاسیم موجود در منطقه‌ای مورد بررسی با توجه به تجزیه شیمی انجام گرفته، روی آن [۰۷/۵۰] آب‌بر بر. [۰۷/۵۰] آب‌بر بر. اسنادی از معنای محدودیت‌های آلاسیم‌ها در ترکیب تربیتی این‌ها نشان دهنده تأثیر الیاف Tsi = S i + Al، ترکیبی است که Si و Al فراوان آلاسیم ۰۷/% می‌شود [۰۷/۵۰]. این نسبت برای آلاسیم موجود در منطقه‌ای مورد بررسی با توجه به تجزیه شیمی انجام گرفته، روی آن [۰۷/۵۰] آب‌بر بر. [۰۷/۵۰] آب‌بر بر. اسنادی از معنای محدودیت‌های آلاسیم‌ها در ترکیب تربیتی این‌ها نشان دهنده تأثیر الیاف Tsi = S i + Al، ترکیبی است که Si و Al فراوان آلاسیم ۰۷/% می‌شود [۰۷/۵۰]. این نسبت برای آلاسیم موجود در منطقه‌ای مورد بررسی با توجه به تجزیه شیمی انجام گرفته، روی آن [۰۷/۵۰] آب‌بر بر. [۰۷/۵۰] آب‌بر بر. اسنادی از معنای محدودیت‌های آلاسیم‌ها در ترکیب تربیتی این‌ها نشان D = ۲۹.۳۰. است. بسته به خصوصیت‌های مکعبی الکترونی (شکل ۲-الف، ب) بررسی میکروسکوپی الکترونی به روش جدول (۲) از هدایت آن‌ها در نظر گرفته می‌شود. آلاسیم‌ها به‌طور کلی دارای یک طبقه با ترکیب Na و Ca و این است که آلاسیم‌های جانشینی نمی‌توانند بیشتر بلوهرهای منفرد نمایان شود بلکه به‌صورت یک بلوهره و یا ناهابوری‌هایی در سطح ظاهری یک‌واحدهٔ آن، ماده‌هایی شده می‌شود. این ناهابوری‌ها در هم‌میانگینها و به‌صورت منظم و ظاهری کلی و در این شکل ۲-ت، این شکل‌های یک‌دما سطح بزرگی در آن‌ها نوع جانشینی و چگالی کمتر آن در نتیجه‌بندی وجود خلا و فرار قواژان) نسبت به آلاسیم نوع گرمایه‌های دار. همچنین میزان سدیم در آلاسیم نوع گرمایه‌های بیشتر با الکتر ترکیب آلاسیم نوع جانشینی است که حاصل اختلاف دخالت و فرخ موجود در سطح آلاسیم نوع جانشینی و در نتیجه‌بندی اختلاف در میزان Na - drift است [۰۷/۵۰]. با توجه به آلاین رژیم برداشتی آلاسیم موجود در سنگ‌های منطقه (جدول ۳)، می‌توان دریافت که میزان Na در آن با استفاده از رابطه

\[I/d_{3l} = h/a^2 + k/b^2 + l/c^2 \]

برای سیستم راستگو استفاده شده است. شاخه‌های مدلر d-spacing با استفاده از الگوی پاتریک و باراکPowder (JCPDS، 1980) تعبیه شده و یکی از کاربرد پروکسی اکستندراد و شش و سپس به روش آزمودن و یک ترکیب شناخته‌پذیر استفاده از معادله بالا محسوب شدند.

این کلی دارای تفاوت شبه مکعبی با ابعاد باقی‌مانده‌هایی:

\[a = 13.6974(51) \AA, \quad b = 13.6874(124) \AA, \quad c = 13.6637(311) \AA, \quad V = 2561.695 A^3 \]

\[d = 29.30 \]
جدول ۱ پارامترهای بااختیاری پیکه‌ای آنالسیم که برای نمونه‌های منطقه ماحیثی شهدان مقادیر درون پرانتز بین‌گانه‌های میزان‌ها می‌باشد. مقادیر درون پرانتز بین‌گانه‌ها با واحد میلی‌میکرون برای شهدان مربوط به مکانیک‌شناسی می‌باشد.

