کانی شناسی و شیمی کانی دایکه‌های کوارتز‌دوریتی کانسارد مولپیدن - مس بورفیروی سونگون (شمال غرب ایران)

امین ال‌ه مکامی *، محسن مولیده، نصیر عامل، محمد رضا حسین زاده

دانشگاه تبریز، دانشکده علوم زمینی، گروه علوم زمینی

چکیده: منطقه‌ی مورد بررسی در شمال غرب ایران، استان آذربایجان شرقی و در شمال ورودی قرار گرفته است. کانی‌های اصلی دایکه‌ها عبارتند از پلاژیکولاز، امفیبول و بیوتیت و کانی‌های فرعی اسفن، کوارتز و آبنم. بافت این دایکه‌ها، بورفیرویک با خمیره‌ی ریز تا متنوع است. براساس بررسی‌های شیمی‌کی، ترتیب پلاژیکولاز و بیوتیت در دایکه‌های کوارتز‌دوریتی به ترتیب عاری‌تر از افزودن تا الیگولاز و آبنم - سیدروفیلیت. ترتیب شیمی‌کی امفیبول در گروه امفیبول‌های کلسیک از نوع مگنیوهوتزن‌لندر است. این امفیبول‌ها با رستگاری و انحلال شیمی‌کی دایکه‌ها با استفاده از مقادیر کانی‌های الیزی، کل، در ساختار امفیبول نشان می‌دهد که امفیبول موجود در دایکه‌های کوارتز‌دوریتی در فشل ۴۰۰ کیلومتر و حدود ۸۸۰ درجه سانتی‌گراد متبلور شده است. دیالامینی نک‌کانی بیوتیت برای دایکه‌های تاخیری نشان می‌دهد که بیوتیت در حدود ۷۵۰ تا ۸۴۰ درجه سانتی‌گراد متبلور شده است. در واقع اکسیده‌ی بودن ماکا و هادی برای تشکیل آن در ورودی‌های هگرگیست. براساس نمودارهای تعبیه ماهیت و شرایط بسیاری در میان افزودن ترکیب شیمی‌ای امفیبول، نمونه‌های مورد مطالعه در قلمروی قابلیت قلب‌یابی را قابل قیاس به‌کار می‌گیرند. بر اساس نمودار تکنو‌گرام‌های، امفیبول‌های متنوع در گسترش امفیبول‌های وابسته به محیط انقراضی قرار می‌گیرند. بر مبنای نقد و ارزیابی AIV (کمتر از 1/5)، کلیه امفیبول‌های دایکه‌های مرور در قلمرو حاشیه‌ی فعال قرار دارند و با عنوان به فرورفت این نگهداری می‌گیرند.

واژه‌های کلیدی: کانی‌های شیمی‌پیچیده - دایکه‌های کوارتز‌دوریتی - امفیبول - بیوتیت - سونگون

مقدمه

بخش استوک عمدی، plugin-like به شکل استوک عمده، pluglike دارایی‌های ناپی‌شده در تطهیش ریز ترتیب داکی‌های کوچک و توده‌های نامنظم هستند. استوک‌ها و دایک‌ها عموماً قطر و طول، به ترتیب، ۱۵ کیلومتر دارند. این نشانه‌ها نشان‌دهنده سیستم‌های کوارتز‌دوریتی می‌باشد. توده‌های متنوع، از دیگر معادن کوارتز‌دوریتی دارای دایک‌های ترکیب شیمی‌ای افزودنی نبوده و این نشانه‌ها را دارای دایک‌های ترکیب شیمی‌ای شده است. دایک‌های سنگی را قطع می‌کند که کننک ترکیب دایک‌های بعد از ۲۰۲۱، سونگون می‌باشد.

aminkamali63@yahoo.com

*توییت مسئول، تلفن: ۹۱۷۸۴۲۳۲۲۱۲۱، پست الکترونیکی:
کالیسازی هستند. بررسی‌های صحرائی و مغزه‌های حامل از حفاری‌شان می‌دهد که به‌طور متغیر از این دایکها در داخل توده پورفیری تزریق شده‌اند که برحسب \(\text{DK} \), \(\text{DK}1 \) و \(\text{DK}1a \) تقسیم می‌شوند. با توجه به ۴ توده پورفیری \(\text{DK}1c \) پورفیری دایک‌ها تاخیری و موثر دارد. می‌تواند از دایک‌ها مانند اورومیه‌دشت، سهیب آن است که با استفاده از ترکیب لیزری کاتی‌های گونه‌نامه و آمپلتون، به بررسی مختصر دایک‌ها و کاتی‌های پورفیری چندین انتقال، و این پژوهش کاتی‌های سانسی و کاتی سانسی تاریک‌های کوارتر (DK1c) جهت تحقیق و در این پژوهش کاتی‌های سانسی و کاتی سانسی دایک‌ها مورد بررسی قرار گرفته‌اند. لازم به یادآوری است که از زمانی به بعد پورفیری سانسی و دایک‌ها تاخیری باعث خستگی در آماری انتخابی (گونه‌دانه) روز به دست می‌دهند.

DK1, DK1b, DK1c, DK1b, DK1a, DK3کوارتر (DK2), دایک‌های پورفیری \(\text{DK}1c \), دایک‌های دیوربیتی (DK2), دایک‌های دیوربیتی (MDI) و دایک‌های دیوربیتی (MDK)

است.

زمین شناسی عمومی

کانتریم‌های سانسی در ۳۲ کیلومتری شمال شرقی ورقان، استان آذربایجان شرقی قرار گرفته است (شکل ۱). قدمتی ترین و اولین سنگ مستقیماً را سانتی‌های آمیز و شبیه تا میان ۴۵ میلی‌متر سال پیش دارد که در ۱۹۸۷ میلی‌متر سال پیش دارد. بطور کلی دایک‌ها در اثر عملکرد کسل منطقی بر میدان سانسی چای و یا با اثر تزریق دایک‌ها تاسیس سازی. با توجه به چندین توده سانسی و دایک‌ها که در این دایک‌ها دیده می‌شود. دایک‌های دیوربیتی (DK3)
در داخل تودهٔ سونکون پورفیری تزریق شده و دایک‌های لامپروفسی (LAM) در سطح منطقهٔ گزارش نشده‌اند ولی در گمانه‌های (64, 24, 26, 29, 38, 42, 46, 52) مشاهده شده‌اند.

