بررسی زمین شناسی، دگرسانی، کانی سازی و زئوشیمی در منطقه‌ی شرق ارغش (جنوب غرب نیشابور) با نگرشی بر یو جوی مس پورفیری

نرگس غلامی*، مهندس حسن کریم پور، سید احمد مظاهری

کره‌پژوهی اکتشاف خاک معدنی شرق ایران

*دانشگاه فردوسی مشهد، کره زمین شناسی

(دریافت مقاله: 1398/08/08، نسخه نهایی: 1398/04/24)

چکیده: منطقه‌ی مورد بررسی در ۴۵ کیلومتری جنوب غربی نیشابور و شرق روستای ارغش واقع شده است. واحدهای سکی در منطقه شامل توده‌های نفوذی و انفیشانی است که در اثر مخلوط‌های گرمایی شدیداً درگرسانی شده‌اند. بخش اعظم توده‌های نفوذی با ترکب موخرنیت ثبتی ترکب شده، زونه‌های دگرسانی یونیک، سربسیتی، سلبیتی، کریتیتی و پروپیتیتی در منطقه شناسایی شدند. براساس ترکب شیمیایی توده‌های نفوذی می‌توان از مناطق ماکروپرسی بی‌سبک‌یافته نفوذی، رادیولایت‌ها و گونه‌های میکروپرسی بی‌سبک‌یافته دو رده تشخیصی و ترکب کانی شناسی شناسایی کرده و به منطقه مخلوط‌های سیلیسیتی و پروپیتیتی در منطقه نسبتاً و رده‌داری کرده است. به‌طور کلی زئوشیمی‌های زیرین شناختی در منطقه وسیع‌ترین بخشی یا یو جوی مس پورفیری در منطقه ارغش است.

واژه‌های کلیدی: ایران؛ ارغش؛ مس پورفیری؛ کانی سازی؛ زئوشیمی

مقدمه

گستره مورد بررسی در ۸۸°۴۲’ و ۸۸°۳۳’ طول-شرقی و ۳۵°۵۰’ و ۳۵°۰۵’ عرض شمالي و غربی بین شهره‌ی شمال غربی و شهره‌ی شمال شرقی گردیده و درون سیکولار واقع شده است. این آکادمیه‌های مختلف زمین شناسی و زئوشیمی از سوی سازمان زمین شناسی، سازمان صنایع و معادن خراسان، ریوی و مرکز تحقیقات خاک‌های معدنی در ایران در مناطق مجاور این منطقه‌ی اندازه‌گیری گرفته است. بعضی این بررسی‌ها در مقیاس بزرگی که دکتر بوده‌اند [۱] و در منطقه تاکنون بررسی نمک سنگ‌سنگی و زئوشیمی صورت نگرفته است. هدف از این پژوهش بررسی سیگن‌سنگ‌سنگی توده‌ها و

narges652@yahoo.com

نویسنده مسئول، تلفن: ۶۲-۵۷۲۷۳۵۲۰۰۰۰۰۰۱، پست الکترونیک: ۱/۸۳۶۵۲۷۲۷۳۵۲۰۰۰۰۰۰۱
شناشی، دگرسانی و کانی سازی

بررسی سنگ‌شناسی، دگرسانی و کانی سازی در

۲۰۰ مقطع نارک و ۵ مقطع نارک صیفی

تجزیه ۱۰ نمونه از سکه‌های آذرین از نظر اکسیدهای

XRF اصلی و عناصر جزیی به روش طیف‌سنجی جدید

برداشت حدود ۱۰ نمونه رود رودخانه‌ای برای

بررسی ال‌زئو‌شیمیایی و تحلیل به روش طیف‌سنجی جدید

Cu، Zn، Pb، Ag، Mn

انمی برای ۵ عنصر

برداشت خردی و ۱۷ نمونه خرده‌سکه برای

بررسی ال‌زئو‌شیمیایی و تحلیل به روش طیف‌سنجی جدید

Cu، Zn، Pb، Ag، Mn

انمی برای ۵ عنصر

زمین‌شناسی

این ناحیه بخشی از بلندی‌های شمال غرب کردکن در روند شمال غرب- جنوب شرقی می‌باشد. با توجه به شواهد موجود و بررسی‌های انجام شده، به نظر می‌رسد که منطقه ارغی به

فرورون حیاتی خر، قاره‌ای واینته باشند که در انسن

ایران مرکزی رخ داده است۴. از دیدگاه زمین‌شناسی

عومومی، منطقه مورد بررسی در زون ایران میانی و در زیرشون

سبززار قرار می‌گیرد.

سنگ‌های انشقاشی انسن منطقه با حکرکه‌های چاپ‌گرخی

لیفوئیت‌های زون آب‌ساز و افزایش. حوضه‌های روسی انشقاشی

ارزش در طول انسن اکسی‌گین دست‌خوش تغییرات زیادی

بوده است. در اواخر انسن ال‌گیسن مجموعه انشقاش‌های

منطقه زیر فنوز توده‌های نفوذی قرار گرفته‌اند۳.

