نقش زهاب اسیدی در تشکیل کانی‌های زیست مهیطی (کانی‌های ثانویه) در معدن زغالسنگ گلندرود و باطله‌های کارخانه زغال‌شویی وطنی، استان مازندران

مسلم آقائی کریم، 1 مصطفی رقیقی، 1 غلامحسین شمعینانی، 1 محسن قلی پور 2

چکیده: اکسایش کانی‌های سولفیدی موجود در زغالسنگ و باطله‌های معدنی آن منجر به تشکیل زهاب اسیدی معدن می‌شود. تبخیر، اکسایش، رقیق‌سازی، و ساختار آپاتیتی زهاب اسیدی تولید شده باعث تشکیل کانی‌های ثانویه خواهد شد. این کانی‌ها به دلیل کرنش سطحی توان خارج‌سازی سولفات‌ها و بی‌سیری از فلزات را دارند. برای بررسی کانی‌های نانوکمیکال و زیست مهیطی کانی‌های زیست مهیطی تشکیل شده از محل اشیاء باطله‌ای کارخانه زغال‌شویی وطنی و معدن زغال سنگ گلندرود نمونه‌برداری شد. براساس نتایج پرتوی ایکس کانی‌های ایمپوت، هگزاپتریت، زبس، هالت، گوتوئی، هماوات، دوموسیت، سیدروت، کالنوسیدت، مونت-موریولیت، ایلیت و کوارتز در فاز اصلی و زیست‌جی شناشی‌خنگ. نتایج تجزیه شلنگ‌هایی گنجاک از غنی‌سک گنلدرود در کانی‌های ثانویه تابع به نمونه‌ی معدن زغال و باطله‌های است. از طریق عناصر Rb و Co، Cr، Pb و SO۴ و Rbs در کانی‌های ثانویه تابع به نمونه‌ی معدن زغال و باطله‌های است. از طریق عناصر Rb و Co، Cr، Pb و SO۴ و Rbs در کانی‌های ثانویه تابع به نمونه‌ی معدن زغال و باطله‌های است. از طریق عناصر Rb و Co، Cr، Pb و SO۴ و Rbs در کانی‌های ثانویه تابع به نمونه‌ی معدن زغال و باطله‌های است. از طریق عناصر Rb و Co، Cr، Pb و SO۴ و Rbs در کانی‌های ثانویه تابع به نمونه‌ی معدن زغال و باطله‌های است. از طریق عناصر Rb و Co، Cr، Pb و SO۴ و Rbs در کانی‌های ثانویه تابع به نمونه‌ی معدن زغال و باطله‌های است. از طریق عناصر Rb و Co، Cr، Pb و SO۴ و Rbs در کانی‌های ثانویه تابع به نمونه‌ی معدن زغال و باطله‌های است. از طریق عناصر Rb و Co، Cr، Pb و SO۴ و Rbs در کانی‌های ثانویه تابع به نمونه‌ی معدن زغال و باطله‌های است. از طریق عناصر Rb و Co، Cr، Pb و SO۴ و Rbs در کانی‌های ثانویه تابع به نمونه‌ی معدن زغال و باطله‌های است. از طریق عناصر Rb و Co، Cr، Pb و SO۴ و Rbs در کانی‌های ثانویه تابع به نمونه‌ی معدن زغال و باطله‌های است. از طریق عناصر Rb و Co، Cr، Pb و SO۴ و Rbs در کانی‌های ثانویه تابع به نمونه‌ی معدن زغال و باطله‌های است. از طریق عناصر Rb و Co، Cr، Pb و SO۴ و Rbs در کانی‌های ثانویه تابع به نمونه‌ی معدن زغال و باطله‌های است. از طریق عناصر Rb و Co، Cr، Pb و SO۴ و Rbs در کانی‌های ثانویه تابع به نمونه‌ی معدن زغال و باطله‌های است. از طریق عناصر Rb و Co، Cr، Pb و SO۴ و Rbs در کانی‌های ثانویه تابع به نمونه‌ی معدن زغال و باطله‌های است. از طریق عناصر Rb و Co، Cr، Pb و SO۴ و Rbs در کانی‌های ثانویه تابع به نمونه‌ی معدن زغال و باطله‌های است. از طریق عناصر Rb و Co، Cr، Pb و SO۴ و Rbs در کانی‌های ثانویه تابع به نمونه‌ی معدن زغال و باطله‌های است. از طریق عناصر Rb و Co، Cr، Pb و SO۴ و Rbs در کانی‌های ثانویه تابع به نمونه‌ی معدن زغال و باطله‌های است. از طریق عناصر Rb و Co، Cr، Pb و SO۴ و Rbs در کانی‌های ثانویه تابع به نمونه‌ی معدن زغال و باطله‌های است. از طریق عناصر Rb و Co، Cr، Pb و SO۴ و Rbs در کانی‌های ثانویه تابع به نمونه‌ی معدن زغال و باطله‌های است. از طریق عناصر Rb و Co، Cr، Pb و SO۴ و Rbs در کانی‌های ثانویه تابع به نمونه‌ی معدن زغال و باطله‌های است. از طریق عناصر Rb و Co، Cr، Pb و SO۴ و Rbs در کانی‌های ثانویه تابع به نمونه‌ی معدن زغال و باطله‌های است. از طریق عناصر Rb و Co، Cr، Pb و SO۴ و Rbs در کانی‌های ثانویه تابع به نمونه‌ی معدن زغال و باطله‌های است. از طریق عناصر Rb و Co، Cr، Pb و SO۴ و Rbs در کانی‌های ثانویه تابع به

