نقش زهاب اسیدی در تشکیل کانی‌های زیست محتیطی (کانی‌های ثانویه) در معدن زغالسنگ گلندرود و باطله‌های کارخانه زغالشویی و طنین، استان مازندران

مسلم آقائی کریم ۱، مصطفی رقیمی ۲، غلامحسین شمعی‌نامی ۳، محسن قلی‌پور ۴

۱-گروه زمین‌شناسی، دانشکده علوم، دانشگاه گلستان گرگان
۲-دانشگاه آزاد اسلامی گرگان، دانشکده بیوتکنیک، جوان

چکیده: اکسایش کانی‌های سولفیدی موجود در زغال‌سنگ و باطله‌های معدنی انجام به تشکیل زهاب اسیدی معدن می‌شود. این روش در زمان‌های مختلف در نواحی مختلف دیده می‌شود. تبیخی، اکسایش، رقیق‌سازی و خشی‌سازی زهاب اسیدی تولید شده باعث تشکیل کانی‌های ثانویه خواهد شد. این کانی‌ها به دلیل اکسایش کربنات سنگ زیست محتیطی تشکیل شده از محل انبساط باطله‌های کارخانه زغالشویی و طنین و معدن زغال‌سنگ گلندرود نمونه‌برداری شد. براساس نتایج بررسی اینک کانی‌های اسیدی، هگزاپتید، زبس، ریسین، گوییت، هماتین، دلیمیت، سیذرین، کاتالیزر، مونت، مورپولیونت، ایلبیت و کوارتز در فاز اصلی و زاویه در فاز فرعی شناسایی شدند. نتایج تجزیه‌ای زئولیت‌پلیسی حاکی از شرایطی که در کانی‌های ثانویه سنت می‌شود. این کانی‌ها به دلیل اکسایش، نمونه‌برداری شدند. مدل اشباع‌شکنی هیدروژن‌آبی در زهاب‌های باطله کارخانه زغال‌سنگ گلندرود، هیدروژن‌آبی‌های آهنتک، کلیسیت و دولومیت در حال اشباع و سولفات‌های آهنتک مانند ملانترینات و زاروسیت تحت اشباع مستعد می‌باشند.

واژه‌های کلیدی: زهاب اسیدی، معدن، کانی‌های زیست‌محیطی، استان مازندران، زغالسنگ گلندرود

مقدمه

اکسایش کانی‌های سولفیدی موجود در مواد زغالی و باطله موجب پدیدایش بازگشت تراریز در مسسه زیست محیطی امرزی و نمای زهاب اسیدی معدن (AMG) شده است [۱]. این رخداد اکسایش، برای پرداختن و مطالعه و مورد تحقیق قرار گرفته است [۲]. در آن باید بررسی این کانی‌ها در محیط‌های مختلف انجام شود. این کانی‌ها شامل اشباع‌شکن هیدروژن‌آبی، هیدروژن‌آبی‌های آهنتک و کلیسیت و دولومیت در حال اشباع و سولفات‌های آهنتک مانند ملانترینات و زاروسیت تحت اشباع مستعد می‌باشند.

* aghaei.moslem3@gmail.com

نویسنده مسئول، تلفن: ۰۲۱۷۸۹۲۶۸۸۱، نمای: ۹۱۴۷۰۲۷۷۲۲، پست الکترونیکی: aghaei.moslem3@gmail.com

نویسنده مسئول، تلفن: ۰۲۱۷۸۹۲۶۸۸۱، نمای: ۹۱۴۷۰۲۷۷۲۲، پست الکترونیکی: aghaei.moslem3@gmail.com

نویسنده مسئول، تلفن: ۰۲۱۷۸۹۲۶۸۸۱، نمای: ۹۱۴۷۰۲۷۷۲۲، پست الکترونیکی: aghaei.moslem3@gmail.com
با وجود بررسی‌های قراردادی که در خصوص اثرات زغال‌شعله، متدکاری زغال‌شعله و باطله‌های کارگانه‌ای زغال‌شعله در ایران صورت گرفت، تاکنون نهایتاً کمتری به موضوع، کانونی زمین محیطی (ترازه) معطوف نشده است. لذا هدف از این پژوهش کانالیشن، ترکیب‌پیمایی، پیدایش و تحلیل آلودگی رسوبات اکسیژنی و بازسازی بهره‌ای انسدی و معنی بخش‌هایی از منطقه ی زغال‌شعله و باطله‌های آبی‌ررد و باطله‌های زغال‌شعله و طلیق. همچنین ویژگی‌های هیدرونژیپیمایی آب‌های رهکش شده از باطله‌های کارگانه زغال‌شعله نیز مورد توجه قرار گرفته است.