نسل اول DK1 را نیز قطع می‌کند (شکل 2 پ). در این دایک‌ها برخی هورنفلدی و اتانولی‌های فراوانی وجود دارند. دایک‌های کیکودیورپتی (MDI)، در گمانه‌های (01, 03, 41, 43, 46, 52) مشاهده شده‌اند.

شکل 1 نقشه زمین‌شناسی 1/50000 معدن سونکون با اصلاحات کلی [17].

شکل 2الف) نمایی کلی از اسکارین و توده پورفیری سونکون و دایک‌های تأخیری همراه و ب) رختن دایک DK1c و دایک DK3.
سنجانگاری دایک کوارتز دیوریتی در نمونه‌های دستی رنگ این سنگ‌ها سبز تیره با فنوموریست-های مشخص پلاژیوکلز سفید و کالاً سالم بوده (شکل 2) هم بهصورت میکروپتریت و هم بهصورت میکروپتریتی ضعیف در میزان جزئی درگرفته‌اند که سنگ‌هایی که از کلریت و رنگ‌بندی خواص طبیعی دارند به طور کلی نمی‌دهند. پلاژیوکلز از سنگ‌های دیوریتی به‌طور کلی در نمونه‌های دایک کوارتز دیوریتی و هم به‌صورت فنوموریست و هم به‌صورت ویژه یا میکروپتریتی در خوردار حضور دارند و به‌صورت بهره‌برداری شکل‌دار نیم‌شکل‌دار با‌ماکل‌لیستنگ دیده می‌شوند. (2) و به‌سیب بی‌سنگ‌هایی که از پلاژیوکلز دایک هستند. فنوموریست‌های کناری‌های کمتر از آمیتابول است. از نظر حجمی 30 تا 40 درصد فنوموریست‌های سنگ‌های موردنظر را تشکیل می‌دهند.

توده‌شیشه‌نشانی دایک‌های ترکیبی با روداسیتی جال داغی سن پلیس دارد. این دیتبندی‌های شیشه‌نشانی درون توده‌های سونگ پوری‌فری تریت‌شده است و اشکال‌های آن نیز به شکل دایک در نقاط مختلف توده مشاهده می‌شود. دایک‌های ترکیبی تا داسیتی (DK-4) حاصل اشعاب‌ها و آپوفیزها توده‌شیشه‌نشانی چال داغی هستند که سن پلیس-کوارتز داشته و به داخل توده سونگ پوری‌فری تریتی شدهاند. ولی با نشته‌های اوریا کلاستریک و پیروکلاستریک مربوط به فوران انحرافی کوه داش دبی به‌صورت دگرشیبی فراشیزی از نوع آذرین پی بوشیده شوند. این ویژگی نشان می‌دهد که فعالیت انتشناشی کوه داش دبی با ترکیب ترکیبی اندزیت- بارالتی نسبت به کوه جال داغی با ترکیب داسیتی تا روداسیتی تأخیری بوده است.

روش‌ها

عملیات صحراپی و نمونه‌برداری، آماده‌سازی و بررسی‌های آزمایشگاهی در پایان و رمستا 45 انجام شد. بررسی‌های سنگ‌گاری با استفاده از میکروسکوپ قطعی‌شده 25 نمونه انجام گرفت. بررسی‌های صیفی کانی‌های سیلیکاتی به تعداد 100 نقطه روی کانی‌های مختلف از جمله پلاژیوکلز، آمفیبول...

شکل ۲ (الف) نمونه دستی دایک کوارتز، (ب) فنوموریست‌های پلاژیوکلز با آمفیبولیک شکل دار پلاژیوکلز، (پ) فنوموریست‌های سالم و شکل‌دار پلاژیوکلز. (XPL) که تهیه در حالت (DK-4) می‌باشد (در ابتانیت و ت) فنوموریست سالم و شکل‌دار پلاژیوکلز. (که تهیه در حالت (DK-4) می‌باشد (در ابتانیت و ت) فنوموریست سالم و شکل‌دار پلاژیوکلز. (که تهیه در حالت (DK-4) می‌باشد (در ابتانیت و ت) فنوموریست سالم و شکل‌دار پلاژیوکلز. (که تهیه در حالت (DK-4) می‌باشد (در ابتانیت و ت) فنوموریست سالم و شکل‌دار پلاژیوکلز. (که تهیه در حالت (DK-4) می‌باشد (در ابتانیت و ت) فنوموریست سالم و شکل‌دار پلاژیوکلز. (که تهیه در حالت (DK-4) می‌باشد (در ابتانیت و ت) فنوموریست سالم و شکل‌دار پلاژیوکلز. (که تهیه در حالت (DK-4) می‌باشد (در ابتانیت و ت) فنوموریست سالم و شکل‌دار پلاژیوکلز. (که تهیه در حالت (DK-4) می‌باشد (در ابتانیت و T) فنوموریست سالم و شکل‌دار پلاژیوکلز. (که تهیه در حالت (DK-4) می‌باشد (در ابتانیت و T) فنوموریست S
شرایط مواد معدنی و شیمیایی کانی‌های دایک‌های کوارتز دوریتی کانسار مولبدن، مس. 127

آمیفیوب: بلوره‌های آمیفیوب در فراوانی ترین فتوکریست‌ها در سنگ‌های مورد بررسی است. کانی‌های آمیفیوب بطوریکی شکل دار و نیمه شکل در سال و مال کاراسیاب در مقطع دیده می‌شوند (شکل 3). بلوره‌های رز آمیفیوب در برخی موارد به ایدویت و کلریت و کانی‌های نیمه‌تجهیز شده‌اند.

ریزی این سنگ‌ها به شکل سخت‌دار و نیمه‌شکل-دار و دار دیده می‌شود و فراوانی آن کمتر از آمیفیوب است (شکل 3).

اتوکلز: این سنگ‌ها رز آمیفیوب پریت نیم‌شکل‌دار بوده و به مقدار خیلی کم دیده می‌شود.

کانی‌های فرعی شامل اسفن، کوارتز و آپاتیت.