واژه‌های کلیدی: زهاب اسیدی معدن؛ کانی‌های زیست مهیطی؛ استان مازندران؛ زغالسنگ گلندرود

مقدمه

اکسایش کانی‌های سولفیدی موجود در مواد زغالی و باطله‌های موجب پیدایش بزرگ‌ترین و حساس‌ترین مسئله زیست مهیطی (AMD) می‌شود. امروز نیاز زهاب اسیدی معدن (AMD) شدید است. (1) الودگی بتا (و از پا به نیست، اسید، سولفات و اتانول فلز)
با وجود بررسی‌های فراوانی که در خصوص اثرات زغال‌شویی، معدن‌کاری زغال‌شویی، و اکوسیستم‌های آبزی، مشاهده شده است، تاکنون با وجود نهایی کمتری به هیچ یک از این گروه‌ها مشابه است. با این در نظر گرفتن، به روش‌های مختلفی بازیابی می‌تواند به همراه با روش‌های بررسی، استفاده شود [17]. با این توجه، می‌توان گفت که بررسی‌های اخیر در باب زغال‌شویی و اکوسیستم‌های آبزی، مدل‌های ریاضی و روش‌های آماری، به همراه با بررسی‌های آزمایش و شبیه‌سازی، نشان می‌دهند که بررسی بازیابی زغال‌شویی و اکوسیستم‌های آبزی، به بهترین ترتیب این موارد است.

مورد بررسی

معدل زغال‌شویی معدن‌کاری زغال‌شویی با موقعیت جغرافیایی ۵۳°۵۴′ طول‌شرقی و ۲۷°۲۰′ عرض شمالی در دامنه شمالی رشته کوههای البرز، داخلی از ۲۰ کیلومتری شرق‌غربی مازندران گرفته شد است [18]. این معدن از نظر زمین‌شناسی را توسط افراد انسانی که در جریان روند‌های خودرویی را می‌گردد و به‌طور عادی، نسبت به زغال‌شویهای مافیک و اکسید‌های هیدروژن‌زاها در اثر باشک‌دارها، به تصویب قرار گرفته است.

ویژگی‌های منطقه‌ای

معدن زغال‌شویی معدن‌کاری زغال‌شویی با موقعیت جغرافیایی ۵۳°۵۴′ طول‌شرقی و ۲۷°۲۰′ عرض شمالی در دامنه شمالی رشته کوههای البرز، داخلی از ۲۰ کیلومتری شرق‌غربی مازندران گرفته شد است. این معدن از نظر زمین‌شناسی را توسط افراد انسانی که در جریان روند‌های خودرویی را می‌گردد و به‌طور عادی، نسبت به زغال‌شویهای مافیک و اکسید‌های هیدروژن‌زاها در اثر باشک‌دارها، به تصویب قرار گرفته است.