<table>
<thead>
<tr>
<th></th>
<th>a(Å)</th>
<th>b(Å)</th>
<th>c(Å)</th>
<th>V(Å³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analcime †</td>
<td>13,494(2)</td>
<td>13,487(2)</td>
<td>13,487(2)</td>
<td>356(1)</td>
</tr>
<tr>
<td>Analcime †</td>
<td>13,733(1)</td>
<td>13,732(1)</td>
<td>13,742(1)</td>
<td>389(1)</td>
</tr>
<tr>
<td>Analcime *</td>
<td>13,777(2)</td>
<td>13,711(1)</td>
<td>13,740(1)</td>
<td>389(1)</td>
</tr>
</tbody>
</table>

† = this work, † = Massi & Galli(1978), * = Massi & Galli(1978)
جدول ۲ مقایسه داده‌های پراش (شناخته‌های میلر و d-spacing) مشاهده شده و محاسبه شده در آنتاسیم موجود در منطقه‌ی مورد بررسی.

<table>
<thead>
<tr>
<th>d-spacing obs</th>
<th>h</th>
<th>k</th>
<th>l</th>
<th>d-spacing calc</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.432</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>5.432</td>
</tr>
<tr>
<td>5.181</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>5.174</td>
</tr>
<tr>
<td>5.087</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>5.079</td>
</tr>
<tr>
<td>4.859</td>
<td>3</td>
<td>2</td>
<td>0</td>
<td>4.851</td>
</tr>
<tr>
<td>4.760</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>4.754</td>
</tr>
<tr>
<td>4.444</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4.434</td>
</tr>
<tr>
<td>4.191</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>4.181</td>
</tr>
<tr>
<td>2.767</td>
<td>4</td>
<td>2</td>
<td>2</td>
<td>2.755</td>
</tr>
<tr>
<td>2.468</td>
<td>4</td>
<td>3</td>
<td>1</td>
<td>2.458</td>
</tr>
<tr>
<td>3.268</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>3.262</td>
</tr>
<tr>
<td>2.501</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>2.503</td>
</tr>
<tr>
<td>2.233</td>
<td>6</td>
<td>1</td>
<td>1</td>
<td>2.228</td>
</tr>
<tr>
<td>2.184</td>
<td>5</td>
<td>3</td>
<td>3</td>
<td>2.176</td>
</tr>
<tr>
<td>2.115</td>
<td>5</td>
<td>4</td>
<td>1</td>
<td>2.112</td>
</tr>
<tr>
<td>2.107</td>
<td>6</td>
<td>3</td>
<td>1</td>
<td>2.101</td>
</tr>
<tr>
<td>1.937</td>
<td>6</td>
<td>3</td>
<td>4</td>
<td>1.938</td>
</tr>
<tr>
<td>1.866</td>
<td>6</td>
<td>3</td>
<td>4</td>
<td>1.863</td>
</tr>
<tr>
<td>1.837</td>
<td>6</td>
<td>3</td>
<td>2</td>
<td>1.834</td>
</tr>
<tr>
<td>1.771</td>
<td>6</td>
<td>3</td>
<td>2</td>
<td>1.777</td>
</tr>
<tr>
<td>1.741</td>
<td>6</td>
<td>5</td>
<td>1</td>
<td>1.746</td>
</tr>
<tr>
<td>1.686</td>
<td>7</td>
<td>4</td>
<td>1</td>
<td>1.687</td>
</tr>
<tr>
<td>1.671</td>
<td>7</td>
<td>6</td>
<td>1</td>
<td>1.676</td>
</tr>
<tr>
<td>1.656</td>
<td>7</td>
<td>6</td>
<td>4</td>
<td>1.651</td>
</tr>
<tr>
<td>1.645</td>
<td>7</td>
<td>3</td>
<td>2</td>
<td>1.649</td>
</tr>
<tr>
<td>1.612</td>
<td>9</td>
<td>3</td>
<td>1</td>
<td>1.612</td>
</tr>
<tr>
<td>1.567</td>
<td>10</td>
<td>1</td>
<td>1</td>
<td>1.567</td>
</tr>
<tr>
<td>1.537</td>
<td>10</td>
<td>2</td>
<td>1</td>
<td>1.537</td>
</tr>
<tr>
<td>1.507</td>
<td>10</td>
<td>2</td>
<td>1</td>
<td>1.507</td>
</tr>
<tr>
<td>1.504</td>
<td>10</td>
<td>2</td>
<td>1</td>
<td>1.504</td>
</tr>
</tbody>
</table>

D-spacing obs = D-spacing observed, D-spacing calc = D-spacing calculated.
شکل ۲ رز تکثیف‌های میکروسکوپ الکترونی از (الف-ب) آلاسیپوهای گرمازی (H) موجود در سنگ‌های آندزی/بازالتی منطقه‌های مورد بررسی (جنبه کهیریزک) (ت) آناسیم ناپاصلی (X) لاین و همکاران (۱۹۹۵) [۲].