اسفن در فراوانی کوارتز و به مقدار خیلی کم، رنگ سبز و به مقدار اسفن و کوارتز به شکل شیک و با جویانه با خاصیت به مقدار دیده می‌شود. این کانی 5 درصد سنگ‌پا به شکل دیده می‌شود. آپاتیت به شکل سریزی و به مقدار کم و به مقدار کم دیده می‌شود. این سنگ‌ها به همراه پریت تا کلیکتیک‌هایی به خسارت زیبایی می‌باشند. رنگ تونالیت این سنگ‌های این مجموعه دیده می‌شود.

جدول 1: نتایج میکرو‌بروپ و هزینه‌های دایک

<table>
<thead>
<tr>
<th>Sample</th>
<th>PI-1</th>
<th>PI-2</th>
<th>PI-3</th>
<th>PI-4</th>
<th>PI-5</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO₂</td>
<td>58.93</td>
<td>58.74</td>
<td>58.47</td>
<td>58.22</td>
<td>58.03</td>
<td>43.89</td>
<td>43.92</td>
<td>43.94</td>
<td>43.95</td>
<td>43.98</td>
</tr>
<tr>
<td>TiO₂</td>
<td>3.27</td>
<td>3.24</td>
<td>3.21</td>
<td>3.19</td>
<td>3.17</td>
<td>2.18</td>
<td>2.16</td>
<td>2.15</td>
<td>2.13</td>
<td>2.12</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>18.72</td>
<td>18.69</td>
<td>18.67</td>
<td>18.65</td>
<td>18.63</td>
<td>18.52</td>
<td>18.51</td>
<td>18.50</td>
<td>18.49</td>
<td>18.48</td>
</tr>
<tr>
<td>Cr₂O₃</td>
<td>0.35</td>
<td>0.34</td>
<td>0.33</td>
<td>0.32</td>
<td>0.31</td>
<td>0.30</td>
<td>0.29</td>
<td>0.28</td>
<td>0.27</td>
<td>0.26</td>
</tr>
<tr>
<td>MnO</td>
<td>0.02</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>MgO</td>
<td>0.01</td>
</tr>
<tr>
<td>CaO</td>
<td>7.55</td>
<td>7.56</td>
<td>7.57</td>
<td>7.58</td>
<td>7.59</td>
<td>7.60</td>
<td>7.61</td>
<td>7.62</td>
<td>7.63</td>
<td>7.64</td>
</tr>
<tr>
<td>Na₂O</td>
<td>8.99</td>
<td>8.97</td>
<td>8.95</td>
<td>8.92</td>
<td>8.89</td>
<td>8.86</td>
<td>8.83</td>
<td>8.80</td>
<td>8.77</td>
<td>8.74</td>
</tr>
<tr>
<td>K₂O</td>
<td>7.42</td>
<td>7.39</td>
<td>7.36</td>
<td>7.33</td>
<td>7.30</td>
<td>7.27</td>
<td>7.24</td>
<td>7.21</td>
<td>7.18</td>
<td>7.15</td>
</tr>
<tr>
<td>Total</td>
<td>99.05</td>
<td>99.04</td>
<td>99.03</td>
<td>99.02</td>
<td>99.01</td>
<td>99.00</td>
<td>99.00</td>
<td>99.00</td>
<td>99.00</td>
<td>99.00</td>
</tr>
</tbody>
</table>

Formula | A(%) |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Si</td>
<td>2.62</td>
</tr>
<tr>
<td>Ti</td>
<td>0.00</td>
</tr>
<tr>
<td>Al</td>
<td>1.33</td>
</tr>
<tr>
<td>Cr</td>
<td>0.00</td>
</tr>
<tr>
<td>Fe²⁺</td>
<td>0.00</td>
</tr>
<tr>
<td>Mn</td>
<td>0.00</td>
</tr>
<tr>
<td>Mg</td>
<td>0.00</td>
</tr>
<tr>
<td>Ca</td>
<td>0.40</td>
</tr>
<tr>
<td>Na</td>
<td>0.68</td>
</tr>
<tr>
<td>K</td>
<td>0.03</td>
</tr>
<tr>
<td>Total</td>
<td>4.99</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sample</th>
<th>PI-1</th>
<th>PI-2</th>
<th>PI-3</th>
<th>PI-4</th>
<th>PI-5</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Si</td>
<td>2.62</td>
</tr>
<tr>
<td>Ti</td>
<td>0.00</td>
</tr>
<tr>
<td>Al</td>
<td>1.33</td>
</tr>
<tr>
<td>Cr</td>
<td>0.00</td>
</tr>
<tr>
<td>Fe²⁺</td>
<td>0.00</td>
</tr>
<tr>
<td>Mn</td>
<td>0.00</td>
</tr>
<tr>
<td>Mg</td>
<td>0.00</td>
</tr>
<tr>
<td>Ca</td>
<td>0.40</td>
</tr>
<tr>
<td>Na</td>
<td>0.68</td>
</tr>
<tr>
<td>K</td>
<td>0.03</td>
</tr>
</tbody>
</table>
جدول ۴ نتایج آنالیز میکروبرو مورد آمپیول دایک DK1