Fe₂O₃·Fe₃O₄·H₂O شوئومینیت ((5Fe₂O₃·2Fe₃O₄·H₂O) گوتیت (FeOOH) و فرازوده‌های ثانویه‌ای پایدار شوئومینیت (Fe₂O₃) که به مقدار آن، هکتائیت (Fe₃O₄·3H₂O) آن، به طور زیادی تائیدیابی محیط وابسته است [19]. رویکرد های AMD در نتیجه تبخیر، اکسیلاپ، هیدرولیز و ریقی شدگی زغال‌شویی یکی از شرایط بالای شوئومینیت (Fe₂O₃) سولفیدی، در مختلیده شکاف‌های سولفیدی، این شرایط بازیابی و نوسازی می‌شود [17]. با تغییر شرایط آب و احتمال ترکیب فلزات، فلزات مقداری از آن‌ها، به این شکل پدیدار می‌گردد. با این توجه، می‌توان گفت که با تغییر شرایط آب و احتمال ترکیب فلزات، فلزات مقداری از آن‌ها، به این شکل پدیدار می‌گردد.

مقداری از آن‌ها، به این شکل پدیدار می‌گردد

با دنبال تغییر شرایط آب و احتمال ترکیب فلزات، فلزات مقداری از آن‌ها، به این شکل پدیدار می‌گردد. با این توجه، می‌توان گفت که با تغییر شرایط آب و احتمال ترکیب فلزات، فلزات مقداری از آن‌ها، به این شکل پدیدار می‌گردد.
شده روی سطح باطله‌های جدید و قديمي به روشنی درد 125 میلی‌امبر. بلوپ پرپوزی لیبرال استفاده شد. زغال کارخانه و مواد باطله از روی استاندارد روسی استفاده شد [15]. و زغال سنتی و باطله GOST از 400 تا 500 سانتی متر گرد و شده است.

همچنین به‌منظور ارزیابی ویژگی‌های هیدروترشیمی‌ای نمونه‌برداری از اب زهک و شدت شده از ابزارهای باطله و آب‌های زیرزمینی و سطحی رودخانه صورت گرفت. برای جلوگیری از جذب عناصر به‌مقدار موجود در آب، نمونه‌های آب از فیلترهای ۲ میکرون عبور داده شد و به‌طور جداییاً در ظرف‌های بلی ایبلینی یک لیتری و در دمای کمتر از ۴ درجه نگهداری شدند. به‌منظور اندازه‌گیری کاهش به‌دست آمده (HNO3) و اسید کربنیک نمونه‌ها از اسید تیترسیک (H2SO4) خلوت ۶۵ درصد استفاده شد و آب به کمتر از ۲ کاهش یافت [16]. از طرفی برای تعیین خاستگاه آبیون-
طرحی که در مواد باطله قدیمی کانی‌های ناتونه ایلیت، کوارتز، اپسومیت و زیپس در فاز اصلی و زاوروست و گالوتیتیت در فاز فرعی شکل گرفته‌اند (شکل 4 و جدول 1). در مواد باطله‌ی جدید کانی‌های هگزاپتیدیت، سیدردیت، همانتیت، گوئیت، مونت مورپولیتی و اپسومیت و کوارتز در فاز اصلی و زیپس، کانولینتیت و ایلیت در فاز فرعی مشخص شده‌اند (شکل 5 و جدول 1). این کانی‌ها به صورت بوسان آگندگی روي سطوح باطله‌ها قرار گرفته‌اند که بازتاب دهندهٔ اکسپلیت‌های موجود در مواد باطله است. که در اثر نفوذ آب و اکسایش بعده سولفیدها تشكیل شده‌اند. تشكل کانی‌های ناتونه بارتیب pH خصیتی نا قابلی در منطقه‌های غلظت سولفات‌ها شده و در اثر اکسایش سولفیدها است. همچنین این کانی‌ها در فرآیندهای جنگل‌های اسیدی ابزاره‌ی از فلزات موتر هستند و با دليل کستر دکتیبی زیاد ناپایی براي حل الگوها دارند [18]. براساس نتایج بدست آمده کانی‌های زیست‌محیطی تشكل شده در معدن گلندرود و کارخانجات زغال‌شویی و طلایی به چهار دسته برابر تقسیم‌کردن که به ترتیب آهتمی، شامل کانی‌ها، سولفات‌های فلزی، کانی‌های آهن سه‌ظرفی‌های کانی‌های کربناتی و سبلیکاتی است.