ویژگی‌های منطقه‌ای مورد بررسی

معنی زغال‌شعله با موقعیت جغرافیایی ۳۵° ۰۰' طول شرقی و ۵۱° ۲۷' عرض شمالی در دامنه شمالي روستاهه کوه‌های مرزی فاصله‌ی ۱۷ کیلومتری شوره‌ی زغال‌شعله مازندران قرار گرفته است. این منطقه به نظر زمین‌شناسی روي‌خست ایرانی، اقتصادی، جنگنده، خوراکی‌ورودنده، جریان‌های صOLUMN‌های رود سه‌بخشی، و فناوری دریایی و ترابری و دباغی سرسوآوازی زغال‌شعله (سالندشتک) بین این دو منطقه در پیش و پس زوراک‌های پیشین است. [۱۳] منطقه‌ی زغال‌شعله مورد نظر منطقه‌ی کوه‌های مازندران است که ارتفاع بیشینی ی آن از سطح دریا ۱۸۰۰ متر است. این هوا و هواوای ناحیه منطقه و میزان بارندگی سالانه در این بخش بیش از ۳۰۰ میلی‌متر است. [۱۴]

کارگاه‌های زغال‌شعله و طلیق واقع در ۴۰ کيلومتری معدن زغال‌شعله کنار شلیکبندی یکی از زغال‌شعله‌های کنار شلیکبندی در منطقه زغال‌شعله مرکزی استان مازندران است که در سال ۱۳۷۵ با ظرفیت سالانه ۵۰۰۰ تن به بهره‌برداری رسیده است. این منطقه در ارتفاع ۱۵۰ متری از سطح دریا دریا گرفته شده است، که در ارتفاع ده‌جای مسلسل و در ارتفاع ۱۶۱ حداکثر سانتی‌متر روبروی به دریا ۶۵ میلی‌متر متوسط ماه‌های رطوبت نسبت ماهانه در این منطقه حداکثر ۷۸٪ در خرداد و حداقل ۷۱٪ در ماه‌های اردیبهشت، آبان، بهمن و اسفند است. [۱۵] همچنین اندیشه‌های حداکثر دریاچه تغییرات تئوری‌سنجی به روش روند ویژگی‌های داده‌های حداکثر و حداکثر تغییرات تئوری‌سنجی به روش تئوری‌سنجی به ترتیب ۱۱.۵۷ در بهمن ماه و ۱۴۳.۵۹ میلی‌متر در تیرماه است. [۱۶] 3-Efflorescences Salts
 cheg 1 نشانه‌ی ساده‌ای سه‌بعدی زمین‌شناسی محل کارخانه زغالشویی وطنی و نشان پرایگنگی مناطق زغال‌دار در ایران [15].

مرکز زغال‌شیب مشدد در روز 1300–1300 تا است که آن

 Residents of Vahdat City ـ 2

 روستای بزرگی (ژیست‌محیطی) نشان‌گر شده‌ی روی

 انرژی باطله‌ای زغال‌شویی و لایه‌ای زغال‌دار منطقه گلندرود در روز 1387 برداشت شده است بررسی کانی (XRD)

 شناسی این نمونه‌ها با پرداز سنج پژوه ایکس (XRD) مدل 1800 در شبکهٔ کانسان پینالواد

 واژن‌شیب در دو نمونه از ژیست‌محیطی اصلی و

 برخی از عناصر جزئی در نمونه‌های زغال‌شیب معدن

 گلندرود خاکستر مواد باطله‌ای ـ سنگ‌ها متفاوت (جدید، متوسط و قوی و) و کانی‌های ژیست‌محیطی تشكیل

 شده روی سطوح باطله‌های جدید و قدمی برهون

 پیلوت سازی برخی ایکس (XRF) فلزات مدل

 2400 (پاکتیون 2000 وت، ولتاژ 2000 ولت، جریان

 25 میلی‌آمپر، 8 بلوئی پرایان دهنه و 3 اشاره‌ساز و

 تیوپ نوع نرودیم) شرکت کانسان پینالواد استفاده شد.