جدول ۱

<table>
<thead>
<tr>
<th>نام سنگ</th>
<th>نوع بافت و اندازه کانونی</th>
<th>پلاژیوکلاز</th>
<th>بافت</th>
<th>کوارتز</th>
<th>فلزات الکلی</th>
<th>بیوتیت</th>
<th>هورنبلند</th>
</tr>
</thead>
<tbody>
<tr>
<td>۱۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰</td>
<td>دانای</td>
<td>۱۸</td>
<td>۶</td>
<td>۱</td>
<td>مونزونیت</td>
<td></td>
<td></td>
</tr>
<tr>
<td>۱۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰</td>
<td>دانای</td>
<td>۳۸</td>
<td>۸۲</td>
<td>۰</td>
<td>هورنبلند مونزونیت</td>
<td></td>
<td></td>
</tr>
<tr>
<td>۱۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰</td>
<td>دانای</td>
<td>۳۵</td>
<td>۳</td>
<td>۱</td>
<td>دیبیرت</td>
<td></td>
<td></td>
</tr>
<tr>
<td>۱۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰</td>
<td>دانای</td>
<td>۳۴</td>
<td>۸</td>
<td>۲</td>
<td>هورنبلند مونزونیت دیبیرت</td>
<td></td>
<td></td>
</tr>
<tr>
<td>۱۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰</td>
<td>دانای</td>
<td>۲۴</td>
<td>۸۱</td>
<td>۰</td>
<td>هورنبلند بیوتیت دیبیرت</td>
<td></td>
<td></td>
</tr>
<tr>
<td>۱۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰</td>
<td>دانای</td>
<td>۲۶</td>
<td>۲</td>
<td>۱</td>
<td>مونزونیت</td>
<td></td>
<td></td>
</tr>
<tr>
<td>۱۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰</td>
<td>دانای</td>
<td>۲</td>
<td>۸</td>
<td>۰</td>
<td>هورنبلند مونزونیت دیبیرت</td>
<td></td>
<td></td>
</tr>
<tr>
<td>۱۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰</td>
<td>دانای</td>
<td>۲</td>
<td>۸</td>
<td>۰</td>
<td>هورنبلند مونزونیت دیبیرت</td>
<td></td>
<td></td>
</tr>
<tr>
<td>۱۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰</td>
<td>دانای</td>
<td>۲</td>
<td>۸</td>
<td>۰</td>
<td>هورنبلند مونزونیت دیبیرت</td>
<td></td>
<td></td>
</tr>
<tr>
<td>۱۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰</td>
<td>دانای</td>
<td>۲</td>
<td>۸</td>
<td>۰</td>
<td>هورنبلند مونزونیت دیبیرت</td>
<td></td>
<td></td>
</tr>
<tr>
<td>۱۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰</td>
<td>دانای</td>
<td>۲</td>
<td>۸</td>
<td>۰</td>
<td>هورنبلند مونزونیت دیبیرت</td>
<td></td>
<td></td>
</tr>
<tr>
<td>۱۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰</td>
<td>دانای</td>
<td>۲</td>
<td>۸</td>
<td>۰</td>
<td>هورنبلند مونزونیت دیبیرت</td>
<td></td>
<td></td>
</tr>
<tr>
<td>۱۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰</td>
<td>دانای</td>
<td>۲</td>
<td>۸</td>
<td>۰</td>
<td>هورنبلند مونزونیت دیبیرت</td>
<td></td>
<td></td>
</tr>
<tr>
<td>۱۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰</td>
<td>دانای</td>
<td>۲</td>
<td>۸</td>
<td>۰</td>
<td>هورنبلند مونزونیت دیبیرت</td>
<td></td>
<td></td>
</tr>
<tr>
<td>۱۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰</td>
<td>دانای</td>
<td>۲</td>
<td>۸</td>
<td>۰</td>
<td>هورنبلند مونزونیت دیبیرت</td>
<td></td>
<td></td>
</tr>
<tr>
<td>۱۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰</td>
<td>دانای</td>
<td>۲</td>
<td>۸</td>
<td>۰</td>
<td>هورنبلند مونزونیت دیبیرت</td>
<td></td>
<td></td>
</tr>
<tr>
<td>۱۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰</td>
<td>دانای</td>
<td>۲</td>
<td>۸</td>
<td>۰</td>
<td>هورنبلند مونزونیت دیبیرت</td>
<td></td>
<td></td>
</tr>
<tr>
<td>۱۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰</td>
<td>دانای</td>
<td>۲</td>
<td>۸</td>
<td>۰</td>
<td>هورنبلند مونزونیت دیبیرت</td>
<td></td>
<td></td>
</tr>
<tr>
<td>۱۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰</td>
<td>دانای</td>
<td>۲</td>
<td>۸</td>
<td>۰</td>
<td>هورنبلند مونزونیت دیبیرت</td>
<td></td>
<td></td>
</tr>
<tr>
<td>۱۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰</td>
<td>دانای</td>
<td>۲</td>
<td>۸</td>
<td>۰</td>
<td>هورنبلند مونزونیت دیبیرت</td>
<td></td>
<td></td>
</tr>
<tr>
<td>۱۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰</td>
<td>دانای</td>
<td>۲</td>
<td>۸</td>
<td>۰</td>
<td>هورنبلند مونزونیت دیبیرت</td>
<td></td>
<td></td>
</tr>
<tr>
<td>۱۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰</td>
<td>دانای</td>
<td>۲</td>
<td>۸</td>
<td>۰</td>
<td>هورنبلند مونزونیت دیبیرت</td>
<td></td>
<td></td>
</tr>
<tr>
<td>۱۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰</td>
<td>دانای</td>
<td>۲</td>
<td>۸</td>
<td>۰</td>
<td>هورنبلند مونزونیت دیبیرت</td>
<td></td>
<td></td>
</tr>
<tr>
<td>۱۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰</td>
<td>دانای</td>
<td>۲</td>
<td>۸</td>
<td>۰</td>
<td>هورنبلند مونزونیت دیبیرت</td>
<td></td>
<td></td>
</tr>
<tr>
<td>۱۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰</td>
<td>دانای</td>
<td>۲</td>
<td>۸</td>
<td>۰</td>
<td>هورنبلند مونزونیت دیبیرت</td>
<td></td>
<td></td>
</tr>
<tr>
<td>۱۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰</td>
<td>دانای</td>
<td>۲</td>
<td>۸</td>
<td>۰</td>
<td>هورنبلند مونزونیت دیبیرت</td>
<td></td>
<td></td>
</tr>
<tr>
<td>۱۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰</td>
<td>دانای</td>
<td>۲</td>
<td>۸</td>
<td>۰</td>
<td>هورنبلند مونزونیت دیبیرت</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
جدول ۲ بافت و درصد فنورپیشتهای اصلی توده‌های نفوذی.