<table>
<thead>
<tr>
<th>Sample</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>AMP1-2</th>
<th>AMP1-3</th>
<th>AMP1-4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Si</td>
<td>8.97</td>
<td>8.70</td>
<td>8.87</td>
<td>8.77</td>
<td>8.77</td>
<td>8.75</td>
<td>8.58</td>
<td>9.01</td>
<td>8.99</td>
<td>8.73</td>
<td>8.73</td>
<td>8.75</td>
</tr>
<tr>
<td>Ti</td>
<td>0.18</td>
<td>0.18</td>
<td>0.17</td>
<td>0.16</td>
<td>0.18</td>
<td>0.13</td>
<td>0.11</td>
<td>0.18</td>
<td>0.18</td>
<td>0.18</td>
<td>0.18</td>
<td>0.16</td>
</tr>
<tr>
<td>Al</td>
<td>1.08</td>
<td>1.08</td>
<td>1.04</td>
<td>1.17</td>
<td>1.17</td>
<td>1.01</td>
<td>1.30</td>
<td>1.00</td>
<td>0.98</td>
<td>1.07</td>
<td>1.01</td>
<td>1.19</td>
</tr>
<tr>
<td>Fe</td>
<td>1.87</td>
<td>1.19</td>
<td>1.09</td>
<td>1.30</td>
<td>1.37</td>
<td>1.05</td>
<td>1.10</td>
<td>1.05</td>
<td>0.99</td>
<td>1.03</td>
<td>1.03</td>
<td>1.00</td>
</tr>
<tr>
<td>Mn</td>
<td>0.11</td>
<td>0.09</td>
<td>0.09</td>
<td>0.08</td>
<td>0.09</td>
<td>0.07</td>
<td>0.09</td>
<td>0.09</td>
<td>0.09</td>
<td>0.09</td>
<td>0.09</td>
<td>0.09</td>
</tr>
<tr>
<td>Mg</td>
<td>0.80</td>
<td>0.11</td>
<td>0.09</td>
<td>0.08</td>
<td>0.08</td>
<td>0.07</td>
<td>0.08</td>
<td>0.08</td>
<td>0.08</td>
<td>0.08</td>
<td>0.08</td>
<td>0.08</td>
</tr>
<tr>
<td>Ca</td>
<td>1.87</td>
<td>1.22</td>
</tr>
<tr>
<td>Na</td>
<td>0.08</td>
<td>0.07</td>
</tr>
<tr>
<td>K</td>
<td>0.20</td>
</tr>
<tr>
<td>Cr</td>
<td></td>
</tr>
<tr>
<td>Sum</td>
<td>12.98</td>
<td>12.78</td>
<td>12.77</td>
</tr>
</tbody>
</table>

جدول ۵ تقسیم بندی پلازیگالز دایک DK1 براساس تركیب شیمیایی [۱۸]
مورد بیوئیته‌های مورد بررسی (۱۳۹۲) صدق می‌کند به عقیدهٔ ۱۰ روند غنی‌شدن از آهن و منیزیم در بیوئیته‌های متغیر می‌باشد و گربه‌زدگی‌امکتین در طول تحلیل مگما دارد به این دلیل که در شرایط اکسیژن از منیزیم غنی شده و در شرایط احیا از آهن غنی می‌شوند. بنابراین دایک‌های کوارتزی‌بورنیتی معدن مس سیگون در شرایط اکسیژن تشکیل شده‌اند.

از نظر محتواي هالوژن‌ها، بیوئیته‌های دایک‌های سیگون، فلورور بیشتری نسبت به کل‌دارنده به طوری که مقدار منیزیم، فلورور در سیگون‌های گرابیتی تا گاروبی از حدود ۷،۰ تا ۸،۰ درصد و منیزیم مکرر در حدود ۱۱،۰ تا ۱۵ درصد و وری تری است. مقدار فلورور موجود در بیوئیته‌های رشته‌های گوناگون (۴۰ تا ۶۰ تا ۸۰ تا ۱۰۰) است. هر چند توزیع فلورور و کلر به داشتن مگما روند اولارش را در گدای هیمالیا نشان می‌دهد (۲۲) اما در مراحل آخر که یک فاز ای در آبی‌شیری نشان می‌دهد. بین آبی‌شیری و منیزیم، مشابه سیگونک اندازه است تا طوری که فلورور در کاربنات سیگونک و کلر در آبی‌شیری غنی می‌شوند (۲۴). معمولاً محلول‌های مگماتی در دمای بالا از کلر غنی هستند و در دمای پایین‌تر از نقطه حرانی از کلر فیبر می‌شوند (۲۵) همچنین بنابر اصل طرد‌های فلورور (۲۶)، استفاده آهن در محلول‌های مگماتی با کاهش در دمای فلورور همراه است. بررسی کلی‌شاسی حاکی از افزایش مقدار اکسیده‌ای آهن (مگنتیت) از گرایی ناگابه است.

نتایج آلبسیت‌های معرفی بیوئیته‌های دایک‌های Mg/ (Mg+Fe)۲ در جدول ۳ مورد بررسی مقدار کانی‌پوش طبسیت مس- (نیتریت‌سفاتی) قرار گرفته‌اند. کلاً بیوئیته‌های سیگون‌های و درگاه‌ری، به تغییرات دما، فشار و فعالیت‌های منیزیم‌های نیتریت ساخته‌ای‌های آلی و SiO۲، O۲، H۲O با فشار است. Mg۲ و Si در ۲۰۰ میکروگرم در دمای ۱۰۰٪ MgNO۳ به‌طور یکسان به‌طور انت‌برکته گرفته‌اند که بیوئیته‌های مورد بررسی در (Al۵+Fe۲+/Ti)-(Fe۲+/Mg) محدوده‌ی بیوئیته‌های میزدان دارن می‌گیرند (شکل ۶ و B) بررسی بیوئیته‌های مورد بررسی است. مقادیر X۲FeTiO۳+۱۰۰۰ از Si نشان می‌دهد (شکل ۹) که بیوئیته‌های مورد بررسی در H۲O ۱۰۰٪ دارن می‌گیرند. بیوئیته‌های اولیه تعداد دوبه‌نن فلورور با تغییر می‌گیرد. بنابر (۲۷) X۲FeTiO۳+۱۰۰۰ و (Fe۲+/MnO)-۱۰۰۰ Ti مقدار بیوئیته‌ها وابسته به گرمای بهداشت و با =۱۰۰۰ سیگن میزان [Fe۲+/MnO] (Fe۲+/Mn۲+) تغییر می‌کند. معمولاً مقدار Ti در بیوئیته‌های هرمیست بیاژ کسیک اشباع از افزایش نشان می‌دهد (۲۷). X۲FeTiO۳+۱۰۰۰ Ti افزایش آهن در B افزایش می‌دهد (۲۷). X۲FeTiO۳+۱۰۰۰ Ti افزایش می‌دهد (۲۷).

شکل ۵ (الف) امفیبولیت‌های دایک‌های کلی‌سیک قرار می‌گیرند و (ب) موقعیت الکتروندوپی‌کتی دایک‌های DK1c در نمودار Si در DK1c می‌باشد.