 لازم به بیان‌سازی است که برای تهیه خاکستر از خوراک همگی کارخانه و مواد باطله از روش استفاده‌ی رویی (GOST) استفاده شد [15]. و زغال‌سنج و باطله‌ی زغالی به مدت 3 ساعت در دمای 100–50 ساعت گرد داده شده. همچنین به منظور ارزیابی ویژگی‌های

 هیدرولیز شیمیایی نمونه‌برداری از اب به کشک و نششت

 شده از انباره‌ای باطله و اب‌های زیرزمینی و سطحی

 (روخت) صورت گرفت. برای جلوگیری از خورد عاصر

 به مواد معلق موجود در آب نمونه‌های آب از فیلترهای

 7 میکرو منصور داده شد و به‌طور چاپ‌گری

 ظرف‌های بستهٔ اصلی پک‌پذیری و در دمای کمتر از 4

 درجه نگهداری شدند. به منظور اندازه‌گیری کاتیون‌ها و

 اسیدی کرن نمونه‌ها از اسید تیتر (HNO3)

 خلوص 65 درصد استفاده شد و pH آب به کمتر از 2

 کاهش یافت [16]. از طرفی برای تعیین خاستگاه آنیون-

 Downloaded from icmci.ir at 13:03 +0430 on Wednesday August 21st 2019
طرحی که در مواد بانه فردی کانی‌های نانویی ایلیت، کورنتر، ایسومیت و زبسی در فاز اصلی و زیبروست و کانویلینیت در فاز فرعی شکل گرفته‌اند (شکل 3 و جدول 1). در مواد بانه‌های جدید کانی‌های هگزاگونیت، سدروپیت، همانیت، گوتیت، مونت موربیلویتین، ایسومیت و کورنتر در فاز اصلی و زبسی، کانولینیت و ایلیت در فاز فرعی مشخص شده‌اند (شکل 5 و جدول 1). این کانی‌ها به صورت پویش آرگون الکتریک برای سطوح بانهالا فرورفتند که بیانگر تئوری اکسایش سولفیده‌های موجود در مواد بانه این که در اثر نفوذ آب و اکسایش بعده سولفیده‌ها، تشکیل شده‌اند. تشکیل شده‌اند. تشکیل این کانی‌های نانویی بانه‌ای در pH خشکی نا قابلی در منطقه غلظت سولفات حل شده در اثر اکسایش سولفیده‌ها است. همچنین این کانی‌ها در فروشندان جریان‌های اسیدی انتقال از فازات موثر می‌گردند زیرا به دلیل کنترل شدید تانویلی برای حل آلی‌ها دارند.[18] براساس نتایج بدست آمده کانی‌های زیستمحیطی تشکیل شده در معدن گلندرود و کارخانه زغال‌شوری و مالی به چهار دسته فاصله‌بندی گردیده که به ترتیب اهمیت مال کانی‌های سولفاتی فلزی، کانی‌های آهن سه، ظرفیتی، کانی‌های گرنیتی و سیلیکاتی است.

و یا کانی‌های اصلی از مدل گریز استفاده شد[17]، بررسی گفتمانی داده‌های حاصل از تجزیه شیمیایی با استفاده از نرم‌افزار AqQA (Version 1) انجام شد. برای تفسیر بهتر، نمودارهای پایپ و مثلثی رقم شده و برای PHREEQC 1 (Version 2.6) تجزیه و تحلیل داده‌های هیدروشیمیایی استفاده شد.

بحث و برجستگی
کانی‌شناسی
اکسایش مواد زغال‌دار در منطقه‌های مندلی گلندرود و محل انبار بانهالا کارخانه زغال‌شوری و مالی به تئوری اکسایش کانی‌های نانویی ایلیت، کورنتر و ایسومیت و زبسی در فاز اصلی با فیزیکی و شیمیایی به صورت پویش آرگون الکتریک برای سطوح بانهالا این کانی‌ها محل تشکیل شده‌اند. این کانی‌ها به صورت پویش آرگون الکتریک برای سطوح بانهالا در محل انبارهای بانهالا تشکیل شده‌اند (شکل 3). بررسی‌های کانی‌شناسی کانی‌های نانویی برون برونشتر سیستم برای کارخانه زغال‌شوری و مالی با به چهار دسته فاصله‌بندی گردیده که به ترتیب اهمیت مال کانی‌های سولفاتی فلزی، کانی‌های آهن سه، ظرفیتی، کانی‌های گرنیتی و سیلیکاتی است.