<table>
<thead>
<tr>
<th>نام سک</th>
<th>پیروکسنس</th>
<th>بیوتین (٪)</th>
<th>هورنبند (٪)</th>
<th>کوارتز (٪)</th>
<th>اف‌و‌سته‌ات (٪)</th>
<th>پالازیوکاراس (٪)</th>
</tr>
</thead>
<tbody>
<tr>
<td>۱</td>
<td>—</td>
<td>—</td>
<td>۱۰۰</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>۲</td>
<td>—</td>
<td>—</td>
<td>۱۰۰</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>۳</td>
<td>—</td>
<td>—</td>
<td>۰۰۰</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>

جدول ۳ بافت و درصد فنورپیشتهای اصلی واحدهای آنتفلوپالسیک

<table>
<thead>
<tr>
<th>نام واحدهای آنتفلوپالسیک</th>
<th>بیوتین (٪)</th>
<th>هورنبند (٪)</th>
<th>کوارتز (٪)</th>
<th>اف‌و‌سته‌ات (٪)</th>
<th>پالازیوکاراس (٪)</th>
</tr>
</thead>
<tbody>
<tr>
<td>۱</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>۲</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>۳</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>

شکل ۱ نقشه زمین‌شناسی منطقه مورد بررسی با نقشه‌برداری ۱:۱۰۰۰۰۰.
در این پژوهش مستند، کاهش هیمنار در آنالیز نمونه‌ها به روش XRF و انتخاب‌کردن یافته‌های بدرفتاری‌گذاری، نمونه‌ای درصد Ω_2 نسبت به مقادیر پذیرفتاری متناظر به نمونه‌های یاد شده ترکیب شد (شکل ۳، ب). که با توجه به این نمونه می‌توان سنجش‌های منطقه‌ای در سری مگنتیت یا نوع ۱ رده‌بندی گرد.

جدول ۴
نتایج حاصل از آنالیز نمونه‌ها به روش XRF

<table>
<thead>
<tr>
<th>شماره نمونه</th>
<th>کسمه‌الصلی</th>
<th>۵</th>
<th>۱۰</th>
<th>۱۵</th>
<th>۲۰</th>
<th>۲۵</th>
<th>۳۰</th>
<th>۳۵</th>
<th>۴۰</th>
<th>۴۵</th>
<th>۵۰</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO_2</td>
<td>۵۳</td>
<td>۶۱</td>
<td>۵۴</td>
<td>۶۰</td>
<td>۶۲</td>
<td>۶۴</td>
<td>۶۴</td>
<td>۶۲</td>
<td>۶۰</td>
<td>۵۶</td>
<td>۵۰</td>
</tr>
<tr>
<td>TiO_2</td>
<td>۸۰</td>
<td>۶۴</td>
<td>۶۲</td>
<td>۶۰</td>
<td>۵۲</td>
<td>۴۶</td>
<td>۴۴</td>
<td>۴۲</td>
<td>۴۰</td>
<td>۳۸</td>
<td>۳۶</td>
</tr>
<tr>
<td>Al_2O_3</td>
<td>۱۷۴</td>
<td>۱۷۴</td>
<td>۱۴۰</td>
<td>۱۲۰</td>
<td>۱۰۰</td>
<td>۸۰</td>
<td>۶۰</td>
<td>۴۰</td>
<td>۲۰</td>
<td>۰</td>
<td>۰</td>
</tr>
<tr>
<td>Fe_2O_3</td>
<td>۶۴</td>
</tr>
<tr>
<td>MnO</td>
<td>۱۰۰</td>
</tr>
<tr>
<td>MgO</td>
<td>۱۵۴</td>
</tr>
<tr>
<td>CaO</td>
<td>۸۰۰</td>
</tr>
<tr>
<td>Na_2O</td>
<td>۳۵۶</td>
</tr>
<tr>
<td>K_2O</td>
<td>۱۲۴</td>
</tr>
<tr>
<td>P_2O_5</td>
<td>۱۲۵</td>
</tr>
<tr>
<td>LO.I</td>
<td>۳۱۵</td>
</tr>
</tbody>
</table>