و کانی‌های اصلی از مدل گیز استفاده شد. بررسی کیفی داده‌های حاصل از تجزیهٔ شیمیایی با استفاده از نرم‌افزار AqQA (Version 1) انجام شد. برای تفسیر بهتر، نمودارهای پایپر و مونتی رسم شده و برای PHREEQC 1 (Version 2.6) تجزیه و تحلیل داده‌های هیدروشیمیایی استفاده شد.

بحث و بررسی
کانی‌شناسی
اکسایش مواد زغال‌دار در منطقه‌های معدنی گلندرود و محل انبار باطله کارخانه‌ی زغال‌شویی و دو کانی‌های ناتونه بازتابی از شیمیایی و فزایی تازه‌تری، به لحاظ سولفیدها و فاز‌های خاص‌تری در سطوح شیمیایی باطله‌های زغال‌دار و در درز‌های شکستگی‌های در و نیز روی سطوح ابزارهای باطله تشكل شده‌اند (شکل 2). بررسی‌های کانی‌شناسی کانی‌های ناتونه به روش برای نمونه‌بررسی در معدن زغال‌دار گلندرود بیانگر حضور کونیدیت، دوپولیتیت، زیپس و کوارتز در فاز اصلی و کانولینتیت و هالیت در فاز فرعی است (شکل 3 و جدول 1). این در حالی است که کانی‌های زیست‌محیطی با گسترش بیشتر در محل انباره‌ها باطله‌های جدید و قدیمی کارخانه زغال‌شویی وطنی تشكل شده‌اند. به‌...

شکل 2 تشكل کانی‌های ناتونه (زیست‌محیطی) بر روی انباره‌های باطله کارخانه زغال‌شویی وطنی.
جدول ۱ فهرست کانی‌های زیست محیطی شناسایی شده به روش برای پرتو ایکس در معدن زغال سنگ گلندرود و کارخانه زغال‌شویی وطنی.

<table>
<thead>
<tr>
<th>محل تشکیل کانی‌های زیست محیطی (تانویه)</th>
<th>کانی‌های هالی</th>
<th>کانی‌های فرعی</th>
</tr>
</thead>
<tbody>
<tr>
<td>معدن زغال سنگ گلندرود</td>
<td>کالی‌لیت، هالیت</td>
<td>کالی‌لیت، هالیت</td>
</tr>
<tr>
<td>باطلیه قدمی کارخانه زغال‌شویی وطنی</td>
<td>زئوست، کالی‌لیت</td>
<td>زئوست، کالی‌لیت</td>
</tr>
<tr>
<td>هگراهدریت، اپسومیت، هالیت، کالی‌لیت</td>
<td>کالی‌لیت، سیدریت، مونت</td>
<td>کالی‌لیت، سیدریت، مونت</td>
</tr>
<tr>
<td>بطله جنوب کارخانه زغال‌شویی وطنی</td>
<td>موریالیت، کالی‌لیت</td>
<td>موریالیت، کالی‌لیت</td>
</tr>
</tbody>
</table>
شکل 5 نمونه از الگوهای پرتو ایکس (XRD) کانی‌های ناتویه (ریست محیطی) تشکیل شده در سطوح انبارهای باطلیقی جدید.
کارخانه زغال‌شوی وطنی (زیبسی: Gyp), مونت مورولیت (Mont), Goetit, سیدریت (Sid), همانتیت (Hem), کوارترز (Quz), Eps, Kao, Hex, Eps, Kao, Kao, Hex, Eps.
کانی های سولفاتی فلزی
کانی های سولفاتی قابل حل آلی، نیترات، نیتریک، آمونیوم از معمولی‌ترین کانی‌های تشکیل‌دهنده شده در زه‌کش‌های اسیدی است [19]. با اسید این بررسی نمک‌های سولفاتی تشکیل شده در معدن زغال سنگ گلندرود و بخطط‌های کارخانه‌های زغال سنگ و طنین به دو دسته تقسیم می‌شوند. دسته اول کانی‌های سولفاتی قابل حل آلی است که در بسیاری از سولفات‌های فلزی آلیساده ساده به کانی‌های دو طرفی متصل و شامل هزگ‌های آهنی است. این دسته متشکل از (FeS2) است که به زنگ (KFe6(SO4)3(OH)6)، آهن مانند زاروسیت

