کانی شناسی، سنگشناسی و سنگزایی مجموعه آتششناختی سنندج. شمال غرب ایران
فرهاد پیرمحمدی، علی عامری، احمد چنگلی‌یار، منصور مجتهdí، چانگ هاو، چن، محمت کسینی

۱-کانون زمین شناسی دانشگاه تبریز، تبریز، ایران
۲-مرکز تحقیقات علمی زمین‌شناسی سنندج، سنندج
۳-کانون زمین شناسی دانشگاه استانیون، تبریز

چکیده: در منطقه‌های جنوب شرقی تبریز، سنگ‌های آتششناختی سهند با سن پلیوکوارتن در بخش شمال غربی زون ایران مرکزی رد شده‌اند. این مجموعه شامل سنگ‌های آذرآویز (توف و ایکتیمیریت) و گدازه‌های (ریولیت، ریوداستیت و آندزیت) است که با مرز دگرشب روی واحدهای رسوبی با سن میوسین قرار دارد. کانون اصلی سنگ‌های این سنگ‌های شماین بریفنکلار و هورنبلندند که در یک همبستگی ریز بلو و شیشه‌ای قرار دارند. این سنگ‌های الیتریتی است. کانون شناسی ناهمگن، شواهد زمین شناسی و صهرای ورق‌های همچنین بالغ در پلاژوکلوز‌ها، حاصلهای خلیجی در نمای بلوه، منطقه‌ی بلوه در پلاژوکلوز‌ها، بالا بودن مقدار کوارتز اصلی و حضور پتروپیتی کاملاً کدر شده نشان دهنده‌ی این است که ماجمایی اولیه حین صعود، دستخوش نکردن‌های ماقبلی از جمله چادیش، تابور بخشی، علی‌خواه و درخت شده است. در گزارش‌های مجاری سنگ‌های آتششناختی سنندج، تابوری‌های AFC، پتروپیتی کاملاً کدر شده نشان می‌دهد که ماجمایی تک‌بست این سنگ‌های پلاژوکلوز‌ها، با ناهمگنی‌ی یا ناهمگنی‌ی این است. میکرو‌زیست‌ها و ساختمان‌های مافیکی در سنگ‌های ماقبلی پس از پاراژ و کمانه‌های کوره‌های خشک است. در حالی که میکرو‌زیست‌ها و ساختمان‌های مافیکی در سنگ‌های ماقبلی پس از پاراژ و کمانه‌های کوره‌های خشک است.

واژه‌های کلیدی: سنندج، پلیوکوارتنی، ایران مرکزی، گداره‌های کوارتزی، میکرو‌زیست‌ها

مقدمه
منطقه‌ی مورد بررسی در شمال غرب ایران، ۴۰ کیلومتری جنوب شرقی شهر تبریز بین طول جغرافیایی شرقی ۳۸°۳۶′ و عرض جغرافیایی شمالی ۳۵°۰۵′ تا ۳۷°۰۰′ در محل (شکل ۱) قرار دارد. آتششناخت سهند از آتششناخت‌های جوان در بخش شمالی کوه‌های ماقبلی از میان می‌گیرد. میکرو‌زیست‌ها و ساختمان‌های مافیکی و سنگ‌های ماقبلی از جمله کوارتزی، پتروپیتی، ریولیت‌ها، آندزیت‌ها، شیشه‌های پلاژوکلوز و سنگ‌های حاصلهای خلیجی بلوه در پلاژوکلوز‌ها می‌باشند. در حالی که میکرو‌زیست‌ها و ساختمان‌های مافیکی در سنگ‌های ماقبلی پس از پاراژ و کمانه‌های کوره‌های خشک است.
دیده می‌شود. در حاشیه‌های فعل قرار می‌آید، اندیشه‌ها با مقدار کمی پایین و مقدار زیادی داست و روابط همگان. برای مثال آتش‌نشانی فلای از روزوم، کارس در شمال شرقی ترکیه، کامل ترین پرونده رخ و پایه‌نشانگی آذری‌نشین پس از برخورد (Post collisional) منطقه‌ای مورد بررسی از نظر زمین‌شناسی و مرزهای ساختنی مشاهده می‌گردد. بحث و فرانس این گزارش‌ها همراه با فعالیت گسل‌های شرقی و شکستگی‌های زیر پوشش صورت می‌گیرد است و سنگهای مورد نظر ترکیب همبسته است و سنگهایی مورد نظر ترکیب کلسیمی-قلیایی دارند. در این مقاله با توجه به اهمیت و وجود سنگ‌های کلسیمی-قلیایی در محیط پس از برخورد و وجود آنها در کمین کوه‌زایی آلپ-هیمالیا، بخصوص در نواحی مختلف ترکیه، می‌شود است که سنگ‌های کلسیمی و سنگ‌های گدازه‌ای آذری‌نشین منطقه‌ای سهند بررسی و محیط زیستی آنها بر اساس شیمی و شکل گیری‌های آنها نادیده روش شود.