شکل 2 تشکیل کانی‌های نانویی (زیستمحیطی) در روی انبارهای باطله کارخانه زغال‌شوری و مالی

شکل 3 تحلیل داده‌های Geochemistry با استفاده از نرم‌افزار PHREEQC 1 (Version 2.6)
جدول ۱ فهرست کانی‌های زیست محیطی شناسایی شده به روش برای پرتوهای ایکس در معدن زغال سنگ گلندرود و کارخانه زغالشیوی وطنی.

<table>
<thead>
<tr>
<th>محل تشکیل</th>
<th>کانی‌های زیست محیطی (تانوهی)</th>
<th>کانی‌های اصلی</th>
<th>کانی‌های فرعی</th>
</tr>
</thead>
<tbody>
<tr>
<td>معدن زغال سنگ گلندرود</td>
<td>گوتیت، اکسید آهن غیرپلوررین، دلومیت، زیبس</td>
<td>کالیولینیت، هالیت</td>
<td>کالیولینیت، هالیت</td>
</tr>
<tr>
<td>باطله قدمی کارخانه زغالشیوی وطنی</td>
<td>ایپسومیت، زیبس، کوارتز</td>
<td>زاروستین، کالیولینیت</td>
<td>زاروستین، کالیولینیت</td>
</tr>
<tr>
<td>باطله جدید</td>
<td>هگزاپردیت، ایپسومیت، هالیت، گوتیت، سیدریت</td>
<td>زیبس، کوارتز</td>
<td>زیبس، کوارتز</td>
</tr>
<tr>
<td></td>
<td>موروبولینیت</td>
<td>کوارتز</td>
<td>کوارتز</td>
</tr>
</tbody>
</table>
شکل ۵ سه نمونه از گویهای براثر پرتو ایکس (XRD) کانی‌های تانوبه (وسط محیطی) تشکیل شده در سطوح ابتارهای باطلیه جدید.
کارخانه زغال‌شویی وطنی (زبیس = Mont, مونتن، موئریتینیت = Gyp, گوتیت = Goet, هیموئیتیت = Hem, سیدریت = Sid, یسومیت = Eps, کورتزن = Qtz, گاله = Kao, کالمینیت = Kdl, هگزاندامتیت = Hex, H).
کانی‌های سولفاتی فلزی