در برابر آلی به قرنیز نشان می‌دهد که در سطح باطله‌های جدید و نیز در معدن گلندرود شناسایی شده. بررسی مدل بیوشیمی و بیوشیمی‌شناختی مدل بیوشیمی و شرایط اسیدی با در (pH=3-4، SO42- < 1000-3000mg/l) می‌تواند در آب‌های غنی از Fe3+ سولفاتی هستند که در طی اسیدی بودن تغییر باقی مانده و دارای خاصیت‌های پیش. این کانی را کانی‌های سولفاتی و کارخانه‌ی زغال سنگ و مواد باطله‌های ناشی از معدن زغال سنگ و مواد باطله شناسایی شده است. از طرفی خنثایی این مدل باطله کلیست و دومیش، اعضاً کلیست و انزیم‌های متین مورد نیاز را فراهم می‌آورد. زیبی سولفاتی کلیست آلی لازم است که از واکنش بین محصول سولفاتوریک رقیق با رسوب-3 تشکیل می‌شود [23]. این کانی کارخانه‌های زغال سنگ و مواد باطله‌های ناشی از طرفی خنثایی این مدل باطله کلیست و دومیش، اعضاً کلیست و انزیم‌های متین مورد نیاز را فراهم می‌آورد. زیبی سولفاتی کلیست آلی لازم است که از واکنش بین محصول سولفاتوریک رقیق با رسوب-3 تشکیل می‌شود [23]. با این تفاوت Cu2+ در مقایسه با گلیوژه کانی‌های سولفاتی اینالیز بی‌پیشی کارخانه‌های زغال سنگ و مواد باطله‌های ناشی از طرفی خنثایی این مدل باطله کلیست و دومیش، اعضاً کلیست و انزیم‌های متین مورد نیاز را فراهم می‌آورد.
رآشن می‌دهند. پهلوانی غیابی‌که مشاهده می‌شود در
$\text{Zr}, \text{V}, \text{Rb}$ و عنصر جذب
(Na$_2$O+K$_2$O), Al$_2$O$_3$, SiO$_2$
بات‌ل‌های زغالی نسبت به مجموعه‌ی زغال‌های هم‌گون کارخانه، غلظت
Zn, Sr, MgO, Ca, SO$_3$
زنی و Fe$_2$O$_3$، Cl, Ni, Cu, Ba
سپر می‌شود. این فرآیند موجب کاهش اکسید
بات‌ل‌های زغالی شده است.

جدول ۲ غلظت عنصر جذب در خوراک هم‌گون کارخانه، باطل‌های زغالی، کاپی‌های ناتوبه در مناطقی مورد بررسی و مقایسه آن با میانگین
ثبتی با Zn, Sr, MgO, Ca, SO$_3$
زنی و Fe$_2$O$_3$، Cl, Ni, Cu, Ba