بررسی‌های زمین‌شناسی و صحراوری منطقه‌ای آذری‌نشین به عنوان بخشی از نوار ماکملی البرز غربی-آذربایجان، در شمال غربی ایران و در زون برخوردی

شکل ۱ موقعیت جغرافیایی و راه‌های ارتباطی منطقه‌ای مورد بررسی روز تحقیق استان آذربایجان شرقی.
شکل ۲ نقشه‌ی زمین‌شناسی منطقه‌ی مورد بررسی، افتیاد از نقشه‌ی زمین‌شناسی ۱۰۰۰۰،۱۹۸۶ آباد و اسکو، سازمان زمین‌شناسی و اکتشاف معنی‌داری کشور

جدیدترین فعالیت‌های انششاتی، به مراحل آرامش و خاموشی
گدازه‌های نوسانی ماند داسیت و رویانیت فوران کرده‌اند که
هم سر از گنبدهای نمی‌انششاتی دیگر در منطقه‌ی
در مراحل اولیه‌ی فعالیت انششاتی در سهند، گدازه‌های
حد‌واست با ترکیب مختلف فوران کرده و در انتهای میوسن,
انتشار گستره‌ی پونس و خاکستر انششاتی رخ داده است و در
آذربایجان بوده و به مرحله آخر فعالیت آتش‌نشانی وابسته‌اند (شکل 3 الاف).

شکل‌های گندی منطقهی سهند به دو صورت بینهایت‌نشان‌ها و بزرگ و نسبت‌های گندی شکل با اندازه‌های کوچک‌تر و مقدار دیگری می‌شود. همچنین گندی‌نشان‌ها موجود در این منطقه، احتمال‌های رسمی سازند قبز بالای را قطع کرده و سپس خریدنگی و شیب‌دار شدن سیاه‌های مجاور سهند. همچنین این مجموعه آتش‌نشانی با رسوب‌های جوان‌تری و رسوب‌گذاری بعدی با سن بلیوسن پوشیده شده‌اند.

آراپ و گایگری خمیس گندی‌نشان‌های سهند و ارتقای آنها با مجموعه‌های دیگر آتش‌نشانی در آذربایجان، و نیز جایگزینی آنها در منطقه‌های متناوب به شکل‌های سهند به مساحت طبقاتی بندری این سهند در مراحل پیش‌بینی می‌شود. جنس‌های آتشفشانی آن‌اندیشی است که به‌وسیله خمیس‌های رزدانه و ریزه به هم‌چسبیده‌اند.

این رسوب‌ها لیمیت شرک‌فرزند میوسنی را در دریا زینب‌گز در شرک سهند پوشانی‌ها و از طرف دیگر در دریا آذرشیر رسوب‌های بلیوسن را در شب شده است. لذا شرک‌های آتش‌نشانی را می‌توان به پوسن (اولین اشکوب میوسن) نسبت داد.

شکل 3 ب: نمایی از گندی‌نشان‌های داسیتی و بی‌پوسنی جوان در منطقه‌ی سهند، دید به سمت شمال شرقی. ب: واحدهای آذربایجان شیمیایی ایکسپی‌رشی‌ها و اکورسی‌های صورتی. این رسوب‌ها به نشانه‌ای از رومیزی مکانیکی ایجاد می‌شود که نشانه‌های ته‌پای و بریده و گاهی به‌صورت مخاله‌های کوبه‌ای می‌باشد، دید به سمت شمال غربی.
توضیحاتی از جمله واحدهای سنجش‌های دیگر به‌طور گسترده‌ای در این منطقه و مرکز توده‌های آنتنسیون کشتار دان و بر لیاقت‌های قرار داشته، و آن‌ها را می‌باشد.

(شکل 2.) اینگونه‌ی‌ها به سه دارای ترکیب زیستی‌های تأثیرگذار بر سری‌البلسانی‌های در نظام‌های آنتنسیون کشتار دان و بر لیاقت‌های قرار داشته، و آن‌ها را می‌باشد.

توضیحاتی از جمله واحدهای سنجش‌های دیگر به‌طور گسترده‌ای در این منطقه و مرکز توده‌های آنتنسیون کشتار دان و بر لیاقت‌های قرار داشته، و آن‌ها را می‌باشد.

(شکل 2.) اینگونه‌ی‌ها به سه دارای ترکیب زیستی‌های تأثیرگذار بر سری‌البلسانی‌های در نظام‌های آنتنسیون کشتار دان و بر لیاقت‌های قرار داشته، و آن‌ها را می‌باشد.

توضیحاتی از جمله واحدهای سنجش‌های دیگر به‌طور گسترده‌ای در این منطقه و مرکز توده‌های آنتنسیون کشتار دان و بر لیاقت‌های قرار داشته، و آن‌ها را می‌باشد.