مقدم نسبت کاتیونی [۱۸]
جدول ۳
نتایج آنالیزی ریژیپداری معرف کلیه بوتینیت دایک کلک

<table>
<thead>
<tr>
<th>Sample</th>
<th>AB1</th>
<th>AB2</th>
<th>AB3</th>
<th>AB4</th>
<th>AB5</th>
<th>AB6</th>
<th>AB7</th>
<th>AB8</th>
<th>AB9</th>
</tr>
</thead>
<tbody>
<tr>
<td>Si</td>
<td>7.77</td>
<td>7.77</td>
<td>7.77</td>
<td>7.77</td>
<td>7.77</td>
<td>7.77</td>
<td>7.77</td>
<td>7.77</td>
<td>7.77</td>
</tr>
<tr>
<td>Ti</td>
<td>0.29</td>
<td>0.29</td>
<td>0.29</td>
<td>0.29</td>
<td>0.29</td>
<td>0.29</td>
<td>0.29</td>
<td>0.29</td>
<td>0.29</td>
</tr>
<tr>
<td>Al</td>
<td>1.24</td>
<td>1.24</td>
<td>1.24</td>
<td>1.24</td>
<td>1.24</td>
<td>1.24</td>
<td>1.24</td>
<td>1.24</td>
<td>1.24</td>
</tr>
<tr>
<td>Cr</td>
<td>0.6</td>
<td>0.6</td>
<td>0.6</td>
<td>0.6</td>
<td>0.6</td>
<td>0.6</td>
<td>0.6</td>
<td>0.6</td>
<td>0.6</td>
</tr>
<tr>
<td>Fe²⁺</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
</tr>
<tr>
<td>Fe³⁺</td>
<td>0.75</td>
<td>0.75</td>
<td>0.75</td>
<td>0.75</td>
<td>0.75</td>
<td>0.75</td>
<td>0.75</td>
<td>0.75</td>
<td>0.75</td>
</tr>
<tr>
<td>Mn</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>Mg</td>
<td>1.86</td>
<td>1.86</td>
<td>1.86</td>
<td>1.86</td>
<td>1.86</td>
<td>1.86</td>
<td>1.86</td>
<td>1.86</td>
<td>1.86</td>
</tr>
<tr>
<td>Ca</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>Na</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
</tr>
<tr>
<td>K</td>
<td>0.74</td>
<td>0.74</td>
<td>0.74</td>
<td>0.74</td>
<td>0.74</td>
<td>0.74</td>
<td>0.74</td>
<td>0.74</td>
<td>0.74</td>
</tr>
<tr>
<td>Ba</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>Total</td>
<td>7.76</td>
<td>7.76</td>
<td>7.76</td>
<td>7.76</td>
<td>7.76</td>
<td>7.76</td>
<td>7.76</td>
<td>7.76</td>
<td>7.76</td>
</tr>
</tbody>
</table>

شکل ۶
الف) ترکیب بوتینیتهای دایک کلک در نمونه‌های Fe/(Fe+Mg) در مقیاس Al و ب) ترکیب بوتینیتهای دایک (FeO⁺+MnO) در نمونه‌های Mg-(Al³⁺+Fe³⁺+Ti)-(Fe²⁺+Mn) و یک ترکیب بوتینیتهای دایک کلک در نمونه‌های TIO₂-MgO در مقیاس Si نمودارهای ۱۰۷TiO₂-MgO
تغییر محیط زمینی شامل استفاده از آمفیپول و پوئتیت

آمفیپول‌هایی باسته به فرورانش، TiO_2 و Na_2O نسبت به ارتفاع میان صفحات (I-Amph) دارنده برای نمودار طبقه‌بندی تکنولومگامی‌ای (1) آمفیپول‌های منطقه در کسریه آمفیپول‌ها وابسته به محیط سیبراسیادکش (S-Amph) قرار می‌گیرند (شکل 7). بر اساس ماهیت و سرشت ماگماتی دایک‌های منطقه با استفاده از ترکیب MgO، Na_2O، TiO_2 و Na_2O/K_2O، K_2O شده است. براساس این نمودارها، نمونه‌های مورد مطالعه در

![شکل 7 نمودار طبقه‌بندی تکنولومگامی آمفیپول‌های c\DK1c](http://example.com/sha.png)

![شکل 8 ماهیت دایک کوارتزدیوریتی با استفاده از ترکیب شیمیایی آمفیپول‌هایa](http://example.com/sha.png)
مورد بررسی است. برپایه این بررسی‌ها معلوم شد که تركیب
هوروندین به شدت نسبت به تغییرات شرایط فساح و دما حساس
است. با داشتن گرفتن معیار زیست‌میزیابی، در محاسبه فرمول
امفیبول بر اساس 13 کانالی است از A1total (0.4) [8]
که این حاصل از اسپه‌های فشار در جدول 4 به صورت خلاصه‌ای در
جدول 5 ارائه شده است براساس پارامتر در برابر
Al\textsubscript{tot} [42]. امفیبول‌های موجود در دایک
مدیون سونگون در فضای بین 2 تا 4 کیلوبار تحقیق
DK1c شده‌اند (شکل 10 اف). همچنین با استفاده از دما-فارسگنجی
براساس اکسیده‌های الومینیوم و تیتانیوم موجود در کات
امفیبول، دایی تیپ نزدیک به 80 درجه سانتی‌گراد در
فشاری معادل 3 تا 4 کیلوبار برای برای در امفیبول در سنگ‌های
منطقه ارژی‌زایی می‌شود (شکل 10 ب).

مورد بررسی است. برپایه این بررسی‌ها معلوم شد که تركیب
هوروندین به شدت نسبت به تغییرات شرایط فساح و دما حساس
است. با داشتن گرفتن معیار زیست‌میزیابی، در محاسبه فرمول
امفیبول بر اساس 13 کانالی است از A1total (0.4) [8]
که این حاصل از اسپه‌های فشار در جدول 4 به صورت خلاصه‌ای در
جدول 5 ارائه شده است براساس پارامتر در برابر
Al\textsubscript{tot} [42]. امفیبول‌های موجود در دایک
مدیون سونگون در فضای بین 2 تا 4 کیلوبار تحقیق
DK1c شده‌اند (شکل 10 اف). همچنین با استفاده از دما-فارسگنجی
براساس اکسیده‌های الومینیوم و تیتانیوم موجود در کات
امفیبول، دایی تیپ نزدیک به 80 درجه سانتی‌گراد در
فشاری معادل 3 تا 4 کیلوبار برای در امفیبول در سنگ‌های
منطقه ارژی‌زایی می‌شود (شکل 10 ب).