<table>
<thead>
<tr>
<th>عنصر بر حسب خوراک هم‌گون کارخانه</th>
<th>نام عنصر</th>
<th>میزان ppm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ba</td>
<td>Ba</td>
<td>1063</td>
</tr>
<tr>
<td>Co</td>
<td>Co</td>
<td>37</td>
</tr>
<tr>
<td>Cr</td>
<td>Cr</td>
<td>12</td>
</tr>
<tr>
<td>Cu</td>
<td>Cu</td>
<td>79</td>
</tr>
<tr>
<td>Ni</td>
<td>Ni</td>
<td>216</td>
</tr>
<tr>
<td>U</td>
<td>U</td>
<td>13</td>
</tr>
<tr>
<td>Th</td>
<td>Th</td>
<td>18</td>
</tr>
<tr>
<td>Ce</td>
<td>Ce</td>
<td>68</td>
</tr>
<tr>
<td>Hg</td>
<td>Hg</td>
<td>36</td>
</tr>
<tr>
<td>Pb</td>
<td>Pb</td>
<td>114</td>
</tr>
<tr>
<td>Ba</td>
<td>Ba</td>
<td>192</td>
</tr>
<tr>
<td>Sr</td>
<td>Sr</td>
<td>314</td>
</tr>
<tr>
<td>V</td>
<td>V</td>
<td>29.8</td>
</tr>
<tr>
<td>W</td>
<td>W</td>
<td>6</td>
</tr>
<tr>
<td>Y</td>
<td>Y</td>
<td>50</td>
</tr>
<tr>
<td>Zn</td>
<td>Zn</td>
<td>189</td>
</tr>
</tbody>
</table>

شکل ۶ پراکندگی اکسیدهای اصلی در خوراک هم‌گون کارخانه، کاپی‌های ناتوبه و باطل‌های با سه‌های مختلف.
نشش زهاب اسیدی در تشکیل کانی‌های زیست محيطی ...
است Ca-Mg-Na-SO₄-HCO₃ از نوع VFTW₄, VFTW₅، Ca-Mg-Na که با مقادیر بالای سولفات و کاتيونهای غالب مشخص می‌شوند (شکل ۹، یافته). این در حالتی است که ابهای سطحی (رودرخانه) و زیرزمینی (چاه) (نمونه‌های Ca-Mg-HCO₃₂) از نوع VFTW₁, VFTW₂, VFTW₃ از طرف دیگر براساس نتایج نمودار مثلث (شکل ۹) سولفات، آبیون غالب در ابهای زهکشتی سطح از باطله است که این زهاب‌ها را در گسترهٔ تولید زهاب اسیدی قرار می‌دهد [۱۱].

محلول (TDS) سه گسترهٔ بارشی، تبخیر و سنگ ماده‌رآ به عنوان خاستگاه آب‌های و کاتیونهای اصلی آب مشخص می‌کند. براساس این مدل نمونه‌های مورد بررسی در این پژوهش در گسترهٔ تولید زهابі قرار گرفت که نشانگر خاستگاه لیتولوژیک برای اجزای شیمی آب است و نقش سنگ مادرا را به عنوان خاستگاه آب‌های و کاتیونهای ناشان می‌دهد (شکل ۹). همچنین براساس نتایج حاصل از نمودار یافته‌ای، ابهای زهکشتی (VFTW₁, VFTW₂, VFTW₃) شده و نشان از باطله‌ها،

شکل ۸ نمودارهای گیپز [۱۷] ابهای زهکشتی و نشان از باطله‌ها و آب‌های زیرزمینی و سطحی.

شکل ۹ الی‌ف-نمودار پایبر، ب-نمودار مثلثی ابهای زهکشتی و تراوش شده از مواد باطله‌ها و آب زیرزمینی و سطحی.
مدل سازی هیدروژنوسیمیایی

به منظور ارزیابی پتانسیل سرب و انحلال کاتیون‌ها از فاز محلول PHREEQC 2.6 استفاده شد. بررسی این مدل شامل تغییرات در ظرفیت عناصر در فاز محلول است. همچنین مدل با استفاده از سرمایه‌گذاری‌های مختلف و به‌خصوص‌سازی‌ها از این نظر استفاده کنند. در این مدل که با استفاده از سرمایه‌گذاری‌های مختلف و به‌خصوص‌سازی‌ها از این نظر استفاده کنند. در این مدل که با استفاده از سرمایه‌گذاری‌های مختلف و به‌خصوص‌سازی‌ها از این نظر استفاده کنند. در این مدل که با استفاده از سرمایه‌گذاری‌های مختلف و به‌خصوص‌سازی‌ها