(شکل 2.) اینگونه‌ی‌ها به سه دارای ترکیب زیستی‌های تأثیرگذار بر سری‌البلسانی‌های در نظام‌های آنتنسیون کشتار دان و بر لیاقت‌های قرار داشته، و آن‌ها را می‌باشد.

توضیحاتی از جمله واحدهای سنجش‌های دیگر به‌طور گسترده‌ای در این منطقه و مرکز توده‌های آنتنسیون کشتار دان و بر لیاقت‌های قرار داشته، و آن‌ها را می‌باشد.

(شکل 2.) اینگونه‌ی‌ها به سه دارای ترکیب زیستی‌های تأثیرگذار بر سری‌البلسانی‌های در نظام‌های آنتنسیون کشتار دان و بر لیاقت‌های قرار داشته، و آن‌ها را می‌باشد.
شده، از جمله آمپیولس و پلاژیوپلاسترها و ایجاد نطفه‌نبندی
می‌تواند گویای این مسئله باشد. [10] (سکه 5 و 5 ت) بی‌بیاریت با دلیل اینکه شاهد اختلال ماغمایی (مانند ادوار برونیوم در نمونه دستی و در مقاطع نازک) هسته از یافته‌های اصلی در چندین نمونه مشاهده شده است. این نتایج به اختلال ماغمایی را در شکل گیری بانک غربی زیادی دیده گرفت. در سیستم آلپت- آنورتی- دیویس دو اثر اختلال ماغمایی
پلاژیوپلاسترها که از قبیل ماغمای فلسیک ایجاد شده‌اند، زیرا اثر
دما بر بخش از نقطه ایجاد شده و دو اندازه ساده از پی‌بی‌آم مانند بانک غربی (را گسترش می‌دهند. اگر اکثریت دما و ترکیب دو مگما را مشاهده و در نتیجه
اختلال دما زیادتر شود، بانک پلاژیوپلاستر فلسیک علاوه بر ایجاد
بانک غربی سخت‌تر یک بخشی در حواشی و گردش‌گیری می‌شود و سپس پلاژیوپلاستر با درصد آن‌های بالاتر در این
حقه‌ها و یا به صورت بیشتر رنگی بانک پلاژیوپلاستر
قیلی و بیشتر در زمینه شروع به رشد می‌کنند. نابودی آمپیولس و
پی‌بی‌آم که باعث شده پلاژیوپلاستر که شکل کلیوپروفکس‌سپ
و بی‌بی‌آم ایجاد حاشیه‌ای بی‌بی‌آم ایجاد آن‌ها و
یک خردنشین شدید کلیوپروفکس‌ها و شکل کلیوپروفکس‌سپ
ها را نشان می‌دهد و تعداد بسیار زیادی پلاژیوپلاستر
های رز در زمینه از جمله تغیرات حاصل از ایجاد
شکل سپ در منطقه است. شکل‌دار پلاژیوپلاستری نسبت به
پلاژیوپلاستر که تبدیل شکل آنها را نشان می‌دهد و تعداد بسیار
مگما با سطح بالاتر و آمپیولسی که مگما با زیاد قلبی
سپ نابودی آن‌ها کمیا خاص می‌گردد، پلاژیوپلاستر
که ایجاد نشانده به نهایی سپ در منطقه
کد شده می‌تواند نشان دهنده این قاتلی‌پاش، آمپیولسی
مگما بازی و انسجام که تغییر در میزان سیلیس می‌باشد
شهده تا نشان حاشیه‌ی بینی از کانال زردتر تشکیل

شکل ۱. (الف) بافت پورفیری به آمپیولسی شکل پلاژیوپلاستری (XPL) (بر) شکل پلاژیوپلاستر با منطقه‌بندی هم مرکر (XPL) (بر) درشت پلاژیوپلاستر با منطقه‌بندی Hای
شکل ۵الف) درشت بلوار شکل دار هوریلنده تجزیه شده (PPL، XPL) (پی‌پل) بافت هیپومیکروپلاستیک بورفیری جریانی، با پلاژیکولاژ و آمفیبول‌های شکل‌دار سالم (XPL) (پی‌پل) پلاژیکولاژ با بافت غربالی و ساختار منطقه‌ای که بخش مرکزی آن ها به کاتانزیت و کلریت تجزیه شده به همرف. آمفیبول‌هایی که در شکل‌دار کورترز (XPL) درشت بلوارهایی از پلاژیکولاژ با منابه‌های شیشه‌ای در داسیتی‌ها (XPL، PPL) (پی‌پل) قرار گرفته بک قطعی های بپهی اند. دند پلاژیکولاژ، Plag = آمفیبول، Amph = پلاژیکولاژ، Pl = بویتیت، Bio = بویتیت، Px = پلاژیکولاژ. در یک گدایه داسیتی (XPL، PPL) (پی‌پل) آمفیبول و پریکزین به صورت دگرسانی شده در پیک متن ریزرو و شیشه‌ای قرار دارند. در مجموع ویژگی‌های زیب برای گدایه‌های بالا می‌توان در نظر گرفت: ۱) کالی‌های اصلی شامل پلاژیکولاژ‌ها شکل‌دار با نیمه شکل - ۲) پریکزین اسفنجی، آتیکین، سائیدین و کالی‌های کدی از کالی- ۳) کالی‌های مافیک شامل بویتیت و آمفیبول است که به شدت دگرسان شده و به مجموعاتی از کالی‌های تجزیه‌های منند کلربت، کلریت، اپیدوت و پلاژیکولاژ با سرپرسیت و کالی- ۴) هیالیت تیدیل شده‌اند.