یکینتیت
یکینتیت‌های ماگما‌ای در مرحله میانی و نهایی انجام ماکا
هم‌مان با هوروندین و بالاپوش‌های آن تركیب جد و اولتی
می‌شوند [43]. تركیب یکینتیت‌ها دارای تركیب
ماگما مولدر کریستال‌های اسپینل، دمای کشوره، و خصائص
- FeO+, Al\textsubscript{2}O\textsubscript{3}, MgO, Al\textsubscript{2}O\textsubscript{3} - FeO+
ماکماست. در نمونه‌های
(شکل 9) یکینتیت‌های
MgO-Al\textsubscript{2}O\textsubscript{3} - FeO+, Mg-Al\textsubscript{2}O\textsubscript{3} - MgO
مورد بررسی در گستردگی رشته‌های کوه‌های آهک-قلمی (C)
قرار گرفته. روندهای آهک-قلمی کوه‌های بنا نمودارهای
[43] (شکل 9)، برای این کل ناحیه است؛ این ویژگی
همچنین بوسیله نمودار Al\textsubscript{tot}-Mg
قابل ناحیه است. با توجه به تركیب شیمیایی یکینتیت‌های
مورد بررسی می‌توان گفت که سنج میزان آنها در یک میج
زمین ساختن مشابه توده‌های آهک-قلمی کوه‌های تحقیق
شده است.

زمن‌دار-فارسگنجی دایک‌های کوارتزبورینی (DK1c)
فارسگنجی امفیبول
هوروندین مهم‌ترین فاز فرمندین در دایک‌های کوارتزبورینی

شکل 9 اف. آ. ب و ت. ترسیم اکسیده‌های MgO - Al\textsubscript{2}O\textsubscript{3} - FeO+
(شکل 9) یکینتیت‌های دایک‌های می‌شوند [43]. ترسیم
DK1c
داک‌های می‌شوند [43].
جدول ۴: روش‌های مورد استفاده برای فشارسنجی در آمفیبول‌ها

<table>
<thead>
<tr>
<th>فشار</th>
<th>روش مورد استفاده</th>
<th>فرمول محاسبه فشار</th>
<th>میزان خطای</th>
<th>همبستگی</th>
</tr>
</thead>
<tbody>
<tr>
<td>P1</td>
<td>[23]</td>
<td>-3.92 + 5.03* Al(total)</td>
<td>± 3Kbar</td>
<td>R²= 0.8</td>
</tr>
<tr>
<td>P2</td>
<td>[24]</td>
<td>-4.76 + 5.64* Al(total)</td>
<td>± 1Kbar</td>
<td>R²= 0.97</td>
</tr>
<tr>
<td>P3</td>
<td>[25]</td>
<td>-3.46 + 4.23* Al(total)</td>
<td>± 0.5Kbar</td>
<td>R²= 0.99</td>
</tr>
<tr>
<td>P4</td>
<td>[26]</td>
<td>-3.01 + 4.76* Al(total)</td>
<td>± 0.6Kbar</td>
<td>R²= 0.99</td>
</tr>
</tbody>
</table>

جدول ۵: نتایج محاسبه شده از فرمول‌های متنوق بارومتری نتایج حاصل روش‌های متنوق ترمومتری و و فوگاپسپه اکسبس در آمفیبول‌های صخره‌ای