کانی‌های سولفاتی قابل حل‌الله در میزان بالایی از pH می‌باشند. در بیشتر کانی‌های هگزا‌هیدرات، pH بالای 6.5 و در بیشتر کانی‌های سولفاتی فلزی، pH بالای 4.5 و در بیشتر کانی‌های هگزا‌هیدرات، pH بالای 6.5 و در بیشتر کانی‌های سولفاتی فلزی، pH بالای 4.5 و در بیشتر کانی‌های هگزا‌هیدرات، pH بالای 6.5 و در بیشتر کانی‌های سولفاتی فلزی، pH بالای 4.5 و در بیشتر کانی‌های هگزا‌هیدرات، pH بالای 6.5 و در بیشتر کانی‌های سولفاتی فلزی، pH بالای 4.5 و در بیشتر کانی‌های هگزا‌هیدرات، pH بالای 6.5 و در بیشتر کانی‌های سولفاتی فلزی، pH بالای 4.5 و در بیشتر کانی‌های هگزا‌هیدرات، pH بالای 6.5 و در بیشتر کانی‌های سولفاتی فلزی، pH بالای 4.5 و در بیشتر کانی‌های هگزا‌هیدرات، pH بالای 6.5 و در بیشتر کانی‌های سولفاتی فلزی، pH بالای 4.5 و در بیشتر کانی‌های هگزا‌هیدرات، pH بالای 6.5 و در بیشتر کانی‌های سولفاتی فلزی، pH بالای 4.5 و در بیشتر کانی‌های هگزا‌هیدرات، pH بالای 6.5 و در بیشتر کانی‌های سولفاتی فلزی، pH بالای 4.5 و در بیشتر کانی‌های هگزا‌هیدرات، pH بالای 6.5 و در بیشتر کانی‌های سولفاتی فلزی، pH بالای 4.5 و در بیشتر کانی‌های هگزا‌هیدرات، pH بالای 6.5 و در بیشتر کانی‌های سولفاتی فلزی، pH بالای 4.5 و در بیشتر کانی‌های هگزا‌هیدرات، pH بالای 6.5 و در بیشتر کانی‌های سولفاتی فلزی، pH بالای 4.5 و در بیشتر کانی‌های هگزا‌هیدرات، pH بالای 6.5 و در بیشتر کانی‌های سولفاتی فلزی، pH بالای 4.5 و در بیشتر کانی‌های هگزا‌هیدرات، pH بالای 6.5 و در بیشتر کانی‌های سولفاتی فلزی، pH بالای 4.5 و در بیشتر کانی‌های هگزا‌هیدرات، pH بالای 6.5 و در بیشتر کانی‌های سولفاتی فلزی، pH بالای 4.5 و در بیشتر کانی‌های هگزا‌هیدرات، pH بالای 6.5 و در بیشتر کانی‌های سولفاتی فلزی، pH بالای 4.5 و در بیشتر کانی‌های هگزا‌هیدرات، pH بالای 6.5 و در بیشتر کانی‌های سولفاتی فلزی، pH بالای 4.5 و در بیشتر کانی‌های هگزا‌هیدرات، pH بالای 6.5 و در بیشتر کانی‌های سولفاتی فلزی، pH بالای 4.5 و در بیشتر کانی‌های هگزا‌هیدرات، pH بالای 6.5 و در بیشتر کانی‌های سولفاتی فلزی، pH بالای 4.5 و در بیشتر کانی‌های هگزا‌هیدرات، pH بالای 6.5 و در بیشتر کانی‌های سولفاتی فلزی، pH بالای 4.5 و در بیشتر کانی‌های هگزا‌هیدرات، pH بالای 6.5 و در بیشتر کانی‌های سولفاتی فلزی، pH بالای 4.5 و در بیشتر کانی‌های هگزا‌هیدرات، pH بالای 6.5 و در بیشتر کانی‌های سولفاتی فلزی، pH بالای 4.5 و در بیشتر کانی‌های هگزا‌هیدرات، pH بالای 6.5 و در بیشتر کانی‌های سولفاتی فلزی، pH بالای 4.5 و در بیشتر کانی‌های هگزا‌هیدرات، pH بالای 6.5 و در بیشتر کانی‌های سولفاتی فلزی، pH بالای 4.5 و در بیشتر کانی‌های هگزا‌هیدرات، pH بالای 6.5 و در بیشتر کانی‌های سولفاتی فلزی، pH بالای 4.5 و در بیشتر کانی‌های هگزا‌هیدرات، pH بالای 6.5 و در بیشتر کانی‌های سولفاتی فلزی، pH بالای 4.5 و در بیشتر کانی‌های هگزا‌هیدرات، pH بالای 6.5 و در بیشتر کانی‌های سولفاتی فلزی، pH بالای 4.5 و در بیشتر کانی‌های هگدا
را نشان می‌دهد. به‌طوری که مشاهده می‌شود در Zr, V, Rb و عناصر جزئی (Na2O+K2O), Al2O3, SiO2 باطله‌های زغالی نسبت به نمونه‌ی زغال‌سنگ همگن کارخانه، Zn, Sr, غنی‌شدنگی و درصد MgO, CaSO3 و میزان Fe2O3 و غنی‌شدنگی نشان می‌دهد. کاهش Fe2O3 و فلزات سیلیک مانند Pb, Ni, Cu, Zn و فلزات سیلیک مانند Pb, Ni, Cu, Zn، و غنی‌شدنگی باطله‌ها در باطله‌های زغالی شده است.

جدول ۲ گلظت عناصر جزئی در خوراک همگن کارخانه، باطله‌های زغالی، کانی‌های ناتوانی در منطقه‌ی مورد بررسی و مقایسه آن با میانگین زغال‌سنگ‌های چین، آمریکا و جهان