احتمالاً بر اثر فشار نانویی از صعود ماکما غلیظ ایجاد شده‌اند. کورترز در نمونه‌ها به صورت ریزبیلور در پنین قرار دارند و در بعضی از نمونه‌های رپلوئیتی به صورت درشت بلوار با حاشیه‌های خوشه‌ای، خلیجی و گردش قابل مشاهده‌اند. در برخی از نمونه‌ها درشت بویتیت‌ها از پلاژیکولاژ با منابه‌های شیشه‌ای دیده می شود (شکل ۵ج).
مجله بلوچ‌نامه 1439(1) شماره 2
پرهمدی، علی‌رضا، جهانگیری، مجیدی و هاچ، خ.، کسکین

عنوان: تأثیر غیر متوازنا بر انتشار انتقال شیائیت در گزارش‌های انجمادی

در این مقاله، تأثیر غیر متوازنا بر انتشار انتقال شیائیت در گزارش‌های انجمادی بررسی شده است. در این تحقیق، سه نوع از انتقال شیائیت بررسی گردید، که شامل انتقال شیائیت غیر متوازنا، انتقال شیائیت متوازنا و انتقال شیائیت غیر غیر متوازنا بود. در این تحقیق، برای بررسی این انتقال‌های شیائیت، تعدادی از گزارش‌های انجمادی انتخاب شدند.

کلمات کلیدی: انتقال شیائیت، انجمادی، گزارش‌های انجمادی
جدول 1 نتایج تجزیه شیمیایی عصاره اصلی و کمیاب خاکی گدازه‌های منطقه سهند که به روش ICP-MS تجزیه کرده‌ایم:

<table>
<thead>
<tr>
<th>شیمیایی شدان</th>
<th>sample</th>
</tr>
</thead>
<tbody>
<tr>
<td>LOI (Wt%)</td>
<td>11.0</td>
</tr>
<tr>
<td>TiO2 (Wt%)</td>
<td>0.3</td>
</tr>
<tr>
<td>Al2O3 (Wt%)</td>
<td>7.8</td>
</tr>
<tr>
<td>P2O5 (Wt%)</td>
<td>0.1</td>
</tr>
<tr>
<td>SiO2 (Wt%)</td>
<td>89.6</td>
</tr>
<tr>
<td>Fe2O3 (Wt%)</td>
<td>0.2</td>
</tr>
<tr>
<td>Cr2O3 (Wt%)</td>
<td>0.1</td>
</tr>
<tr>
<td>Cu (ppm)</td>
<td>3.5</td>
</tr>
<tr>
<td>Zn (ppm)</td>
<td>10.2</td>
</tr>
<tr>
<td>Na2O (Wt%)</td>
<td>0.4</td>
</tr>
<tr>
<td>K2O (Wt%)</td>
<td>0.2</td>
</tr>
<tr>
<td>Cu (ppm)</td>
<td>3.5</td>
</tr>
<tr>
<td>Zn (ppm)</td>
<td>10.2</td>
</tr>
<tr>
<td>Na2O (Wt%)</td>
<td>0.4</td>
</tr>
<tr>
<td>K2O (Wt%)</td>
<td>0.2</td>
</tr>
<tr>
<td>Cu (ppm)</td>
<td>3.5</td>
</tr>
<tr>
<td>Zn (ppm)</td>
<td>10.2</td>
</tr>
<tr>
<td>Na2O (Wt%)</td>
<td>0.4</td>
</tr>
<tr>
<td>K2O (Wt%)</td>
<td>0.2</td>
</tr>
<tr>
<td>Cu (ppm)</td>
<td>3.5</td>
</tr>
<tr>
<td>Zn (ppm)</td>
<td>10.2</td>
</tr>
<tr>
<td>Na2O (Wt%)</td>
<td>0.4</td>
</tr>
<tr>
<td>K2O (Wt%)</td>
<td>0.2</td>
</tr>
<tr>
<td>Cu (ppm)</td>
<td>3.5</td>
</tr>
<tr>
<td>Zn (ppm)</td>
<td>10.2</td>
</tr>
<tr>
<td>Na2O (Wt%)</td>
<td>0.4</td>
</tr>
<tr>
<td>K2O (Wt%)</td>
<td>0.2</td>
</tr>
<tr>
<td>Cu (ppm)</td>
<td>3.5</td>
</tr>
<tr>
<td>Zn (ppm)</td>
<td>10.2</td>
</tr>
<tr>
<td>Na2O (Wt%)</td>
<td>0.4</td>
</tr>
<tr>
<td>K2O (Wt%)</td>
<td>0.2</td>
</tr>
<tr>
<td>Cu (ppm)</td>
<td>3.5</td>
</tr>
<tr>
<td>Zn (ppm)</td>
<td>10.2</td>
</tr>
<tr>
<td>Na2O (Wt%)</td>
<td>0.4</td>
</tr>
<tr>
<td>K2O (Wt%)</td>
<td>0.2</td>
</tr>
<tr>
<td>Cu (ppm)</td>
<td>3.5</td>
</tr>
<tr>
<td>Zn (ppm)</td>
<td>10.2</td>
</tr>
<tr>
<td>Na2O (Wt%)</td>
<td>0.4</td>
</tr>
<tr>
<td>K2O (Wt%)</td>
<td>0.2</td>
</tr>
<tr>
<td>Cu (ppm)</td>
<td>3.5</td>
</tr>
<tr>
<td>Zn (ppm)</td>
<td>10.2</td>
</tr>
<tr>
<td>Na2O (Wt%)</td>
<td>0.4</td>
</tr>
<tr>
<td>K2O (Wt%)</td>
<td>0.2</td>
</tr>
<tr>
<td>Cu (ppm)</td>
<td>3.5</td>
</tr>
<tr>
<td>Zn (ppm)</td>
<td>10.2</td>
</tr>
<tr>
<td>Na2O (Wt%)</td>
<td>0.4</td>
</tr>
<tr>
<td>K2O (Wt%)</td>
<td>0.2</td>
</tr>
<tr>
<td>Cu (ppm)</td>
<td>3.5</td>
</tr>
<tr>
<td>Zn (ppm)</td>
<td>10.2</td>
</tr>
<tr>
<td>Na2O (Wt%)</td>
<td>0.4</td>
</tr>
<tr>
<td>K2O (Wt%)</td>
<td>0.2</td>
</tr>
<tr>
<td>Cu (ppm)</td>
<td>3.5</td>
</tr>
<tr>
<td>Zn (ppm)</td>
<td>10.2</td>
</tr>
<tr>
<td>S_i</td>
<td>N_4</td>
</tr>
<tr>
<td>-------</td>
<td>-------</td>
</tr>
<tr>
<td>942</td>
<td>94.2</td>
</tr>
<tr>
<td>94.2</td>
<td>97.7</td>
</tr>
<tr>
<td>97.7</td>
<td>75.8</td>
</tr>
<tr>
<td>75.8</td>
<td>71.9</td>
</tr>
<tr>
<td>71.9</td>
<td>74.3</td>
</tr>
<tr>
<td>74.3</td>
<td>75.8</td>
</tr>
<tr>
<td>75.8</td>
<td>74.3</td>
</tr>
<tr>
<td>71.9</td>
<td>74.3</td>
</tr>
<tr>
<td>74.3</td>
<td>75.8</td>
</tr>
</tbody>
</table>

دریافتی 1

<table>
<thead>
<tr>
<th>H_1 sample</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO$_2$ (Wt%)</td>
</tr>
<tr>
<td>Al$_2$O$_3$ (Wt%)</td>
</tr>
<tr>
<td>Fe$_2$O$_3$ (Wt%)</td>
</tr>
<tr>
<td>FeO(Wt%)</td>
</tr>
<tr>
<td>TiO$_2$ (Wt%)</td>
</tr>
<tr>
<td>MnO (Wt%)</td>
</tr>
<tr>
<td>P$_2$O$_5$ (Wt%)</td>
</tr>
<tr>
<td>SbO(Wt%)</td>
</tr>
<tr>
<td>BaO(Wt%)</td>
</tr>
<tr>
<td>Ce (ppm)</td>
</tr>
<tr>
<td>Co (ppm)</td>
</tr>
<tr>
<td>Cr (ppm)</td>
</tr>
<tr>
<td>Cu (ppm)</td>
</tr>
<tr>
<td>Dy (ppm)</td>
</tr>
<tr>
<td>Er (ppm)</td>
</tr>
<tr>
<td>Eu (ppm)</td>
</tr>
<tr>
<td>Ga (ppm)</td>
</tr>
<tr>
<td>Gd (ppm)</td>
</tr>
<tr>
<td>Hf (ppm)</td>
</tr>
<tr>
<td>Ho (ppm)</td>
</tr>
<tr>
<td>La (ppm)</td>
</tr>
<tr>
<td>Lu (ppm)</td>
</tr>
<tr>
<td>Mo (ppm)</td>
</tr>
<tr>
<td>Nb (ppm)</td>
</tr>
<tr>
<td>Nd (ppm)</td>
</tr>
<tr>
<td>Ni (ppm)</td>
</tr>
<tr>
<td>Pb (ppm)</td>
</tr>
<tr>
<td>Rb (ppm)</td>
</tr>
<tr>
<td>Sm (ppm)</td>
</tr>
<tr>
<td>Sr (ppm)</td>
</tr>
<tr>
<td>Ta (ppm)</td>
</tr>
<tr>
<td>Tb (ppm)</td>
</tr>
<tr>
<td>Th (ppm)</td>
</tr>
<tr>
<td>Tl (ppm)</td>
</tr>
<tr>
<td>Tm (ppm)</td>
</tr>
<tr>
<td>U (ppm)</td>
</tr>
<tr>
<td>V (ppm)</td>
</tr>
<tr>
<td>W (ppm)</td>
</tr>
<tr>
<td>Y (ppm)</td>
</tr>
<tr>
<td>Yb (ppm)</td>
</tr>
<tr>
<td>Zn (ppm)</td>
</tr>
</tbody>
</table>
شکل ۶ نمونه‌های مورد بررسی در نمودار مجموع فلایایی نسبت به سیلیس در گستردگی اندیس داسیت و ریولیت فرار می‌گردد.[۱۷]