<table>
<thead>
<tr>
<th>نمونه</th>
<th>P1</th>
<th>P2</th>
<th>P3</th>
<th>P4</th>
<th>T1</th>
<th>T2</th>
<th>T3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dk1e</td>
<td>3.53</td>
<td>3.6</td>
<td>3.81</td>
<td>4.04</td>
<td>3.44</td>
<td>3.64</td>
<td>3.81</td>
</tr>
<tr>
<td>Dk2e</td>
<td>3.56</td>
<td>3.72</td>
<td>3.92</td>
<td>4.13</td>
<td>3.64</td>
<td>3.84</td>
<td>4.03</td>
</tr>
<tr>
<td>Dk3e</td>
<td>3.88</td>
<td>3.99</td>
<td>4.28</td>
<td>4.58</td>
<td>4.06</td>
<td>4.26</td>
<td>4.46</td>
</tr>
<tr>
<td>Dk4e</td>
<td>3.34</td>
<td>3.49</td>
<td>3.79</td>
<td>4.09</td>
<td>3.55</td>
<td>3.76</td>
<td>3.96</td>
</tr>
<tr>
<td>Dk5e</td>
<td>2.71</td>
<td>2.86</td>
<td>3.05</td>
<td>3.25</td>
<td>3.14</td>
<td>3.24</td>
<td>3.34</td>
</tr>
<tr>
<td>Dk6e</td>
<td>3.11</td>
<td>3.21</td>
<td>3.41</td>
<td>3.61</td>
<td>3.36</td>
<td>3.46</td>
<td>3.65</td>
</tr>
<tr>
<td>Dk7e</td>
<td>2.68</td>
<td>2.83</td>
<td>3.03</td>
<td>3.23</td>
<td>2.87</td>
<td>3.07</td>
<td>3.27</td>
</tr>
<tr>
<td>Dk8e</td>
<td>1.66</td>
<td>1.81</td>
<td>2.02</td>
<td>2.22</td>
<td>1.87</td>
<td>2.12</td>
<td>2.37</td>
</tr>
<tr>
<td>Dk9e</td>
<td>1.38</td>
<td>1.52</td>
<td>1.72</td>
<td>1.92</td>
<td>1.57</td>
<td>1.82</td>
<td>2.07</td>
</tr>
<tr>
<td>Dk10e</td>
<td>1.13</td>
<td>1.27</td>
<td>1.47</td>
<td>1.67</td>
<td>1.38</td>
<td>1.63</td>
<td>1.88</td>
</tr>
<tr>
<td>Dk11e</td>
<td>1.48</td>
<td>1.63</td>
<td>1.83</td>
<td>2.03</td>
<td>1.68</td>
<td>1.93</td>
<td>2.18</td>
</tr>
<tr>
<td>Dk12e</td>
<td>1.21</td>
<td>1.36</td>
<td>1.56</td>
<td>1.76</td>
<td>1.47</td>
<td>1.72</td>
<td>1.97</td>
</tr>
<tr>
<td>Dk13e</td>
<td>2.63</td>
<td>2.83</td>
<td>3.03</td>
<td>3.23</td>
<td>2.87</td>
<td>3.12</td>
<td>3.37</td>
</tr>
<tr>
<td>Dk14e</td>
<td>5.66</td>
<td>5.86</td>
<td>6.06</td>
<td>6.26</td>
<td>5.91</td>
<td>6.16</td>
<td>6.41</td>
</tr>
<tr>
<td>Dk15e</td>
<td>2.53</td>
<td>2.73</td>
<td>2.93</td>
<td>3.13</td>
<td>2.78</td>
<td>3.03</td>
<td>3.28</td>
</tr>
<tr>
<td>Dk16e</td>
<td>3.86</td>
<td>4.06</td>
<td>4.26</td>
<td>4.46</td>
<td>4.01</td>
<td>4.26</td>
<td>4.51</td>
</tr>
<tr>
<td>Dk17e</td>
<td>3.03</td>
<td>3.23</td>
<td>3.43</td>
<td>3.63</td>
<td>3.28</td>
<td>3.53</td>
<td>3.78</td>
</tr>
<tr>
<td>Dk18e</td>
<td>4.97</td>
<td>5.17</td>
<td>5.37</td>
<td>5.57</td>
<td>5.22</td>
<td>5.47</td>
<td>5.72</td>
</tr>
<tr>
<td>Dk19e</td>
<td>1.81</td>
<td>2.01</td>
<td>2.21</td>
<td>2.41</td>
<td>1.96</td>
<td>2.12</td>
<td>2.37</td>
</tr>
<tr>
<td>Dk20e</td>
<td>1.77</td>
<td>1.97</td>
<td>2.17</td>
<td>2.37</td>
<td>1.92</td>
<td>2.12</td>
<td>2.32</td>
</tr>
<tr>
<td>Dk21e</td>
<td>2.86</td>
<td>3.06</td>
<td>3.26</td>
<td>3.46</td>
<td>3.01</td>
<td>3.22</td>
<td>3.42</td>
</tr>
<tr>
<td>Dk22e</td>
<td>2.58</td>
<td>2.78</td>
<td>2.98</td>
<td>3.18</td>
<td>2.73</td>
<td>2.93</td>
<td>3.13</td>
</tr>
<tr>
<td>Dk23e</td>
<td>3.46</td>
<td>3.66</td>
<td>3.86</td>
<td>4.06</td>
<td>3.61</td>
<td>3.81</td>
<td>4.01</td>
</tr>
<tr>
<td>Dk24e</td>
<td>2.67</td>
<td>2.87</td>
<td>3.07</td>
<td>3.27</td>
<td>2.82</td>
<td>3.02</td>
<td>3.22</td>
</tr>
<tr>
<td>Dk25e</td>
<td>3.82</td>
<td>4.02</td>
<td>4.22</td>
<td>4.42</td>
<td>4.07</td>
<td>4.27</td>
<td>4.47</td>
</tr>
<tr>
<td>Dk26e</td>
<td>3.13</td>
<td>3.33</td>
<td>3.53</td>
<td>3.73</td>
<td>3.38</td>
<td>3.58</td>
<td>3.78</td>
</tr>
<tr>
<td>Dk27e</td>
<td>2.77</td>
<td>2.97</td>
<td>3.17</td>
<td>3.37</td>
<td>2.92</td>
<td>3.12</td>
<td>3.32</td>
</tr>
<tr>
<td>Dk28e</td>
<td>4.04</td>
<td>4.24</td>
<td>4.44</td>
<td>4.64</td>
<td>4.29</td>
<td>4.49</td>
<td>4.69</td>
</tr>
</tbody>
</table>

شکل ۱۰: نتایج محاسبه شده از فرمول‌های متنوق بارومتری نتایج حاصل روش‌های متنوق ترمومتری و و فوگاپسپه اکسبس در آمفیبول‌های صخره‌ای

امفیبول‌ها با پایه درصد وریزی به عنوان تابعی برای تعیین فشار و دمای دایک‌های TiO₂ و Al₂O₃ مدرج در نظر گرفته شده است. [۲۳] Dk1e
تری را نشان می‌دهد.

دمسانجی با استفاده از تک کانی پیتنت
کانی پیتنت از میزان‌های مهم Ti در سنگ‌های آذرین
محبوس می‌شود. جایگزینی این عنصر در ساختار پیتنت
ارتباط مستقیم با دما دارد. پیتنت‌های موجود در دایک
الومینیوم ۴۵ تا ۷۰ درجه سانتی‌گراد را نشان
می‌دهد (شکل ۱الف).

تعیین گرینزنگی اکسیژن آمفیبول
گریزنهای اکسیژن از جمله فاکتورهایی است که مجموعه
کانی‌های سنگ را تحت تأثیر قرار می‌دهد. گریزنهای اکسیژن
اولیه یک ماده ماها از نظر جهانی این سنگ‌های دارد که
خود تابعی از جایگاه زمین‌ساختن است [۴۶] ماگمایی با
درجه اکسیاسی باتر، معمولاً با مراحل صفحات همکار
هم‌زنده [۴۷]. برای تعیین گریزنهای اکسیژن به عوامل اصلی
تریب فاز گازی همراه با هیدروژن در سنگ‌های دارای کانی‌های
ازن، استفاده از ترکیب شیمیایی کانی‌های آسیابی و آمفیبول
عمول است [۴۸]. آمفیبول‌ها کانی‌های مهم برای شناسایی
شرايط گریزنهای اکسیژن از ماکا هستند [۴۹]. یکی از روش
های ارزیابی گریزنهای اکسیژن در سنگ‌های نفوذی، بررسی
ترکیب آمفیبول‌هایی است که از نظر شیمیایی دارای
هستند [۱۸]. برای Fe_{tot}/(Fe_{tot}+Mg)>0.۳ و Al^{IV}>0.۷۵