جدول ۵
جنس نمونه‌های سنگی آنتالیز شده به روش XRF

<table>
<thead>
<tr>
<th>کد نمونه</th>
<th>نام نمونه</th>
<th>رده‌بندی</th>
</tr>
</thead>
<tbody>
<tr>
<td>AR-۵</td>
<td>مونوزوپورفیری</td>
<td>۱</td>
</tr>
<tr>
<td>AR-۸</td>
<td>بیونیته‌هولندر مونوزوپورفیری</td>
<td>۲</td>
</tr>
<tr>
<td>AR-12</td>
<td>هولندر مونوزوپورفیری</td>
<td>۳</td>
</tr>
<tr>
<td>AR-15</td>
<td>کوارتز مونوزوپورفیر</td>
<td>۴</td>
</tr>
<tr>
<td>AR-25</td>
<td>گرانیدوپورفیری</td>
<td>۵</td>
</tr>
<tr>
<td>AR-38</td>
<td>مونوزوپورفیری</td>
<td>۶</td>
</tr>
<tr>
<td>AR-39</td>
<td>پیتروس مونوزوپورفیری</td>
<td>۷</td>
</tr>
<tr>
<td>AR-۴۳</td>
<td>کوارتز هولندر دور رز پورفیری</td>
<td>۸</td>
</tr>
<tr>
<td>AR-۴۴</td>
<td>بیونیته مونوزوپورفیری</td>
<td>۹</td>
</tr>
</tbody>
</table>
(Pecceillo and Taylor, 1976) SiO₂ نسبت به K₂O نمودار (Middlemost (1985)). (ب) نمودار O ş نسبت به مقادیر بذری فناری مغناطیسی.

(Shand, 1943) A/ CNK نسبت در مقایسه A/ NK در گرانیت، دیوریت و گابور در شناسایی نوع 1 و S (گریپور (1984)).

جدول ۶ نسبت گرانیت، دیوریت و گابور در شناسایی نوع 1 و S (گریپور (1984)).

<table>
<thead>
<tr>
<th>نوع گرانیت- دیوریت- گابور (%)</th>
<th>نوع S</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-18</td>
<td>1</td>
</tr>
<tr>
<td>18-40</td>
<td>2</td>
</tr>
<tr>
<td>40-60</td>
<td>3</td>
</tr>
</tbody>
</table>

پتاسیک، سروپتیک، پروپتیک، کربناتی، سپتیک و ترکیبی از این موارد شناسایی شده‌اند (شکل 4).

از این موارد دانشمندان اقتصادی از این جهت اهمیت می‌دارند که دانشمندان اقتصادی درون‌ماهی‌های کربناتی فرآیند دانش. در منطقه‌های مورد بررسی زون‌های در درک یکی از کوارتزا نام‌گذاری شده.
ویژگی‌های جغرافیایی کشور ترکیه:

- دارای حدود ۷۰۰۰ کیلومتر ساحلی
- دارای نوسانات کوهی با ارتفاعات زیاد
- دارای جنگل‌های بسیار وسیع

رگ‌المناکی ترکیه:

- رگ‌های وین‌دار
- رگ‌های سیل‌دار
- رگ‌های سیل‌دار و وین‌دار

کاربرد هدایت نیروی انسانی در تجارت و صنعت:

- بهبود سیستم مدیریت
- افزایش بهره‌وری
- افزایش تنهاکاری

مشاکنده

لیست منابع:

- [1] مقاله بی‌پردازی و کار بررسی‌های اقتصادی
- [2] مقاله بی‌پردازی و کار بررسی‌های اقتصادی
- [3] مقاله بی‌پردازی و کار بررسی‌های اقتصادی
- [4] مقاله بی‌پردازی و کار بررسی‌های اقتصادی

ارزش بانکی:

- بهبود سیستم مدیریت
- افزایش بهره‌وری
- افزایش تنهاکاری

لیست منابع:

- [1] مقاله بی‌پردازی و کار بررسی‌های اقتصادی
- [2] مقاله بی‌پردازی و کار بررسی‌های اقتصادی
- [3] مقاله بی‌پردازی و کار بررسی‌های اقتصادی
- [4] مقاله بی‌پردازی و کار بررسی‌های اقتصادی

کاربرد هدایت نیروی انسانی:

- بهبود سیستم مدیریت
- افزایش بهره‌وری
- افزایش تنهاکاری

مشاکنده

لیست منابع:

- [1] مقاله بی‌پردازی و کار بررسی‌های اقتصادی
- [2] مقاله بی‌پردازی و کار بررسی‌های اقتصادی
- [3] مقاله بی‌پردازی و کار بررسی‌های اقتصادی
- [4] مقاله بی‌پردازی و کار بررسی‌های اقتصادی

ارزش بانکی:

- بهبود سیستم مدیریت
- افزایش بهره‌وری
- افزایش تنهاکاری

لیست منابع:

- [1] مقاله بی‌پردازی و کار بررسی‌های اقتصادی
- [2] مقاله بی‌پردازی و کار بررسی‌های اقتصادی
- [3] مقاله بی‌پردازی و کار بررسی‌های اقتصادی
- [4] مقاله بی‌پردازی و کار بررسی‌های اقتصادی

کاربرد هدایت نیروی انسانی:

- بهبود سیستم مدیریت
- افزایش بهره‌وری
- افزایش تنهاکاری

مشاکنده

لیست منابع:

- [1] مقاله بی‌پردازی و کار بررسی‌های اقتصادی
- [2] مقاله بی‌پردازی و کار بررسی‌های اقتصادی
- [3] مقاله بی‌پردازی و کار بررسی‌های اقتصادی
- [4] مقاله بی‌پردازی و کار بررسی‌های اقتصادی

ارزش بانکی:

- بهبود سیستم مدیریت
- افزایش بهره‌وری
- افزایش تنهاکاری

لیست منابع:

- [1] مقاله بی‌پردازی و کار بررسی‌های اقتصادی
- [2] مقاله بی‌پردازی و کار بررسی‌های اقتصادی
- [3] مقاله بی‌پردازی و کار بررسی‌های اقتصادی
- [4] مقاله بی‌پردازی و کار بررسی‌های اقتصادی

کاربرد هدایت نیروی انسانی:

- بهبود سیستم مدیریت
- افزایش بهره‌وری
- افزایش تنهاکاری

مشاکنده

لیست منابع:

- [1] مقاله بی‌پردازی و کار بررسی‌های اقتصادی
- [2] مقاله بی‌پردازی و کار بررسی‌های اقتصادی
- [3] مقاله بی‌پردازی و کار بررسی‌های اقتصادی
- [4] مقاله بی‌پردازی و کار بررسی‌های اقتصادی
زیرزون کربنات سیلسنی می‌باشد از زیرزون کربنات سیلسنی است. به‌طور کلی کربنات‌ها نیز همون سیلسنی و کلریت، از جمله گسترده‌ترین کانی‌های در گزارش و جانبه در مورد کلریت همچنین می‌شود، ممکن است تغییر در ترکیب کربنات‌ها نیز بسی به دلیل با تغییرات در همکاری موجودی و گذشته باشد.
[۱۴]

زون سیلسنی: این زون با فاصله اندازه‌ای از زون پتاسیک در غرب منطقه قرار دارد (شکل ۴). گسترش این زون بسیار اندازه‌ای است و سیلسنی بسیار پراکنده در متن سگی مشاهده می‌شود. این زون روی واقع سکنی تفاوت نسب قرار دارد. این واحد

شکل ۴ نقشه منطقه بندی در گزارش منطقه مورد بررسی با مقياس ۱:۱۰۰۰۰.
مافیک سنگ به کلیرت، ایپیدوت و کریتین تبدیل شده‌اند.
گسترش اصلی آن به واحدهای موزونوپورین، موزونوپورینیت،
بورپیری و هوربیند موزونوپورینیت است. این زون از نظر
گسترگی، راهنمایی و دیواره‌ی خویی برابر دیواره‌ی
مس‌بورپیری است و کاهی گسترش آن تا ۴ کیلومتر می‌رسد [۶].

کانی‌سازی
در گسترده‌ی مورد بررسی، کانی‌سازی به دو صورت اولیه و
ثانویه و به دو شکل فلزی و غیر فلزی صورت گرفته است.
کانی‌سازی فلزی در منطقه‌ی مورد بررسی بیشتر به شکل
افسان و اولیه در متن اکثر سنگ‌های منطقه‌ی رخ داده است و
بیشتر شامل پیریت و همبسیان کمتر مکنتینیت و کالکوپیریت
است. بیشتر نیز به‌مدت تحقیر رونده، تا در جنوب منطقه و در
متن سنگ بازیت به صورت افغان مشاهده شد. از دیگر کانی‌های
زون بروپلیتیک: این زون در منطقه به دو زیر زون
بروپلیتیک و بروپلیتیک + آزپلیتیک تقسیم می‌شود. گسترش
زیرزون بروپلیتیک در بخش‌های مرکزی منطقه بیشتر است.
این زون بعد از زون کریتین + بروپلیتیک گسترده‌ترین زون
دگرسانی در منطقه است (شکل ۳). در این زون کانی‌های
مافیک (بیوتیت و هوربیند) به کلیرت و ایپیدوت و به میزان
کمتر به کریتین تبدیل شده‌اند (شکل ۴). کلیرت به بیشتر
گردنیمی‌دار و هم به صورت کلیرت آهن دار وجود دارد.
طور کلی در زون بروپلیتیک بوسط خارج بر میزان کانی‌های
رسی و کلسیت افزوده می‌شود [۶].