شکل ۷ غنی‌شدگی نمونه‌ها از HREE در نمودار با اکسی‌ژن و رأی‌گذاری عناصر کم‌اینده (OIB) به علت به‌ینه شده.[۱۸]

شکل ۸ مقایسه نموودارهای تغییرات عناصر کم‌اینده (ب) با فلایایی کلسیم-فلایایی سهند (ب) با فلایایی ازروم-کارس (اله) در خاک ترکیبی که هر دو به MORB به‌ینه شده‌اند.[۱۸]
بررسی سری‌های ماگمایی

بررسی سری‌های ماگمایی در شناخت محیط‌های زمین‌ساختی $\text{SiO}_2 - \text{K}_2\text{O}$ و زئودینامیکی اهمیت ویژه‌ای دارد. این نمونه‌ها با داشتن K_2O بین 0/78 تا 2/6 درصد وزنی و بین 3/11 تا 4/83 درصد در نمونه‌های در نمونه‌های مالاتی این این $\text{SiO}_2 - \text{K}_2\text{O}$ در نمونه‌های در نمونه‌های مالاتی این $\text{SiO}_2 - \text{K}_2\text{O}$ در نمونه‌های مالاتی این

شکل 9 نمودار AFM که جدایی سری‌های کلسیمی-قلیایی از تولیدی را نشان می‌دهد[26].

شکل 10 موقعیت نمونه‌ها در نمودار $\text{SiO}_2 - \text{K}_2\text{O}$ که در گستره‌ای بنامی‌های حدس‌پرداز قرار می‌گیرند[27].
که در آن آثار ایشان (همضی، و اختلاف)، و غیب‌شکنی عناصر
دربست بود و سبب وجود دارد. همچنین گفتند از این
عناصر کمبود حداقلی را می‌توان از آن به دلیل تبدیل تک‌تک‌تک
های فراوانی این عنصر در اثر اختلاف و آب‌یابی و دو اگرما با
بسیار درشت و نسبت به تعدادی از عناصر دیگر نشان دهنده
که در جریان ذوب بخشی سنگهای پوششی پدید می‌آید،
حابل به تحلیل رفت و در این مطالعه قلمی و کوارتز در
سنگ است. لذا ماده‌گذاری ویلی در مقداری بیش از
عناصر است. از نیز مقداری کوارتز و اگرما همچون
هیپس، Zr، Ti، Na، Nb، Sr، Zr، Ti، که از این عنصر کمبود
نوشته‌ای پیش از قریب است. این یوگی‌ها
بیش‌تری از پیشگویان با پیش‌گویان نمونه‌های
منطقه‌ای مورد بررسی هم‌خودی دارند. در شکل 12 شایع‌تر
نمونه‌های که برای اثبات بلوک‌های فلدسپار در شکل‌گیری
سگه‌های سنگهایه منطقه‌ای بزرگ، روشن نشان داشتند.[19]
در دو فرآیند این از این نمایش بکر تیمور
شکل‌گیری می‌شود. اگر این که دست‌خوش بخشی
پیش‌گویی می‌شود. گستردگی تیمور است. این کامپی‌ها
با باز را عناصر کمبود خواهد. است. و در
عملیات با Ba و K بالایی از می‌پوشید. فلسفی، گفتم
پیش‌گویی با دردست‌هایی در این عنصر
می‌پوشید. از دو سیم دگر، فلسفی قلمی داری در
این است. در
پنجه‌های نیز نیز پیش‌گویی می‌شود.
عناصر جزئی در سنگه‌های دیده‌شده نشان دهنده
عناصر کمبود خاکی در نمونه‌های مورد بررسی، تأیید کننده
این ادعاست.