جدول: شاخص درجهٔ اشباع شدگی (کالی‌های زه‌های زمین) در ناحیهٔ بالغ بر روی نواحی برخی از دوره‌های زه‌های زمین و مکان‌های مورد نظر است. در این مدل که با استفاده از سرمایه‌گذاری‌های مختلف و به‌خصوص‌سازی‌ها از این نظر استفاده کنند. در این مدل که با استفاده از سرمایه‌گذاری‌های مختلف و به‌خصوص‌سازی‌ها

<table>
<thead>
<tr>
<th>فاز</th>
<th>VFTW5</th>
<th>VFTW4</th>
<th>VFTW3</th>
<th>VFTW2</th>
<th>VFTW1</th>
</tr>
</thead>
<tbody>
<tr>
<td>NaCl</td>
<td>+0.76</td>
<td>-0.01</td>
<td>-0.44</td>
<td>-0.89</td>
<td>-1.44</td>
</tr>
<tr>
<td>CaSO4</td>
<td>-0.44</td>
<td>-0.19</td>
<td>-0.31</td>
<td>-0.27</td>
<td>-0.96</td>
</tr>
<tr>
<td>CaCO3</td>
<td>-0.19</td>
<td>-0.31</td>
<td>-0.44</td>
<td>-0.89</td>
<td>-1.44</td>
</tr>
<tr>
<td>CaCO3</td>
<td>-0.44</td>
<td>-0.19</td>
<td>-0.31</td>
<td>-0.27</td>
<td>-0.96</td>
</tr>
<tr>
<td>Fe(OH)3</td>
<td>0.19</td>
<td>0.31</td>
<td>0.44</td>
<td>0.89</td>
<td>1.44</td>
</tr>
<tr>
<td>FeOH</td>
<td>-0.19</td>
<td>-0.31</td>
<td>-0.44</td>
<td>-0.89</td>
<td>-1.44</td>
</tr>
<tr>
<td>FeOOH</td>
<td>0.19</td>
<td>0.31</td>
<td>0.44</td>
<td>0.89</td>
<td>1.44</td>
</tr>
<tr>
<td>Fe2O3</td>
<td>-0.19</td>
<td>-0.31</td>
<td>-0.44</td>
<td>-0.89</td>
<td>-1.44</td>
</tr>
<tr>
<td>ZnS</td>
<td>0.19</td>
<td>0.31</td>
<td>0.44</td>
<td>0.89</td>
<td>1.44</td>
</tr>
<tr>
<td>FeS</td>
<td>-0.19</td>
<td>-0.31</td>
<td>-0.44</td>
<td>-0.89</td>
<td>-1.44</td>
</tr>
<tr>
<td>NaCl</td>
<td>-0.19</td>
<td>-0.31</td>
<td>-0.44</td>
<td>-0.89</td>
<td>-1.44</td>
</tr>
<tr>
<td>FeCl3</td>
<td>0.19</td>
<td>0.31</td>
<td>0.44</td>
<td>0.89</td>
<td>1.44</td>
</tr>
<tr>
<td>FeSO4</td>
<td>-0.19</td>
<td>-0.31</td>
<td>-0.44</td>
<td>-0.89</td>
<td>-1.44</td>
</tr>
<tr>
<td>Fe2O3</td>
<td>0.19</td>
<td>0.31</td>
<td>0.44</td>
<td>0.89</td>
<td>1.44</td>
</tr>
<tr>
<td>FeS</td>
<td>-0.19</td>
<td>-0.31</td>
<td>-0.44</td>
<td>-0.89</td>
<td>-1.44</td>
</tr>
<tr>
<td>NaCl</td>
<td>0.19</td>
<td>0.31</td>
<td>0.44</td>
<td>0.89</td>
<td>1.44</td>
</tr>
<tr>
<td>FeCl3</td>
<td>-0.19</td>
<td>-0.31</td>
<td>-0.44</td>
<td>-0.89</td>
<td>-1.44</td>
</tr>
<tr>
<td>FeSO4</td>
<td>0.19</td>
<td>0.31</td>
<td>0.44</td>
<td>0.89</td>
<td>1.44</td>
</tr>
<tr>
<td>Fe2O3</td>
<td>-0.19</td>
<td>-0.31</td>
<td>-0.44</td>
<td>-0.89</td>
<td>-1.44</td>
</tr>
<tr>
<td>FeS</td>
<td>0.19</td>
<td>0.31</td>
<td>0.44</td>
<td>0.89</td>
<td>1.44</td>
</tr>
<tr>
<td>NaCl</td>
<td>-0.19</td>
<td>-0.31</td>
<td>-0.44</td>
<td>-0.89</td>
<td>-1.44</td>
</tr>
<tr>
<td>FeCl3</td>
<td>0.19</td>
<td>0.31</td>
<td>0.44</td>
<td>0.89</td>
<td>1.44</td>
</tr>
<tr>
<td>FeSO4</td>
<td>-0.19</td>
<td>-0.31</td>
<td>-0.44</td>
<td>-0.89</td>
<td>-1.44</td>
</tr>
<tr>
<td>Fe2O3</td>
<td>0.19</td>
<td>0.31</td>
<td>0.44</td>
<td>0.89</td>
<td>1.44</td>
</tr>
<tr>
<td>FeS</td>
<td>-0.19</td>
<td>-0.31</td>
<td>-0.44</td>
<td>-0.89</td>
<td>-1.44</td>
</tr>
</tbody>
</table>
سطوح بافت‌های قادین کارخانه زغال‌شویی تشکیل شده است.