زون بروپلیتیک + آزپلیتیک بیشتر در بخش‌های شمالی و
شریف منطقه‌ی مورد بررسی واقع شده است (شکل ۳).
فلدسیت‌ها به کانی‌های رسی و گاه به ایپیدوت و کانی‌های
فرز منطقه کانی‌های همایشی، گویتی و لیمونیتن‌آند که در فنی‌های اکسی‌سیلیک گویندیا له بی‌شکل شده‌اند. کانی‌سازی غیرفلزی در مورد بررسی شمارش اینکه در سطوح سلیسی و کلسیکی در جنوب منطقه است. همچنین نزدیک به منطقه مورد بررسی (در سمت شرق) اثرات کانی‌سازی ترکیبات کرنیتس سه‌شامل آزوریت و مالاکینت نیز در برابردهای صحیح‌سازی می‌شود. لازم به یادآوری است که کانی مکنیتنش ماشنه‌دهد، رفتار کانی‌سازی را در میانگین منطقه‌ای می‌پذیرد، یکی از نتایج منطقه‌ای است. بسته به شیم‌پتولوژی کانی‌هایی که در منطقه‌ای دیگری هستند. بی‌شک می‌باشد که بی‌شک کانی‌سازی بی‌شک در منطقه‌ای دیگری که اینکه در منطقه‌ای دیگری است. بی‌شک می‌باشد که بی‌شک کانی‌هایی که در منطقه‌ای دیگری هستند. بی‌شک می‌باشد که بی‌شک کانی‌سازی بی‌شک در منطقه‌ای دیگری که اینکه در منطقه‌ای دیگری است. بی‌شک می‌باشد که بی‌شک کانی‌سازی بی‌شک در منطقه‌ای دیگری که اینکه در منطقه‌ای دیگری است. بی‌شک می‌باشد که بی‌شک کانی‌سازی بی‌شک در منطقه‌ای دیگری که اینکه در منطقه‌ای دیگری است. بی‌شک می‌باشد که بی‌شک کانی‌سازی بی‌شک در منطقه‌ای دیگری که اینکه در منطقه‌ای دیگری است.
Cp=Chalcopyrite, Mag= Magnetite

Downloaded from ijcm.ir at 9:37 +0430 on Wednesday September 16th 2020
در عملیات صحرایی به مجموعه فراهم کردن تجزیه شیمیایی و دریافت آگاهی درشتی از پراکندگی عصار خاص در حالی‌های زتوشیمایی ناحیه و ویاول، نمونه‌برداری به دو روش نمونه- برداری رسوب‌های رود، و نمونه‌برداری نسبت انجام شد. نمونه‌های برداشت‌شده سپ از فرآیند خرماپیم، نرم‌پیم و آماده‌سازی به روش طبقه‌بندی جذب آمیزه اندازه‌گیری در دانشگاه فردوسی مشهد، در با نتایج برای نمونه‌سازی مربوط به نور در نظر گرفته رخ‌نمون توزیع عصار و نشته‌گر درکسی، کلی سازی و شکنندگی آب‌های تشکیل روی کار آمد. مناسب برای برداشت رسوب‌های رودخانه‌ای تکاناب شدند. این نتایج از آب‌های رودخانه منطقه‌ای برای آب‌رسانی به مصرف واحدهای گیاهی بالاتر می‌باشد، با رعایت پراکندگی در کل منطقه. انتخاب شد. برداشت یک نمونه رسوب آب‌های در محل‌هایی دور از حاشیه ناحیه، که امکان رنگی از رخ‌نمون‌های بالادست وجود داشته باشد، برداشت شد. در نتیجه نمونه‌ها از 20 تا 30 سانتی‌متر بوده است. نمونه‌های جمع‌آوری شده شامل رسوب‌های سنگین و رسوب‌های رزیتر از 80 میلی‌متر در معادل 177 mm (پرای آلیاژ AAS) در بهره‌وری و معادل 100 میلی‌متر از غربال شدن حدود 2 کیلوگرم و تعداد نمونه‌ها 10 عدد بودند. که در محل شماره‌گذاری و با تعیین موقعیت شدند. در آزمایشگاه کاملاً خشک شده و به وسیله یک آلک لرزان که کلی‌زن برای کنترل آزمایشگاه کاملاً خشک شده و به وسیله یک آلک لرزان که کلی‌زن برای کنترل 1 کسی سه سطحی رسوب 200 میلی‌متر از آب‌های رسوبی تا Cu, Zn, Pb, Mn آب‌های رسوبی تا Cu, Zn, Pb, Mn به زمان تهیه‌شده، و نیز در تفسیر بی‌میزانی‌های موجود می‌باشد.