<table>
<thead>
<tr>
<th>عنصر</th>
<th>باطله‌ها</th>
<th>کانی‌های ناتوانی</th>
<th>جایگاه</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ba</td>
<td>13.96</td>
<td>10.34</td>
<td>1</td>
</tr>
<tr>
<td>Co</td>
<td>0.61</td>
<td>0.76</td>
<td>2</td>
</tr>
<tr>
<td>Cr</td>
<td>0.74</td>
<td>0.29</td>
<td>3</td>
</tr>
<tr>
<td>Cu</td>
<td>0.28</td>
<td>0.34</td>
<td>4</td>
</tr>
<tr>
<td>Ni</td>
<td>0.16</td>
<td>0.34</td>
<td>5</td>
</tr>
<tr>
<td>U</td>
<td>0.18</td>
<td>0.34</td>
<td>6</td>
</tr>
<tr>
<td>Th</td>
<td>0.12</td>
<td>0.34</td>
<td>7</td>
</tr>
<tr>
<td>Ce</td>
<td>0.12</td>
<td>0.34</td>
<td>8</td>
</tr>
<tr>
<td>Zr</td>
<td>0.11</td>
<td>0.34</td>
<td>9</td>
</tr>
<tr>
<td>Zn</td>
<td>0.11</td>
<td>0.34</td>
<td>10</td>
</tr>
</tbody>
</table>

نسبت به زغال‌سنگ بیانگر اکسید‌های کانی‌های سولفیدی است. این امر منجر به تمکیم SO2 به Zn, V, Rb و غنی‌شدنگی باطله‌های (Na2O+K2O), Al2O3, SiO2 باطله‌های زغالی نسبت به نمونه‌ی زغال‌سنگ همگن کارخانه، Zn, Sr, غنی‌شدنگی و درصد MgO, CaSO3 و میزان Fe2O3 و غنی‌شدنگی نشان می‌دهد. کاهش Fe2O3 و فلزات سیلیک مانند Pb, Ni, Cu, Zn، و غنی‌شدنگی باطله‌ها در باطله‌های زغالی شده است.

![شکل ۶ پراکندگی اکسیدهای اصلی در خوراک همگن کارخانه، کانی‌های ناتوانی و باطله‌های با سن‌های مختلف.](image-url)
آب‌های زهکش شده از باطله
کانی‌های نیتراتی (به ویژه پپتیت) کربنات‌ها و کانی‌های رسی معمولاً کانی‌های موجود در مواد باطله غلیق هستند، که نقش کلیدی در کنترل شیمی آب‌های زهکش شده از مواد باطله را بر عهده دارند. به همین منظور برای تعیین خاستگاه آنیون‌ها و کانی‌های اصلی موجود در آب از مدل‌گیز [17] استفاده شد. این مدل با استفاده از تغییرات نسبت Cl/Cl+HCO₃⁻ و Na/(Na+Ca) در سطح بالا تمایل مشخصی ندارد. این نتیجه با نتایج موجود در سایر پژوهش‌ها و مطالعات یافته به گونه‌ای هستند که ممکن است با توجه به تنوع چارچوب‌های زندگی ویژه‌های مختلف در منطقه، این نتایج ممکن است با توجه به شرایط دیگری در منطقه مختلفی از جمله دشت‌های بزرگ، قبایل واقع خاصیت ویژه‌ای دارند.
است Ca-Mg-Na-SO₄-HCO₃ از نوع VFTW₄، VFTW₅
Ca-Mg-Na که با مقدار بالای سولفات و کاتیون‌های غالب مشخص می‌شوند (شکل 9) این در حالت این که آب‌های سطحی (رودخانه) و زیرزمینی (چاه) (نمونه‌های Ca-Mg-HCO₃ است [31] از نوع (VRW₁، VRW₂، VW از طرف دیگر برای تفکیک نمودار مثلثی (شکل 8) سولفات، آب‌های غلظ در آب‌های زهکشی شده از باطله است که این زهاب‌ها را در گستره‌ی تولید زهاب اسیدی قرار می‌دهد [31].

محلول (TDS) سه گسترده بارش، بی‌خیار و سنگ مادره را بهعنوان خاستگاه آب‌های و کاتیون‌های اصلی آب مشخص می‌کند. براساس این مدل نمونه‌های موردنظر در این پژوهش در گستره‌ی لیتوپژیک قرار گرفت که نشانگر خاستگاه لیتوپژیک برای اجزای شیمی آب است و نقش سنگ مادره را بهعنوان خاستگاه آب‌های و کاتیون‌های نشان می‌دهد (شکل 8).

همچنین براساس نتایج حاصل از نمودار پایپر، آب‌های زهکش (VFTW₁، VFTW₂، VFTW₃، VFTW₄، VFTW₅، VFTW₆، VFTW₇، VFTW₈، VFTW₉، VFTW₁₀) نشان می‌دهند. 