مقدار عدم اطمینان دمسانجی زوج کانی آمفیبول – پلاتیولاسهار
تقییا ۴۵ درجه سانتی‌گراد است [۴۴] بررسی‌های انجام
شد [۴۶] نشان داد که ۹۵ درصد دماهای محاسبه
شد توسط ترمومتر اثره شده از صحت قابل قبولی برخورد
است و از این معادله برای محاسبه دمای پیتنت آمفی‌بول
مورد بررسی استفاده شد. نتایج این محاسبات در جدول ۵ ارائه
شده‌اند همچنین [۴۶] با در نظر گرفتن ارتباط مستقیم
تغییرات فشار و دما، معنی‌داری به ارای محاسبه دمای پیتنت
آمفیبول از فشارسنجی آمفیبول پیشنهاد کردند:

\[T(T1) = 479.8^{*} (Na+K)^{0.14} + 643.5 \quad R^2=0.63 \]

برای محاسبه دما سنگ‌های مورد بررسی، به علت خطا
کمتر محاسبات از نتایج فشارسنجی روش [۴۴] استفاده شده
است. نتایج حاصل از این محاسبه نیز به همراه کمیت، بیشینه
و میانگین در جدول ۵ ارائه شده‌اند. از مقایسه دمای
محاسبه شده سنگ‌های مورد بررسی روش [۴۴] دما پایین

[۱۸] برای کانی‌های دایک‌های دک[۱۴]، ب نمودار تعیین فوکاسیون اکسیژن بر
پایه ترکیب آمفیبول‌ها و موقعیت نمونه‌های دک[۱۴]

نمودار

- شکل ۱الف: نمودار تعیین فوکاسیون اکسیژن بر
- شکل ۱ب: نمودار تعیین فوکاسیون اکسیژن بر
گستره‌ای بوئیت‌های اولیه و بیوتیت‌های اولیه نماد دوبه‌ای
یافت قرار می‌گیرد. مقدار Al (241) بیوتیت‌های مورد بررسی
شانه دهنده بیوتیت‌های مگامگا است. بیوتیت‌های
بِ‌رانده از تناسبی شرایط اکسیاسپراکت مگامگا و
تشکل دایکهای کوارتزدورینت معدن مس سونگون در
شرایط اکسیاسپراکت مست. برا یابی ترکیب شیمیایی بیوتیت‌های
مور بررسی می‌توان گفت که سنت علی‌رغم آنها در یک محیط
نکتونیکی مشابه توده‌های آهکی-قلیایی کوه‌زیان تشکل شده
است.

مراجع

[4] [امامی ه., باخکنی ع., "مظالمز زمین شناسی پتروپتی و اپتیتزیایی کارنشینی مس و مولیبدن سونگون", کارشناسی ارشد، دانشگاه ایران (۱۳۷۰).]
[5] قادی‌مر, "بررسی زمین فیزیکی اقتصادی کارنشین مس سونگون", پایان‌نامه کارشناسی ارشد، دانشگاه شهید بهشتی (۱۳۷۰)
[6] ایزدیار, "مظالمز پتروپتی و اپتیتزیایی ناحیه معدن سونگون", پایان‌نامه کارشناسی ارشد، دانشگاه
شهید بهشتی (۱۳۷۶).
[7] صفری ع., "منشأ کنیه سایر و انتقال‌های در کاتاس
پتیتزی مس–مولیبدن سونگون", پایان‌نامه کارشناسی
ارشد، دانشگاه شهید بهشتی (۱۳۷۴).

تعیین گرینزدگی‌ها گیاهی و بیوتیت‌های اولیه با مقدار Fe/(Fe+Mg)-Al (11) استفاده‌شده است. جذابیت
ملاحظه می‌شود نمونه‌های مورد بررسی، گرینزدگی‌ها اکسیژن را
در زمان تبلور آمیفیلول در کوارتزدورینت معدن می‌دهند
(شکل 11 این گزارش). در ضمن حضور همزمان کوارتز و اسفن همراه
امیفیلول در کوارتزدورینت مقطعه، نشان دهنده بی‌بودن
گرینزدگی اکسیژن و محیط‌های همسازی برای محاسبه
میزان گرینزدگی اکسیژن از رابطه (11) استفاده شده است:
log F2O2 = -30930/T + 14.98 + 0.142 (P-1)/T
برای اساس لگاریتم گرینزدگی اکسیژن برا یابی کوارتز
دورینت برای 7-17 - 107 - 1070 نماد این اصلاح بود.

پرداخت

کاتی شناسی اصلی دایکهای تأثیری عبارتند از پلاژیوکلاز،
امیفیلول و بیوتیت می‌باشد. بررسی‌های شیمی کانی‌ها نشان
می‌دهد که ترکیب پلاژیوکلاز و بیوتیت در دایکهای تأثیری به
ترتیب عضویت از آندزین تا الگوکلز و آندز-سیدروپیت.
بررسی‌های کیفی آمیفیلول‌های دایک تأثیری طی فرآیندهای
آذرین تشکیل شده و در جریان آمیفیلول کلسیک و زیرگروه
مگنیومورف‌های قرار می‌گیرند که شاخه‌های نفوذ‌های وابسته به
فرورونه شنینند. این آمیفیلول‌ها بستر در قلیور آمیفیلولی
واسته به مناطق فرورونه قرار می‌گیرد. فاصله‌بندی براساس
مقدار آنومالی موجود در آمیفیلول مورد بررسی، کمترین و
بیشترین عمق تقریبی 5.5 تا 19 کیلومتر است. براساس
محتوای آمیفیلول، دمای تباری دایکهای کوارتزدورینت

مقدار مس سونگون حدود ۸۰۰ درجه سانتی‌گراد بارور شده
است. ترکیب آمیفیلولی موجود در دایکهای منطقه نشان
دهنده گرینزدگی‌ها بالای اکسیژن در زمان تباری بوده‌اند. حضور
همزمان اسفن و کوارتز همراه با آمیفیلولی در دایکهای منطقه
بی‌بودن گرینزدگی اکسیژن در ماکمای
سندهای این سطح‌هاست. این پرداخت با محاسبه کمی مقدار
گرینزدگی اکسیژن تایید می‌شود. بیوتیت مورد بررسی در