<table>
<thead>
<tr>
<th>جدول 2</th>
<th>نتایج تجزیه نمونه‌های رسوب آب‌های (مقدار بر حسب ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sample No.</td>
<td>Cu (ppm)</td>
</tr>
<tr>
<td>S1</td>
<td>28.2</td>
</tr>
<tr>
<td>S2</td>
<td>33.8</td>
</tr>
<tr>
<td>S3</td>
<td>38.1</td>
</tr>
<tr>
<td>S4</td>
<td>35.8</td>
</tr>
<tr>
<td>S5</td>
<td>31.8</td>
</tr>
<tr>
<td>S6</td>
<td>44.9</td>
</tr>
<tr>
<td>S7</td>
<td>46.9</td>
</tr>
<tr>
<td>S8</td>
<td>43.3</td>
</tr>
<tr>
<td>S9</td>
<td>43.3</td>
</tr>
<tr>
<td>S10</td>
<td>44.5</td>
</tr>
</tbody>
</table>

توضیحات:
- جدول 2 نتایج تجزیه نمونه‌های رسوب آب‌های (مقدار بر حسب ppm) می‌باشد.
- Cu, Zn, Pb, Mn به زمان تهیه‌شده، و نیز در تفسیر بی‌میزانی‌های موجود می‌باشد.
نمودهای سنجی: این نمونه‌ها به منظور پیچیده‌نگاری‌های سنجشی به روش خردسنجی و از منطقه‌های کانی‌سازی و دگرسان برداشت شدند. در مجموع 17 نمونه سنجی که معرف منطقه‌ای مورد بررسی بودند برداشت شدند. در این روش برای نمونه برداری از هر نقطه نخست یک دایره به شعاع 15 متراً در نقطه مورد نظر در سطح زمین انتخاب و در صورتی که محل نقطه تمامی از بیرون زده نمونه‌های منطقه تشکیل شده باشد، به صورت تکه‌ای (chip sampling) هر تکه به وزن حدود 50 گرم از تمامی سطح این دایره نمونه‌برداری شدند که نمونه مورد نظر، نمونه سنجی (rock sampling) نامیده می‌شود. نمونه-های برداشت شده در محل شماره‌گذاری و با تعیین موقعیت شدند و پس از طی مرحله‌های آمارسازی، خردسنجی و Cu, Pb, Zn, Ag, Mn از آزمایشگاه شیمی تجهیزی ی دانشگاه فردوسی مشهد تجزیه شدند. نتایج تجزیه در جدول (8) گزارش شدند. در شکل (9،الف) نقشه موقعیت نمونه‌های خردسنجی

برداشت شده نشان داده شد. با ترسی متوقف دو عصر مس و Cu-Zn در نمونه‌های رسوب آراهی این منطقه به میزان صرب به نمونه‌های سنجی 2 ppm مقدار مانند در محل رگه‌های منطقه از نمونه‌برداری شده برداشت شده است. در منطقه‌های برداشت شده به دیگر منطقه‌های- ی که هنگام سبب پایین است. با توجه به مقادیر زیمینی عصر منگنز در سنجشی حداکثر و اسیدی، این عصر به هنگام خاصی در منطقه نشان نمی‌دهد. در شکل (10) توزیع زنده‌ی سنجشی عناصر مس و Cu-Zn در نمونه‌های خردسنجی روی نقشه مسندی نشان داده شده‌اند.

شکل (الف) موقعیت و شماره نمونه‌های رسوب آراهی برداشت شده در منطقه (ب) رابطه مستقیم Cu-Zn در نمونه‌های رسوب آراهی.
جدول 8 نتایج تجزیه نمونه‌های سنگی منطقه (مقدار بر حسب ppm)