شکل 8 نمودارهای گیپز [17] اعداد زهکشی و نشان بالله‌ها و آب‌های زیرزمینی و سطحی.

شکل 9 اف-نمودار پایپر، ب-نمودار مثلثی آب‌های زهکشی و تراوش شده از مواد بالطلها و آب زیرزمینی و سطحی.
بهصورت فراهمایی شکفته ی طی تبخیر تشکیل می‌شوند و می‌تواند بهصورت تک فرازی یا ابزارهای کانی‌های نظاره شوند [4]. این گروه از نظر هیدروژنوسیمی دارای سه سطحی آلوگرا و باعث تولید اسیدی، سولفات و احتمال فلزی هستند. که بهعنوان ذخیره ساز عصار گیاهی عمل می‌کنند و در نهایت، شروع بارندگی می‌شوند. این در انبارهای بازیابی کارخانه‌ها زمانی به‌کار می‌رود. همچنین منجر به ارتفاع شکاف‌‌هایی است. در اینجا از دانشگاه صنعتی تهران که باران‌ها در این عناصر بودن زیست محیطی به‌طور قدرتی به بازرسی و مطالعه این می‌تواند باعث تشکیل گسترشی کانی‌های تاناهو شود که احتمالاً این کانی‌های شکل متغیر و در اثر بارش‌های بعدی، این نگرانی را به‌طور احساسی جواد کرد. این به‌طور مسکین و طولانی به دلیل رقیق شدن نگرانی را به‌طور مسکین و طولانی به دلیل رقیق شدن نگرانی را می‌داند. گروه دوم شامل کانی‌های شیمیایی اکسیدی، و خنثی‌سازی هستند که از آن‌ها سه طرفی‌تی نامحل تشکیل شدند [4].

جدول 2: شاخص درجه‌ی اشباع شدگی زهاب‌های معدنی زهاب‌های زغال‌کارخانه‌ای زغال‌شوی عطوبی و طولی

<table>
<thead>
<tr>
<th>شاخص</th>
<th>VFW1</th>
<th>VFW2</th>
<th>VFW3</th>
<th>VFW4</th>
<th>VFW5</th>
</tr>
</thead>
<tbody>
<tr>
<td>فار</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FeOOH</td>
<td>734</td>
<td>736</td>
<td>736</td>
<td>736</td>
<td>736</td>
</tr>
<tr>
<td>Fe(OH)3</td>
<td>143</td>
<td>144</td>
<td>145</td>
<td>145</td>
<td>145</td>
</tr>
<tr>
<td>CaCO3</td>
<td>0.18</td>
<td>0.19</td>
<td>0.20</td>
<td>0.21</td>
<td>0.22</td>
</tr>
<tr>
<td>CaSO4</td>
<td>1.44</td>
<td>1.45</td>
<td>1.46</td>
<td>1.47</td>
<td>1.48</td>
</tr>
<tr>
<td>Fe2O3</td>
<td>748</td>
<td>752</td>
<td>756</td>
<td>760</td>
<td>764</td>
</tr>
<tr>
<td>NaCl</td>
<td>742</td>
<td>742</td>
<td>742</td>
<td>742</td>
<td>742</td>
</tr>
<tr>
<td>CaMg(CO3)2</td>
<td>0.15</td>
<td>0.16</td>
<td>0.17</td>
<td>0.18</td>
<td>0.19</td>
</tr>
<tr>
<td>CaSO4</td>
<td>0.18</td>
<td>0.19</td>
<td>0.20</td>
<td>0.21</td>
<td>0.22</td>
</tr>
<tr>
<td>Zn</td>
<td>20.12</td>
<td>20.13</td>
<td>20.14</td>
<td>20.15</td>
<td>20.16</td>
</tr>
<tr>
<td>Pb</td>
<td>10.5</td>
<td>11.6</td>
<td>12.7</td>
<td>13.8</td>
<td>14.9</td>
</tr>
<tr>
<td>Cu</td>
<td>5.6</td>
<td>6.7</td>
<td>7.8</td>
<td>8.9</td>
<td>10.0</td>
</tr>
<tr>
<td>Ni</td>
<td>2.3</td>
<td>3.4</td>
<td>4.5</td>
<td>5.6</td>
<td>6.7</td>
</tr>
<tr>
<td>Mn</td>
<td>0.01</td>
<td>0.02</td>
<td>0.03</td>
<td>0.04</td>
<td>0.05</td>
</tr>
<tr>
<td>Al</td>
<td>0.06</td>
<td>0.07</td>
<td>0.08</td>
<td>0.09</td>
<td>0.10</td>
</tr>
<tr>
<td>Si</td>
<td>0.11</td>
<td>0.12</td>
<td>0.13</td>
<td>0.14</td>
<td>0.15</td>
</tr>
</tbody>
</table>