جدول ۲ تجزیه شیمیایی ویسته آنالاسیم موجود سنگ‌های گرمازی و تراکم‌آدنیزی بازالتی جنس (یک) کهیریزک گه با آلاسیپوهای نوع گرمازی (H) و جانشینی (X) به چای لوپیت مقایسه شده است (لاین و همکاران ۱۹۹۵) [۲].

<table>
<thead>
<tr>
<th>Oxide</th>
<th>An</th>
<th>H-type(lab)</th>
<th>X-type(lab)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO₂</td>
<td>۵۷.۹</td>
<td>۵۸.۳</td>
<td>۵۷.۸</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>۲۰.۴</td>
<td>۲۲.۵</td>
<td>۲۴.۸</td>
</tr>
<tr>
<td>MgO</td>
<td>۳.۹</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>CaO</td>
<td>۲.۳</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Na₂O</td>
<td>۱۳.۲</td>
<td>۱۲.۰</td>
<td>۱۱.۸</td>
</tr>
<tr>
<td>K₂O</td>
<td>۱۱.۹</td>
<td>۱۰.۱</td>
<td>۲۰.۱</td>
</tr>
<tr>
<td>H₂O</td>
<td>۸.۵</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Total</td>
<td>۱۰۰</td>
<td>۹۹.۸</td>
<td>۸۸.۸</td>
</tr>
</tbody>
</table>

تعداد بینهای ۹۹.۸ اتم کلسیم

An=Analcime (South Kahrizak), Bazargani-Guilani & Rabbani (2004), H-type(lab)= Hydrothermal Analcime(laboratory), Line et al.,(1995), X-type(lab)= Analcime (laboratory), Line et al.,(1995)

بهطور کلی در سنگ‌های حداکثر تا باریز جنوب کهیریزک آناسیم‌ها دارای نسبت Si/Al زنده و در صورتی که این نسبت در آلاسیپوهای با خاصیت‌های رسوبی و درگونی بالاتر از ۲ چسب‌های انتقال آنالاسیم، سطوح محفظ رشد باریز باشد، از طرفی عدم وجود کانی‌های که نمایانگر درگونی تکثیف‌های مجاور و سنگ‌های میزبان این زولوتیت‌ها بسته و ثابت نشان دهنده شکل زولوتیت‌ها به صورت رشته‌ای در رگه‌ها و برخی غربال‌های سنگ‌های مختلف، انتقال زولوتیت برون در کانی‌های رسوبی آناسیم ولولیت با تراکم‌الولیت که به اعتقاد الگوی پرداز XRD یا تراکم الولیت منطقه‌ای شناخته شده است و در سنگ‌های آندزی/بازالتی آناسیم (۱۹۹۵) [۱] آنها به صورت کاتی با خاصیت‌های شناخته شده در سنگ‌های آنزیمی و بازالتی (کمتر) که صنایع سنگی در استان تهران و استان کرمان فعالیت می‌کنند می‌تواند تأثیر زولوتیت‌ها با لاین و همکاران (۱۹۹۵) [۲].

از دلیل اصلی خاصیت‌های گرمازی این زولوتیت‌ها هستند.
وجود زولوتیتان رشته‌ای معمول‌تر است. آلاینیم (میزان 0.2% در زولوتیتان رشته‌ای یکی از مواد مورد استفاده در اکسیژن آبی از کربنات باشد) در کربنات است. به علاوه Al، Si و C نیز می‌توانند بکر در آلاینیم در دو شرایط موارد راه اندازی شود و تشکیل آلاینیم سیسم در مواد آگاسین است.

3. ترکیب شیمیایی آلاینیم موجود در سنگ‌های منطقه (جدول 1) نشان می‌دهد که آلاینیم و نیز آلاینیم ترمزاتی یکی از مواد موجود در سنگ‌های منطقه که در محلول‌های بی‌باز، فاقد و بافت لایه‌ای به میزان حاصل فازهای مختلف رشد بلور باشند. آلاینیم به‌عنوان آلاینیم و به‌صورت هم‌پیوست با آن در حفره‌های سنگ‌های منطقه یکی از عمده‌ترین آلاینیم را در سنگ‌های آنتروفی در سنگ‌های منطقه جنوب کره است. ترکیب آلاینیم، لوین، ترکیب آلاینیم و نیز آنتروپی از فولاد‌های سخت‌تر این روش در زیر آمده است. سپس با ترکیب آلاینیم، لوین، آلاینیم و آنتروفی از فولاد‌های سخت‌تر

![شکل 3-الف](image-url)
الف) طیف رامان انالسیم با داشته‌ی بسامدهای ارتعاشی کم و شکل ۳‌ب) طیف رامان انالسیم در دامنه‌ی بسامدهای ارتعاشی بالا.

شکل ۳-ب)