شکل‌گیری ماده‌ای سنگه‌های مورد بررسی
کلاس شناسی توانسته، شاهد زمین شیمیایی، صحرایی و بانی
مانند باثری، بالا و در پل‌پل به درمی‌پوشید. حاشیه‌شاینی
در تام
بلوره، منطقه‌بندی بیانی در پل‌پل به درمی‌پوشید. بالا و در
کوارتز و در میانی‌بندی بالا با پیش‌گویی کاملاً پل‌پل به
این است. که ماده‌ای بزرگ در صورت دست‌خوش شکل‌گیری
های ماده‌ای از جمله میانی‌بندی جدایی بخشی، آب‌یابی و
امیت شدن.[19] بر اساس بررسی‌های سنگ‌گردی و
آمیت‌هایی، و جدایی بخشی و عناصر پیش‌گویی
Y/Rb و [8] مورد بررسی قرار می‌گیرد.

جریان پیش‌گویی و پیش‌گویی پیش‌گویی
این دو حالت تکامل سنگ‌گردی را با استفاده از مدلهای
ACF و ACF مورد بررسی قرار می‌گیرد.
شکل 11 نمودارهای تغییرات اکسیدهای عناصر اصلی و عناصر کم‌پای نسبت به سیلیس سنگ‌های منطقه‌ی مورد بررسی [۲۸].

شکل ۱۲ نمودارهای مختلف برای اثبات نقش تیلوژ بلندی فلدنسبت در شکل گیری ماکمایی سنگ‌های منطقه‌ی سهند [۲۹].
در این سنجش‌ها دارای شیب منفی‌یا افزایش در عدد میزان پیامدهای ذرات بوده است. بنابراین جدابی بخشی در آنها به تیتانیوم آنتروپول و آمپولیون همراه بوده است. بنابراین بخش عناصر کم‌رقمی ناسازگار در سنگ‌های نسبت به سنجش‌های داسیتی و رولیتی می‌تواند بازیابی از اثرهای نازک مشتق شده از مشاهده کاربردی‌گی نشان‌دهنده‌ی آنالیز باشد. در این بین، جدابی پلری و غیر شیمیایی ناشی از فاصله آن‌ها نشان‌دهنده‌ی بخش کم‌رقمی در سنگ‌های داسیتی و رولیتی به‌طور کمی و کمتر از ۲/۷ است.

به‌طور میانگین، می‌توان چنین استنباط کرد که به‌طور عمده بر تاثیر این گردش‌ها از گرده‌های پلری منطقه شکنند. این فکر با مشاهده‌ی نشان‌دهنده‌ی آذرآوری (اپی‌میربری‌های و توتهای) در زیر گزارش قوی می‌شود. شاهد به‌طور آمده از مهیت ابزار ماگنیتیسم نشان‌دهنده‌ی نشان‌دهندهٔ سه‌بعدی گردشی‌ها از وجوه نشان‌دهنده‌ی آذرآوری، وجود درشت بلورهای آمپولیون در بخشی از گردشگاه قومی می‌شود. این می‌تواند نشان‌دهنده‌ی منطقه خاکی از آذرآوری و رشته‌گری که در زیر گزارش قوی می‌شود. شاهد به‌طور آمده از مهیت ابزار ماگنیتیسم نشان‌دهنده‌ی سه‌بعدی گردشی‌ها از وجوه نشان‌دهنده‌ی پلری (K و Na) و کلسیم در ماگمایی آن‌ها اینکه این‌ها از منطقه شکنند. بنابراین، حجم بلورهای نشان‌دهنده‌ی آذرآوری و کسترگی‌گردنی آن‌ها در منطقه‌های می‌تواند سرشت انفجاری این آشناشان را نشان دهد. بنابراین، حجم بلورهای نشان‌دهنده‌ی آذرآوری مختلفی را تولید کرده و با خروج روان‌های گازهای ادامه یافته‌است.

\[
\text{Y/Rb} = Y \times Rb
\]

این شکل ارائه شده‌اند، نشان‌دهنده های کاهش منطقه سه‌بعدی در

\[
\text{Y/Rb} = \frac{Y}{Rb}
\]

درصد ۵۰ رسم شده‌اند. مجموعیت سه‌بعدی منطقه بر بدرادی ۹/۱ است [23].
مدل سازی هضم و تبلور بخشی (AFC) استفاده شد (شکل ۱۴). برای این مدل، به روش Rb/Th از نسبت Rb/Th و Zr روش نهایی عناصرهای منطقه‌های تحت تأثیر Th و Rb در یکی از مجموعه‌های آبادان و بدون آب قرار نمی‌گیرد. از این نسبت به Rb/Th در پوش量产ی، از مدل AFC، می‌تواند به هضم پوشستان نسبت داده شود. در این شکل، به عنوان یک شاخص جداگانه در محور افقی آمده است. در این شکل، مدل درجه‌بندی تبلوری به‌طور از مقدار متفاوت از شناسه دهی به نسبت اهمیت رابطه به آهنگجب تبلوری بخشی است. بر اساس این شکل، هر چه داده‌های حاصل از تجزیه‌های سنگهای به ترتیب پوشستان نزدیک‌تر باشد، هضم بیشتری انجام می‌گیرد. از این نیروی ضریب وابستگی به سنگهای منطقه‌ای مورد بررسی روز این نمودار، در سه‌این‌که این سنگهای در مقدار ارزیک به ترتیب پوشستان قرار گرفته و بنابراین دارای مقدار ایزوتوپ و های نسبت به معادل دیگر از این نسبت به علت هضم پوشستان Rb/Th شکل ۱۴ نمودار Rb/Th نسبت به Rb/Th است. شکل AFC نشان می‌دهد در شاخص هضم پوشستان به خویی وجود دارد.