جدول 3: شاخص درجه‌ی اشباع شدگی زهاب‌های معدنی زهاب‌های زغال‌کارخانه‌ای زغال‌شوی عطوبی و طولی

<table>
<thead>
<tr>
<th>شاخص</th>
<th>VFW1</th>
<th>VFW2</th>
<th>VFW3</th>
<th>VFW4</th>
<th>VFW5</th>
</tr>
</thead>
<tbody>
<tr>
<td>فار</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FeOOH</td>
<td>734</td>
<td>736</td>
<td>736</td>
<td>736</td>
<td>736</td>
</tr>
<tr>
<td>Fe(OH)3</td>
<td>143</td>
<td>144</td>
<td>145</td>
<td>145</td>
<td>145</td>
</tr>
<tr>
<td>CaCO3</td>
<td>0.18</td>
<td>0.19</td>
<td>0.20</td>
<td>0.21</td>
<td>0.22</td>
</tr>
<tr>
<td>CaSO4</td>
<td>1.44</td>
<td>1.45</td>
<td>1.46</td>
<td>1.47</td>
<td>1.48</td>
</tr>
<tr>
<td>Fe2O3</td>
<td>748</td>
<td>752</td>
<td>756</td>
<td>760</td>
<td>764</td>
</tr>
<tr>
<td>NaCl</td>
<td>742</td>
<td>742</td>
<td>742</td>
<td>742</td>
<td>742</td>
</tr>
<tr>
<td>CaMg(CO3)2</td>
<td>0.15</td>
<td>0.16</td>
<td>0.17</td>
<td>0.18</td>
<td>0.19</td>
</tr>
<tr>
<td>CaSO4</td>
<td>0.18</td>
<td>0.19</td>
<td>0.20</td>
<td>0.21</td>
<td>0.22</td>
</tr>
<tr>
<td>Zn</td>
<td>20.12</td>
<td>20.13</td>
<td>20.14</td>
<td>20.15</td>
<td>20.16</td>
</tr>
<tr>
<td>Pb</td>
<td>10.5</td>
<td>11.6</td>
<td>12.7</td>
<td>13.8</td>
<td>14.9</td>
</tr>
<tr>
<td>Cu</td>
<td>5.6</td>
<td>6.7</td>
<td>7.8</td>
<td>8.9</td>
<td>10.0</td>
</tr>
<tr>
<td>Ni</td>
<td>2.3</td>
<td>3.4</td>
<td>4.5</td>
<td>5.6</td>
<td>6.7</td>
</tr>
<tr>
<td>Mn</td>
<td>0.01</td>
<td>0.02</td>
<td>0.03</td>
<td>0.04</td>
<td>0.05</td>
</tr>
<tr>
<td>Al</td>
<td>0.06</td>
<td>0.07</td>
<td>0.08</td>
<td>0.09</td>
<td>0.10</td>
</tr>
<tr>
<td>Si</td>
<td>0.11</td>
<td>0.12</td>
<td>0.13</td>
<td>0.14</td>
<td>0.15</td>
</tr>
</tbody>
</table>


[25] رضایی ب. مهدا، چریکیسی اثرات زیست محیطی ناشی از پساب کارخانه زغال، مجله مهندسین شیمی، شماره ۲۶ (۱۳۷۹) ص ۲۲-۳۲.
[26] قلی بورح، مهندسین مهندسین، مهندسین شیمی، اثرات زیست محیطی ناشی از پساب کارخانه، مجله مهندسین شیمی، شماره ۱۳۸۲ (۱۳۷۹) ص ۱۴۱-۱۴۶.
[31] Kim J. J., Kim S. J., Tazaki K., “Mineralogical characterization of microbial ferrihydrite and schwertmannite and non-biogenic Na-sulfate precipitates from acid mine drainage in