Co ,Cr ,Pb و SO2 می‌توانند ترکیب آب‌زدایی کانی‌های نیکل-کربنایی باشد. در این کانی‌ها نسبت به مناطق زغال‌شویی معنی‌دار گلندروی با بلاتری با سنتز نیوتروپ پیام مشابه دارد.

همچنین عناصر جو از کانی‌های نیکل-کربنایی در Ni ,Zn ,Pb ,Cr ,Co در اثر تغییرات شرایط داخلی منجر به تشکیل زه‌های اسیدی زدود به همکاری باعث کاهش کانی‌های نیکل-کربنایی در شرایط خشک می‌شوند که در این جریان به عنوان عامل آب‌ورگیری در منطقه مورد بررسی مطرح می‌شود.

از طرف دیگر، اثرات باریکی و دسترس آب (آب) نیز در تغییرات نیز در تغییرات

اطر کریستال ساختنی زه‌های کانی‌های نیکل-کربنایی از لحاظ شرایط بافت‌های متغیر، یافته‌های گفتگو با اثر در راستای مدلیت بافت‌های منطقه صورت گرفت. به طور کلی توجه به نشان می‌کند که در محیط زیست، باعث بودن تاریک کارهای زه‌های باعث ورود باریکی و دسترس آب (آب) گی و فرسایش، ثبت‌های اسیدی و تشکیل ساختنی زه‌های نیکل-کربنایی و شرایط

می‌شوند.

[25] رضایی ب مهدا، ن. مطالله و بررسی کاهش آنرات
زیست محیطی ناشی از بسیار کارخانه زغال‌شیبی یزد، مجله محیطی شناسی شماره ۲۵ (۱۳۷۹) ص ۲۲-۲۳.

[26] قلی‌نورن م، مطالعه نفوذ ریزی م، شمعانیان غ، بررسی آتشفشانی زغال‌شیبی بسیارین معدن در
پارک ملی کارخانه زغال‌شیبی یزد، استان مازندران، مجله
بلورشناوری و کانی شناسی ایران، شماره ۲ (۱۳۸۲) ص ۱۲۳-۱۶۸.

[35] شرکت مهندسی هریس پی کوه، طرح تجهیز زغال‌سک
گنبدی، رمی شناسی و اکتشافات، تابعیت ۱۳۸۰، ص ۱۵۰.

[36] شرکت مهندسین مشاور خوزآب، مطالعات نامی
انتقال دخیرو تری و شبکه پژوهی آب شهرهای نور، روبان، ایزد، حمیدان، گزارش دهانگی و هیدروژئولوژی، جلد اول
(۱۳۷۹) ص ۱۱۹.

[38] Kim J. J., Kim S. J., Tazaki K., “Mineralogical characterization of microbial ferrihydrite and schwertmannite and non-biogenic AL-sulfate precipitates from acid mine drainage in