شکل AFC نشان می‌دهد رابطه میان‌گرا بین Rb/Th و شاخص هضم پوشستان به خویی وجود دارد.
براساس مدل‌های ارائه شده، این احتمال وجود دارد که پس از برخورد صف‌های عربستان و اوراسیا دور جدیدی از انشششایی پس از برخورد در شمال غربی ایران و شرق ترکیه در میو-پلیوس شروع شده باشد. بنظر می‌رسد که مکانیک تشکیل دهندهای سنگ‌های مورد بررسی به یک محفظه کشنده پس از برخورد واسطه‌ای باشد. با استفاده از نمودارهای ارائه شده [39.38] (شکل 15) اغلب نمونه‌ها در موقعیت‌های پس از برخورد و همزمان با برخورد و حاشیه فعال قاره و در نمودارهای ارائه شده توسط [40] (شکل 16) در گسترده

\[R_1 = 4Si, R_2 = 6Ca + 2Mg + Al \]

\[(Na + K) - 2(Fe + Ti) \]

شکل 15: نمودار \(R_2 \) نمونه‌های منطقه در گسترده همزمان و پس از برخورد چاراک خاصیت نسبت به \(Ta/Hf \) و \(Th/Hf \) نشان داد که بیشتر نمونه‌ها در گسترده حاشیه‌ای فعال قاره

شکل 16: نمودار تبعیض زمین‌ساخته‌ای بر اساس \(Rb \) نسبت به \(Y + Nb \) نسبت به \(Yb \) برای سنگ‌های اسیدی، نمونه‌ها در گسترده

قوس‌های انششانی و همزمان با برخورد چاراک خاصیت نسبت به \(Ta \) و \(Nb \) برای سنگ‌های اسیدی نشان می‌دهد [41].
بردشت
۱ ترکیب سنگ‌شناختی آنتِشِفِالیِ شَیَّه‌مَارْبَّ از تعقیب‌های بَسط‌دانش، هِدایت‌های سَرَسَب على گَرَف‌فارِنَد. دقیقه‌ای برای شرکت‌های مَنِس و سابقه مسیر گَرَف‌فارِنَد.

۲ سنگ‌های بَرْسی‌ی شَه‌ده دَر آیل‌ها پَرْفیوری و شَه‌ده گَرَف‌فارِنَد. کَلی شَه‌ده پَرْفیوری‌ها شَه‌ده در و نیمه شَک‌ل‌دار از مَدِرَّبنِش دِر دَرْه‌های هَست‌های بر از مَسیره‌های نَهی‌ت از سنگ‌های شَه‌ده از معیار، امْپِرفِی‌های شَه‌ده و کِلین‌وِیرِس‌های دَرای حَوْاَئی و اکْتِیِن و و پَرْفیوری‌ها و دِرای مَنِس‌های سنگ‌های شَه‌ده و راهی به شَه‌ده.

۳ Jobe Saturn منطقه‌های پَرْفیوری و رَسْب و احتمالاً در اثر مَسیره‌های سَرَسَب معیار و شَه‌ده فَرِیده‌های غَرْبی و هَست‌های ماْگُم‌ی‌ی‌ی از سَرَسَب، بِینت خَرْبَرْبَر و دُوْرُن مَن‌حیم. مجله پَرْفیوری و کَلَی شَه‌ده ایران نزی سَبْسَط‌گَریز مَن‌د.

مراجع
[۱] معین‌زَرَه‌ئی ح. امتی سَی‌حِافظی. "سنگ‌های پَرْفیوری و کِلین‌ویرِس‌های مَنِس‌های سنگ‌های شَه‌ده.

[۶] نیوی محمد حسین. "میت‌ی‌های برزین‌شنان ایران. انتشارات سازمان زمین‌شناسی شناسی کشور" (۱۳۵۵).

[۷] MgO و Na2O در الماس‌های سنگ‌های شَه‌ده. لسیمی - پَرْفیوری است. بِله بَدَن.

[۸] ۷۵ مِسْت سنگ‌های شَه‌ده. لسیمی - پَرْفیوری است. بِله بَدَن.

Distinction by major-element and trace element chemistry and possible origins", J. Geol., 98 (1990) 291-309.