<table>
<thead>
<tr>
<th>Sample No.</th>
<th>Cu (ppm)</th>
<th>Zn (ppm)</th>
<th>Pb (ppm)</th>
<th>Mn (ppm)</th>
<th>Ag (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ch-1</td>
<td>12.3</td>
<td>25.3</td>
<td>40.6</td>
<td>393.9</td>
<td>3.1</td>
</tr>
<tr>
<td>Ch-2</td>
<td>31.5</td>
<td>82.5</td>
<td>9.3</td>
<td>101.7</td>
<td>2.8</td>
</tr>
<tr>
<td>Ch-3</td>
<td>8.3</td>
<td>8.1</td>
<td>5.8</td>
<td>66.4</td>
<td>4.3</td>
</tr>
<tr>
<td>Ch-4</td>
<td>39.2</td>
<td>57.5</td>
<td>29.1</td>
<td>57.1</td>
<td>3.1</td>
</tr>
<tr>
<td>Ch-5</td>
<td>75.6</td>
<td>62.3</td>
<td>30.5</td>
<td>76.3</td>
<td>3.9</td>
</tr>
<tr>
<td>Ch-6</td>
<td>67.9</td>
<td>72.5</td>
<td>33.3</td>
<td>107.9</td>
<td>3.2</td>
</tr>
<tr>
<td>Ch-7</td>
<td>43.5</td>
<td>49.9</td>
<td>33.8</td>
<td>97.3</td>
<td>3.9</td>
</tr>
<tr>
<td>Ch-8</td>
<td>35.8</td>
<td>39.1</td>
<td>41.2</td>
<td>140.3</td>
<td>4.9</td>
</tr>
<tr>
<td>Ch-9</td>
<td>37.5</td>
<td>38.4</td>
<td>36.6</td>
<td>148.2</td>
<td>5.3</td>
</tr>
<tr>
<td>Ch-10</td>
<td>10.8</td>
<td>49.3</td>
<td>36.6</td>
<td>179.9</td>
<td>3.8</td>
</tr>
<tr>
<td>Ch-11</td>
<td>39.1</td>
<td>37.9</td>
<td>30.3</td>
<td>177.3</td>
<td>5.1</td>
</tr>
<tr>
<td>Ch-12</td>
<td>18.1</td>
<td>48.2</td>
<td>44.9</td>
<td>217.3</td>
<td>4.8</td>
</tr>
<tr>
<td>Ch-13</td>
<td>56.7</td>
<td>281.4</td>
<td>58.4</td>
<td>124.9</td>
<td>3.5</td>
</tr>
<tr>
<td>Ch-14</td>
<td>55.1</td>
<td>48.1</td>
<td>28.8</td>
<td>66.7</td>
<td>4</td>
</tr>
<tr>
<td>Ch-15</td>
<td>38.3</td>
<td>32.4</td>
<td>37.5</td>
<td>39.3</td>
<td>3.6</td>
</tr>
<tr>
<td>Ch-16</td>
<td>41.7</td>
<td>32.3</td>
<td>29.9</td>
<td>10.1</td>
<td>3</td>
</tr>
<tr>
<td>Ch-17</td>
<td>33.3</td>
<td>44</td>
<td>39.4</td>
<td>584.2</td>
<td>26</td>
</tr>
</tbody>
</table>

شکل 9 (الف) موقعیت و شماره نمونه‌های سنگی برداشت شده در منطقه. ب) رابطه نسبتاً مستقیم در نمونه‌های سنگی Cu-Zn.
شکل 10. توزیع زئوشیمیایی عناصر مس و روی در نمونه‌های خردسیگی روی نقشه دگرگونی.
برداشت
بررسی بررسی‌های سنگ‌شناسی دقیق سنگ‌های انتفاضاتی داسیت، تراکت، هوریلبند، آندزیت، نفوده و بارلت در منطقه سنگ‌سنگ‌شناسی. تدریک سنگ‌سنگ‌شناسی کارست از نوع‌های انرژی نفوذی در
گسترهٔ آبی‌سازی و حداکثر قرار می‌گیرند. این واحدها بیشتر شامل موئونیت و دیوربیت است. با توجه به گستره‌ی پذیرش‌داری مقاومت‌های این منطقه، این واحدها را می‌توان به سری گرانیت‌نوردی‌های نوع 1 و/or 2 دانست.
براساس نتایج حاصل از بررسی‌های XRF، این منطقه نفوذی در گستره‌ی واحدهای سنگی حداکثر آهکی-قلیایی قرار می‌گیرد که نشان دهنده زون فرآیندی حاشیه‌ای قرار است.

تأثیر سیستم گیلی فعال و حجم بالای محلول‌ها در
منطقه، واحدهای سنگ‌شناسی موجود را به‌ساده دکران
کرده است. دکران‌های رخ داده شما به‌سادگی دکران‌های
پنارسک، سربسینتیک پولیتیکی سنگسی، کربنات و
ترکیبی از این موارد بوده و در سرتاسر گستره از گستره‌ی قابل
ملاحظه‌ای برخوردارند. در منطقه‌ی مورد بررسی کاپی‌ساز به
صورت فلزی و غیر فلزی (کلسیت و کوارتز) صورت گرفته است.
کاپی‌ساز فلزی اولیه از جمله بیریت، کالکوبیریت، بونیت و
مگنتنی (دو بوده و همراه با آن کالی‌های ناحیه‌ی قبل
اکسید‌های آهن به فراوانی بخصوص در بخش‌های سطحی دیده
می‌شوند با توجه به پارازیت کالی‌های موجود و فراوانی کالی‌های
سولفیدی بی‌رفعی، در منطقه، می‌توان گفت که تدریک
محلول گریمی سولفیدی و اکسیدی بوده است. بررسی‌های
ژنتیکی صورت گرفته روي رسوب‌های آب‌رهنی و نمونه‌های
سنگی مؤید به هنجاره عناصر مس و روی در بخش میانی و
شریفی منطقه است.

وجود سیستم‌های انتقالاتی، وجود زون پاتیکی به-
عنوان مهم‌ترین زون درگذشته‌ای شناسایی شده، توده‌های نیمه-
عمق موئونیتی، سواده کاوی‌هایی مس، وجود پتاسیمی-
هایی زنوپاتیکی برای یان عصر و کلی کالی‌زمنی‌شناختی
در منطقه مؤید پاتاسیک پتاسیم‌های سد بورقی
در منطقه ارغ اش است.

